首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus anthracis is a Gram-positive bacillus that is the causative agent of anthrax. The virulence of the bacillus is partly due to the production of a tripartite virulence factor: protective antigen (PA), lethal factor (LF) and edema factor (EF). Recognition of the bacillus and its toxins by the innate immune system is likely to play a key role following infection. In this study we set out to investigate whether anthrax cell wall (ACW) components as well as the lethal toxin are sensed by Toll-like receptors (TLRs). Our data suggest that ACW components as well as PA are sensed by TLR2/6 heterodimers triggering an inflammatory response. This recognition takes place on the cell surface within specialized microdomains for ACW, whereas PA seems to trigger responses intracellularly. Interestingly, LF does not trigger a pro-inflammatory response, and when combined with PA, the complex is not sensed by the innate immune system. Overall our data suggest that TLR2/6 heterodimers are responsible for sensing the ACW and PA, whereas the formation of the subsequent toxin (LF + PA) seems to evade detection by the innate immune system contributing to the virulence of the toxin.  相似文献   

2.
Vascular endothelial dysfunction is thought to play a prominent role in systemic anthrax pathogenesis. We examined the effect of anthrax lethal toxin (LTx), a key virulence factor of Bacillus anthracis, on the expression of vascular cell adhesion molecule-1 (VCAM-1) on normal and cytokine-stimulated human lung microvascular endothelial cells. Confluent endothelial monolayers were treated with lethal factor (LF), protective antigen (PA), or both (LTx) in the presence or absence of tumor necrosis factor-alpha (TNFalpha). LTx enhanced cytokine-induced VCAM-1 expression and monocyte adhesion. LTx alone had no effect on VCAM-1 expression. LF, PA or the combination of a catalytically inactive mutant LF and PA failed to enhance cytokine-induced VCAM-1 expression. Treatment with inhibitors of mitogen-activated protein kinase kinases (MEKs) and mitogen-activated protein kinases did not reproduce the VCAM-1 enhancement effect of LTx, a known MEK metalloprotease, suggesting LTx-mediated MEK cleavage may not be a contributing factor.  相似文献   

3.
Bacillus anthracis, the agent of anthrax, produces two main virulence factors: a capsule and two toxins. Both lethal toxin (LT) and edema toxin (ET) paralyze the immune defense system. Here, we analyze the effects of LT and ET on the capacity of human monocyte-derived dendritic cells (MoDC) to produce proinflammatory chemokines. We show that both toxins disrupt proinflammatory chemokine production. LT has more pronounced effects than ET on CXCL8 production, which is correlated with impaired recruitment of neutrophils in vitro. Finally, we show that both toxins also differentially disrupt IL-12p70, IL-10, and TNF-α production. Taken together, these results demonstrate that both B. anthracis toxins alter MoDC functions and the activation of the innate immune system.  相似文献   

4.
Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-deficient mice remained fully sensitive to both anthrax lethal and edema toxins, demonstrating that targeting of myeloid cells is not responsible for anthrax toxin-induced lethality. Surprisingly, the myeloid-specific CMG2-deficient mice were completely resistant to B. anthracis infection. Neutrophil depletion experiments suggest that B. anthracis relies on anthrax toxin secretion to evade the scavenging functions of neutrophils to successfully establish infection. This work demonstrates that anthrax toxin uptake through CMG2 and the resulting impairment of myeloid cells are essential to anthrax infection.  相似文献   

5.
The recent use of Bacillus anthracis as a bioweapon has stimulated the search for novel antitoxins and vaccines that act rapidly and with minimal adverse effects. B. anthracis produces an AB-type toxin composed of the receptor-binding moiety protective antigen (PA) and the enzymatic moieties edema factor and lethal factor. PA is a key target for both antitoxin and vaccine development. We used the icosahedral insect virus Flock House virus as a platform to display 180 copies of the high affinity, PA-binding von Willebrand A domain of the ANTXR2 cellular receptor. The chimeric virus-like particles (VLPs) correctly displayed the receptor von Willebrand A domain on their surface and inhibited lethal toxin action in in vitro and in vivo models of anthrax intoxication. Moreover, VLPs complexed with PA elicited a potent toxin-neutralizing antibody response that protected rats from anthrax lethal toxin challenge after a single immunization without adjuvant. This recombinant VLP platform represents a novel and highly effective, dually-acting reagent for treatment and protection against anthrax.  相似文献   

6.
The significant threat posed by biological agents (e.g. anthrax, tetanus, botulinum, and diphtheria toxins) (Inglesby, T. V., O'Toole, T., Henderson, D. A., Bartlett, J. G., Ascher, M. S., Eitzen, E., Friedlander, A. M., Gerberding, J., Hauer, J., Hughes, J., McDade, J., Osterholm, M. T., Parker, G., Perl, T. M., Russell, P. K., and Tonat, K. (2002) J. Am. Med. Assoc. 287, 2236-2252) requires innovative technologies and approaches to understand the mechanisms of toxin action and to develop better therapies. Anthrax toxins are formed from three proteins secreted by fully virulent Bacillus anthracis, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa). Here we present electrophysiological measurements demonstrating that full-length LF and EF convert the current-voltage relationship of the heptameric PA63 ion channel from slightly nonlinear to highly rectifying and diode-like at pH 6.6. This effect provides a novel method for characterizing functional toxin interactions. The method confirms that a previously well characterized PA63 monoclonal antibody, which neutralizes anthrax lethal toxin in animals in vivo and in vitro, prevents the binding of LF to the PA63 pore. The technique can also detect the presence of anthrax lethal toxin complex from plasma of infected animals. The latter two results suggest the potential application of PA63 nanopore-based biosensors in anthrax therapeutics and diagnostics.  相似文献   

7.
Protective antigen (PA) is a component of the Bacillus anthracis lethal and edema toxins and the basis of the current anthrax vaccine. In its heptameric form, PA targets host cells and internalizes the enzymatically active components of the toxins, namely lethal and edema factors. PA and other toxin components are secreted from B. anthracis using the Sec-dependent secretion pathway. This requires them to be translocated across the cytoplasmic membrane in an unfolded state and then to be folded into their native configurations on the trans side of the membrane, prior to their release from the environment of the cell wall. In this study we show that recombinant PA (rPA) requires the extracellular chaperone PrsA for efficient folding when produced in the heterologous host, B. subtilis; increasing the concentration of PrsA leads to an increase in rPA production. To determine the likelihood of PrsA being required for PA production in its native host, we have analyzed the B. anthracis genome sequence for the presence of genes encoding homologues of B. subtilis PrsA. We identified three putative B. anthracis PrsA proteins (PrsAA, PrsAB, and PrsAC) that are able to complement the activity of B. subtilis PrsA with respect to cell viability and rPA secretion, as well as that of AmyQ, a protein previously shown to be PrsA-dependent.  相似文献   

8.
Bacillus anthracis, a spore-forming infectious bacterium, produces a toxin consisting of three proteins: lethal factor (LF), edema factor (EF), and protective antigen (PA). LF and EF possess intracellular enzymatic functions, the net effect of which is to severely compromise host innate immunity. During an anthrax infection PA plays the critical role of facilitating entry of both EF and LF toxins into host cell cytoplasm. Crystal structures of all three of the anthrax toxins have been determined, as well as the crystal structure of the (human) von Willebrand factor A (integrin VWA/I domain) -- an anthrax toxin receptor. A theoretical structure of the complex between VWA/I and PA has also been reported. Here we report on the results of 1,000 psec molecular dynamics (MD) simulations carried out on complexes between the Anthrax Protective Antigen Domain 4 (PA-D4) and the von Willebrand Factor A (VWA/I). MD simulations (using Insight II software) were carried out for complexes containing wild-type (WT) PA-D4, as well as for complexes containing three different mutants of PA-D4, one containing three substitutions in the PA-D4 "small loop" (residues 679-693) (D683A/L685E/Y688C), one containing a single substitution at a key site at the PA-D4 -- receptor interface (K679A) and another containing a deletion of eleven residues at the C-terminus of PA (Delta724-735). All three sets of PA mutations have been shown experimentally to result in serious deficiencies in PA function. Our MD results are consistent with these findings. Major disruptions in interactions were observed between the mutant PA-D4 domains and the anthrax receptor during the MD simulations. Many secondary structural features in PA-D4 are also severely compromised when VWA complexes with mutant variants of PA-D4 are subjected to MD simulations. These MD simulation results clearly indicate the importance of the mutated PA-D4 residues in both the "small loop" and at the carboxyl terminus in maintaining a PA conformation that is capable of effective interaction with the anthrax toxin receptor.  相似文献   

9.
炭疽是由炭疽芽孢杆菌引起的严重威胁人类健康的传染病。炭疽毒素包括3种蛋白质成分:保护性抗原(PA)、致死因子(LF)和水肿因子(EF)。PA与LF形成致死毒素(LT),与EF形成水肿毒素(ET)。由于致死毒素(LT)在感染者损伤及死亡中发挥主要作用,因此在炭疽感染晚期单纯使用抗生素治疗难以发挥疗效,治疗性中和抗体成为目前最有效的炭疽治疗药物。目前国外获得的炭疽毒素抗体多为炭疽PA抗体,美国FDA已批准瑞西巴库(人源PA单抗)用于吸入性炭疽的治疗。一旦炭疽芽孢杆菌被人为改构或PA中和表位发生突变,针对PA单一表位的抗体将可能失效,因此针对LF的抗体将成为炭疽治疗的有效补充。目前国外已有的LF抗体多为鼠源抗体和嵌合抗体,而全人源抗体可以避免鼠源抗体免疫原性高等缺点。本研究首先用LF抗原免疫人抗体转基因小鼠,利用流式细胞仪从小鼠脾淋巴细胞中分选抗原特异的记忆B细胞,通过单细胞PCR方法快速获得两株具有结合活性的抗LF单抗1D7和2B9。瞬时转染Expi 293F细胞制备抗体,通过毒素中和实验(TNA)发现1D7和2B9在细胞模型中均显示较好的中和活性,并且与PA单抗联合使用时,表现出较好的协同作用。总之,本文利用转基因小鼠、流式分选技术和单细胞PCR技术的优势,快速筛选到全人源LF抗体,为快速筛选全人源单克隆抗体开辟了新的思路与方法。  相似文献   

10.
The combination of lethal factor and its receptor-binding partner, protective Ag, is termed lethal toxin (LT) and has critical pathogenic activity during infection with Bacillus anthracis. We herein report that anthrax LT binds and enters murine neutrophils, leading to the cleavage of mitogen-activated protein kinase kinase/MEK/MAPKK 1-4 and 6, but not mitogen-activated protein kinase kinase 5 and 7. Anthrax LT treatment of neutrophils disrupts signaling to downstream MAPK targets in response to TLR stimulation. Following anthrax LT treatment, ERK family and p38 phosphorylation are nearly completely blocked, but signaling to JNK family members persists in vitro and ex vivo. In contrast to previous reports involving human neutrophils, anthrax LT treatment of murine neutrophils increases their production of superoxide in response to PMA or TLR stimulation in vitro or ex vivo. Although this enhanced superoxide production correlates with effects due to the LT-induced blockade of ERK signaling, it requires JNK signaling that remains largely intact despite the activity of anthrax LT. These findings reveal a previously unrecognized mechanism through which anthrax LT supports a critical proinflammatory response of murine neutrophils.  相似文献   

11.
炭疽保护性抗原(PA)是炭疽毒素的重要组分,同时也是现有炭疽疫苗的主要有效成分,在炭疽杆菌的致病与免疫中发挥关键作用。以重组PA为免疫原,采用B淋巴细胞杂交瘤技术,结合炭疽毒素敏感细胞的毒性中和试验,大量筛选抗PA单克隆抗体,获得了9株炭疽毒素中和性单抗。进一步分析表明这些单抗以IgG1亚类为主,分别识别PA 3个结构域的4个不同中和表位区。针对结构域2的4株单抗识别同一表位区,其中3株单抗的中和活性强于抗PA多抗;针对结构域4的4株单抗识别两个不同表位区;另有1株单抗识别位于结构域3的表位。实验结果提示PA具有多个中和表位,分别位于其不同结构域,其中结构域2、4包含主要中和表位。实验中获得的针对不同表位的中和性单抗为深入研究PA的免疫保护机理提供了工具,也为研制针对炭疽毒素的被动免疫制剂和治疗药物打下基础。  相似文献   

12.
Bacillus anthracis, the causative agent of anthrax, produces a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF), which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin and edema toxin, respectively. In this preliminary study, we characterized the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody responses observed following infection were directed against LF, with immunoglobulin G (IgG) detected as early as 4 days after the onset of symptoms in contrast to the later and lower EF- and PA-specific IgG responses. Unlike the case with infection, the predominant toxin-specific antibody response of those immunized with the US anthrax vaccine absorbed and UK anthrax vaccine precipitated licensed anthrax vaccines was directed against PA. We observed that the LF-specific human antibodies were, like anti-PA antibodies, able to neutralize toxin activity, suggesting the possibility that they may contribute to protection. We conclude that an antibody response to LF might be a more sensitive diagnostic marker of anthrax than to PA. The ability of human LF-specific antibodies to neutralize toxin activity supports the possible inclusion of LF in future anthrax vaccines.  相似文献   

13.
Bacillus anthracis secretes two critical virulence factors, lethal toxin (LT) and edema toxin (ET). In this study, we show that murine bone marrow-derived dendritic cells (DC) infected with B. anthracis strains secreting ET exhibit a very different cytokine secretion pattern than DC infected with B. anthracis strains secreting LT, both toxins, or a nontoxinogenic strain. ET produced during infection selectively inhibits the production of IL-12p70 and TNF-alpha, whereas LT targets IL-10 and TNF-alpha production. To confirm the direct role of the toxins, we show that purified ET and LT similarly disrupt cytokine secretion by DC infected with a nontoxinogenic strain. These effects can be reversed by specific inhibitors of each toxin. Furthermore, ET inhibits in vivo IL-12p70 and IFN-gamma secretion induced by LPS. These results suggest that ET produced during infection impairs DC functions and cooperates with LT to suppress the innate immune response. This may represent a new strategy developed by B. anthracis to escape the host immune response.  相似文献   

14.
Characterization of the functional domains of Bacillus anthracis protective antigen (PA, 83-kDa), the common cellular binding molecule for both anthrax edema toxin and anthrax lethal toxin, is important for understanding the mechanism of entry and action of the anthrax toxins. In this study, we generated both biologically active (facilitates killing of J774A.1 cells in combination with lethal factor, LF) and inactive preparations of PA by protease treatment. Limited proteolytic digestion of PA in vitro with trypsin generated a 20-kDa fragment and a biologically active 63-kDa fragment. In contrast, limited digestion of PA with chymotrypsin yielded a preparation containing 37- and 47-kDa fragments defective for biological activity. Treatment with both chymotrypsin and trypsin generated three major fragments, 20, "17," and 47 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This PA preparation was also biologically inactive. To investigate the nature of the defect resulting from chymotrypsin treatment, we assayed PA preparations for the ability to bind to the cellular receptor and to bind and internalize 125I-LF. All radiolabeled PA preparations bound with specificity to J774A.1 cells and exhibited affinities similar to native 83-kDa PA. Once bound to the cell surface receptor, both trypsin-treated PA and chymotrypsin/trypsin-treated PA specifically bound 125I-LF with high affinity. Finally, these PA preparations delivered 125I-LF to a Pronase-resistant cellular compartment in a time- and temperature-dependent fashion. Thus, the biological defect exhibited by chymotrypsin-treated PA is not at the level of cell binding or internalization but at a step later, such as toxin routing or processing by J774A.1 cells. These protease-treated preparations of PA should prove useful in both elucidating the intracellular processing of anthrax lethal toxin and determining the structure-function relationship of PA and LF.  相似文献   

15.
Bacillus anthracis spores germinate to vegetative forms in host cells, and produced fatal toxins. A toxin-targeting prophylaxis blocks the effect of toxin, but may allow to grow vegetative cells which create subsequent toxemia. In this study, we examined protective effect of extractable antigen 1 (EA1), a major S-layer component of B. anthracis, against anthrax. Mice were intranasally immunized with recombinant EA1, followed by a lethal challenge of B. anthracis spores. Mucosal immunization with EA1 resulted in a significant level of anti-EA1 antibodies in feces, saliva and serum. It also delayed the onset of anthrax and remarkably decreased the mortality rate. In addition, the combination of EA1 and protective antigen (PA) protected all immunized mice from a lethal challenge with B. anthracis spores. The numbers of bacteria in tissues of EA1-immunized mice were significantly decreased compared to those in the control and PA alone-immunized mice. Immunity to EA1 might contribute to protection at the early phase of infection, i.e., before massive multiplication and toxin production by vegetative cells. These results suggest that EA1 is a novel candidate for anthrax vaccine and provides a more effective protection when used in combination with PA.  相似文献   

16.
In experiments on inbred mice infected with B. anthracis capsular strain 71/12 of Tsenkovsky's second vaccine B. anthracis lethal toxin introduced in mixture with spores has been shown to aggravate anthrax infection in CBA mice susceptible to anthrax, while producing a faint effect on the infectious process in BALB mice with hereditary resistance to anthrax. B. anthracis purified edema toxin has been found to produce a weaker aggravating effect with respect to anthrax infection than the lethal toxin. As revealed in these experiments, the capacity of the lethal toxin to suppress the activity of peritoneal macrophages in vitro is the more pronounced, the more resistant to anthrax are the mice used as the donors of these macrophages. The mechanism of hereditary immunity which may ensure resistance to infection in the presence of immunosuppression is discussed.  相似文献   

17.
Bacillus anthracis is the causative agent of anthrax. The major virulence factors are a poly-D-glutamic acid capsule and three-protein component exotoxin, protective antigen (PA, 83 kDa), lethal factor (LF, 90 kDa), and edema factor (EF, 89 kDa), respectively. These three proteins individually have no known toxic activities, but in combination with PA form two toxins (lethal toxin or edema toxin), causing different pathogenic responses in animals and cultured cells. In this study, we constructed and produced rLF as a form of GST fusion protein in Escherichia coli. rLF was rapidly purified through a single affinity purification step to near homogeneity. Furthermore, we developed an in vitro immobilized proteolytic assay of LF under the condition containing full-length native substrate, MEK1, rather than short synthetic peptide. The availability of full-length substrate and of an immobilized LF assay could facilitate not only the in-depth investigation of structure-function relationship of the enzyme toward its substrate but also wide spectrum screening of inhibitor collections based on the 96-well plate system.  相似文献   

18.
Lethal factor (LF), along with its receptor-binding partner protective antigen (PA), forms lethal toxin (LT), a critical virulence factor for Bacillus anthracis. LF is a Zn(2+) protease that cleaves specific mitogen activated protein kinase kinases (MAPKKs), inactivating signal transduction intermediates required for normal immune function. Initial research emphasized the role of LT in attenuating pro-inflammatory responses by macrophages, the primary targets of infection. More recent studies have revealed that LT affects a broad range of immune cells. In addition to direct effects on macrophages and neutrophils, LT suppresses the costimulatory functions of dendritic cells, thereby impeding essential cross-talk between innate and adaptive immune responses. Moreover, LT acts directly on T and B lymphocytes, blocking antigen receptor-dependent proliferation, cytokine production and Ig production. In this manner, LT mounts a broad-based attack on host immunity, thus providing B. anthracis with multiple mechanisms for avoiding protective host responses.  相似文献   

19.
The anthrax toxin consists of protective antigen (PA), lethal factor (LF) and edema factor (EF). PA mediates the entry of LF and EF to the cytosol where they exert their effects. Although PA is the major component of the vaccines against anthrax, LF has also been found to play an important role in enhancing protective immunity. We have developed an osmolyte-inducible LF expression system. The protein expression system contributed no additional amino acids to the recombinant LF making it suitable for the human vaccine trials.  相似文献   

20.
Anthrax toxin is the only protein secreted by Bacillus anthracis that contributes to the virulence of this bacterium. An obligatory step in the action of anthrax toxin on eukaryotic cells is cleavage of the receptor-bound protective antigen (PA) protein (83 kilodaltons) to produce a 63-kilodalton, receptor-bound COOH-terminal fragment. A similar fragment can be obtained by limited treatment with trypsin. This proteolytic processing event exposes a site with high affinity for the other two anthrax toxin proteins, lethal factor and edema factor. Terminal sequencing of the purified fragment showed that the activating cleavage occurred in the sequence Arg164-Lys165-Lys166-Arg167. The gene encoding PA was mutagenized to delete residues 163-168, and the deleted PA was purified from a Bacillus subtilis host. The deleted PA was not cleaved by either trypsin or the cell-surface protease, and was non-toxic when administered with lethal factor. Purified, deleted PA protected rats when administered 90 min before injection of 20 minimum lethal doses of toxin. This mutant PA may be useful as a replacement for the PA that is the major active ingredient in the current human anthrax vaccine, because deleted PA is expected to have normal immunogenicity, but would not combine with trace amounts of LF and EF to cause toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号