首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key feature of cancer chromosomes and genomes is their high level of dynamics and the ability to constantly evolve. This unique characteristic forms the basis of genetic heterogeneity necessary for cancer formation, which presents major obstacles to current cancer diagnosis and treatment. It has been difficult to integrate such dynamics into traditional models of cancer progression. In this conceptual piece, we briefly discuss some of the recent exciting progress in the field of cancer genomics and genome research. In particular, a re-evaluation of the previously disregarded non-clonal chromosome aberrations (NCCAs) is reviewed, coupled with the progress of the detection of sub-chromosomal aberrations with array technologies. Clearly, the high level of genetic heterogeneity is directly caused by genome instability that is mediated by stochastic genomic changes, and genome variations defined by chromosome aberrations are the driving force of cancer progression. In addition to listing various types of non-recurrent chromosomal aberrations, we discuss the likely mechanism underlying cancer chromosome dynamics. Finally, we call for further examination of the features of dynamic genome diseases including cancer in the context of systems biology and the need to integrate this new knowledge into basic research and clinical applications. This genome centric concept will have a profound impact on the future of biological and medical research.  相似文献   

2.
Pairing of homologous chromosomes is important for homologous recombination and correct chromosome segregation during meiosis. It has been proposed that telomere clustering, nuclear oscillation, and recombination during meiotic prophase facilitate homologous chromosome pairing in fission yeast. Here we examined the contributions of these chromosomal events to homologous chromosome pairing, by directly observing the dynamics of chromosomal loci in living cells of fission yeast. Homologous loci exhibited a dynamic process of association and dissociation during the time course of meiotic prophase. Lack of nuclear oscillation reduced association frequency for both centromeric and arm regions of the chromosome. Lack of telomere clustering or recombination reduced association frequency at arm regions, but not significantly at centromeric regions. Our results indicate that homologous chromosomes are spatially aligned by oscillation of telomere-bundled chromosomes and physically linked by recombination at chromosome arm regions; this recombination is not required for association of homologous centromeres.  相似文献   

3.
4.
Few studies have described chromosomal dynamics in bacterial cells with more than two complete chromosome copies or described changes with respect to development in polyploid cells. We examined the arrangement of chromosomal loci in the very large, highly polyploid, uncultivated intestinal symbiont Epulopiscium sp. type B using fluorescent in situ hybridization. We found that in new offspring, chromosome replication origins (oriCs) are arranged in a three‐dimensional array throughout the cytoplasm. As development progresses, most oriCs become peripherally located. Siblings within a mother cell have similar numbers of oriCs. When chromosome orientation was assessed in situ by labeling two chromosomal regions, no specific pattern was detected. The Epulopiscium genome codes for many of the conserved positional guide proteins used for chromosome segregation in bacteria. Based on this study, we present a model that conserved chromosomal maintenance proteins, combined with entropic demixing, provide the forces necessary for distributing oriCs. Without the positional regulation afforded by radial confinement, chromosomes are more randomly oriented in Epulopiscium than in most small rod‐shaped cells. Furthermore, we suggest that the random orientation of individual chromosomes in large polyploid cells would not hamper reproductive success as it would in smaller cells with more limited genomic resources.  相似文献   

5.
Abstract Using pulsed-field gel electrophoresis of chromosomal DNA and hybridization with the MEL1 probe, we determined the chromosomal locations of polymeric α-galactosidase genes in monosporic cultures of natural strains of Saccharomyces cerevisiae . An unusual phenomenon consisting of an accumulation of the MEL genes has been found in some specific Saccharomyces cerevisiae populations. Many strains possessed a new MEL gene located on chromosome I.  相似文献   

6.
Gene chromosomal assignment can be realized not only by somatic hybrid panels but also by spot-blot hybridization or polymerase chain reaction (PCR) of flow-sorted chromosomes. We propose a swine chromosome assignment strategy by PCR amplification on pooled chromosomal DNA, which allows assignment despite possible chromosomal contamination during sorting. Each pool contains three different chromosomes, each chromosome being present in one or two pools. We present concordant results obtained for eight markers already mapped to different swine chromosomes and we assign the somatostatin gene to chromosome 13, a new marker in the pig genome.  相似文献   

7.
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.  相似文献   

8.
The schematic representation of RHG-banded chromosomes (R-banding was produced by heat denaturation followed by Giemsa staining (RHG) in the 850-band range per haploid set, was prepared showing the relative position, the specific size, and the characteristic staining intensity for each band. To this idiogram was adapted the new International Standard Cytogenetic Nomenclature. Our aim was to produce a realistic idiogram which could help in the preparation of R-banded prophase karyotypes and in the localization of chromosomal rearrangements. A comparative analysis of bands at prophase and metaphase revealed certain aspects of the dynamics involved in chromosome condensation and in R-band organization. The effect of chromosome elongation on the appearance of R-bands within heterochromatic regions has also been discussed.  相似文献   

9.
Despite decades of study, the exquisite temporal and spatial organization of bacterial chromosomes has only recently been appreciated. The direct visualization of specific chromosomal loci has revealed that bacteria condense, move and position their chromosomes in a reproducible fashion. The realization that bacterial chromosomes are actively translocated through the cell suggests the existence of specific mechanisms that direct this process. Here, we review bacterial chromosome dynamics and our understanding of the mechanisms that direct and coordinate them.  相似文献   

10.
Depletion forces play a role in the compaction and decompaction of chromosomal material in simple cells, but it has remained debatable whether they are sufficient to account for chromosomal collapse. We present coarse-grained molecular dynamics simulations, which reveal that depletion-induced attraction is sufficient to cause the collapse of a flexible chain of large structural monomers immersed in a bath of smaller depletants. These simulations use an explicit coarse-grained computational model that treats both the supercoiled DNA structural monomers and the smaller protein crowding agents as combinatorial, truncated Lennard-Jones spheres. By presenting a simple theoretical model, we quantitatively cast the action of depletants on supercoiled bacterial DNA as an effective solvent quality. The rapid collapse of the simulated flexible chromosome at the predicted volume fraction of depletants is a continuous phase transition. Additional physical effects to such simple chromosome models, such as enthalpic interactions between structural monomers or chain rigidity, are required if the collapse is to be a first-order phase transition.  相似文献   

11.
Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.  相似文献   

12.
Dynamic microtubules facilitate chromosome arrangement before anaphase, whereas during anaphase microtubule stability assists chromosome separation. Changes in microtubule dynamics at the metaphase-anaphase transition are regulated by Cdk1. Cdk1-mediated phosphorylation of Sli15/INCENP promotes preanaphase microtubule dynamics by preventing chromosomal passenger complex (CPC; Sli15/INCENP, Bir1/Survivin, Nbl1/Borealin, Ipl1/Aurora) association with spindles. However, whether Cdk1 has sole control over microtubule dynamics, and how CPC-microtubule association influences microtubule behavior, are unclear. Here, we show that Ipl1/Aurora-dependent phosphorylation of Sli15/INCENP modulates microtubule dynamics by preventing CPC binding to the preanaphase spindle and to the central spindle until late anaphase, facilitating spatiotemporal control of microtubule dynamics required for proper metaphase centromere positioning and anaphase spindle elongation. Decreased Ipl1-dependent Sli15 phosphorylation drives direct CPC binding to microtubules, revealing how the CPC influences microtubule dynamics. We propose that Cdk1 and Ipl1/Aurora cooperatively modulate microtubule dynamics and that Ipl1/Aurora-dependent phosphorylation of Sli15 controls spindle function by excluding the CPC from spindle regions engaged in microtubule polymerization.  相似文献   

13.
Silene latifolia is a model plant for studies of the early steps of sex chromosome evolution. In comparison to mammalian sex chromosomes that evolved 300 mya, sex chromosomes of S. latifolia appeared approximately 20 mya. Here, we combine results from physical mapping of sex-linked genes using polymerase chain reaction on microdissected arms of the S. latifolia X chromosome, and fluorescence in situ hybridization analysis of a new cytogenetic marker, Silene tandem repeat accumulated on the Y chromosome. The data are interpreted in the light of current genetic linkage maps of the X chromosome and a physical map of the Y chromosome. Our results identify the position of the centromere relative to the mapped genes on the X chromosome. We suggest that the evolution of the S. latifolia Y chromosome has been accompanied by at least one paracentric and one pericentric inversion. These results indicate that large chromosomal rearrangements have played an important role in Y chromosome evolution in S. latifolia and that chromosomal rearrangements are an integral part of sex chromosome evolution.  相似文献   

14.
We have reported that telomere fluorescence units (TFUs) of established induced pluripotent stem cells (iPSCs) derived from human amnion (hAM933) and fetal lung fibroblasts (MRC-5) were significantly longer than those of the parental cells, and that the telomere extension rates varied quite significantly among clones without chromosomal instability, although the telomeres of other iPSCs derived from MRC-5 became shorter as the number of passages increased along with chromosomal abnormalities from an early stage. In the present study we attempted to clarify telomere dynamics in each individual chromosomal arm of parental cells and their derived clonal human iPSCs at different numbers of passages using quantitative fluorescence in situ hybridization (Q-FISH). Although no speci?c arm of any particular chromosome appeared to be consistently shorter or longer than most of the other chromosomes in any of the cell strains, telomere elongation in each chromosome of an iPSC appeared to be random and stochastic. However, in terms of the whole genome of any specific cell, the telomeres showed overall elongation associated with iPSC generation. We have thus demonstrated the specific telomere dynamics of each individual chromosomal arm in iPSCs derived from parental cells, and in the parental cells themselves, using Q-FISH.  相似文献   

15.
Tomkiel JE 《Genetica》2000,109(1-2):95-103
In male Drosophila melanogaster, anomalies in sex chromosome pairing at meiosis often lead to complete or partial sperm dysfunction. This observation has led to the suggestion that defects in either the efficiency or configuration of chromosome pairing at metaphase trigger a checkpoint mechanism that leads to the elimination of meiotic products. Here, we discuss this model in consideration of recent observations on the conservation of metaphase checkpoint components in male meiosis, and on the phenotype of new alleles of the male-specific meiotic mutant teflon. Based on these observations, we propose an alternative hypothesis for the cause of sperm dysfunction in cases of chromosomal sterility and drive. We suggest that disruption of the prophase compartmentalization of sex chromatin, rather than abnormal pairing at metaphase, may be the causative defect. Such disruption may occur as a result of perturbations in sex chromosome pairing, or by translocations involving autosomal and sex chromatin. We discuss how this hypothesis may account for previously described examples chromosomal causes of meiotic drive and sterility in Drosophila. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Molecular cytogenetics allows to verify chromosomal homologies previously hypothesised on the base of banding pattern comparison in different species. So far only the chromosome painting technique has been extensively used in studies of chromosomal evolution. This technique allows to detect only interchromosomal rearrangements. Human and Great Apes chromosomes basically differ by intrachromosomal rearrangements, in particular inversions; with chromosome painting it has just been possible to confirm the origin by fusion of human chromosome 2 and a reciprocal translocation in Gorilla, involving the homologous of chromosome 5 and 17. In order to verify intrachromosomal rearrangements in human chromosomal evolution, chromosome mapping of human loci in non-human primates is a useful approach. We mapped Miller-Diecker, Smith-Magenis and RARA loci localised on human chromosome 17, in Gorilla gorilla, Pongo pygmaeus, Macaca fascicularis and Cercopithecus aethiops. On the base of the obtained results it was possible to verify chromosomal rearrangements previously identified by banding, to achieve new informations about the controversial evolution of human chromosome 17, and to detect the occurrence of a paracentric inversion in the homologous in Cercopithecus aethiops.  相似文献   

17.
Abstract Plasmid primes carrying various fragments of Pseudomonas putida chromosome have been derived from pMO22, a derivative of R91-5 loaded with Tn 501 . These prime plasmids transfer efficiently to P. aeruginosa where they effectively complement various auxotrophic markers. Proof of prime plasmid formation has been provided by the high-frequency transfer of plasmid and chromosomal markers, the unselected cotransfer of either plasmid or chromosomal markers into P. aeruginosa and by transformation of both plasmid and chromosomal markers using prime plasmid DNA. Such prime plasmids have been used to map the location of new markers on the P. putida chromosome.  相似文献   

18.
19.
DNA replication in eukaryotes is considered to proceed according to a precise program in which each chromosomal region is duplicated in a defined temporal order. However, recent studies reveal an intrinsic temporal disorder in the replication of yeast chromosome VI. Here we provide a model of the chromosomal duplication to study the temporal sequence of origin activation in budding yeast. The model comprises four parameters that influence the DNA replication system: the lengths of the chromosomes, the explicit chromosomal positions for all replication origins as well as their distinct initiation times and the replication fork migration rate. The designed model is able to reproduce the available experimental data in form of replication profiles. The dynamics of DNA replication was monitored during simulations of wild type and randomly perturbed replication conditions. Severe loss of origin function showed only little influence on the replication dynamics, so systematic deletions of origins (or loss of efficiency) were simulated to provide predictions to be tested experimentally. The simulations provide new insights into the complex system of DNA replication, showing that the system is robust to perturbation, and giving hints about the influence of a possible disordered firing. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Calreticulin (CRT) is a multifunctional Ca(2+)-binding protein that mainly functions in the endoplasmic reticulum as a molecular chaperone for newly synthesized proteins. Recently we reported the protein composition of human metaphase chromosomes (Uchiyama et al., 2004), which included CRT. Here we describe new characteristics of CRT in vitro as well as its localization on the surface of metaphase chromosomes in vivo. CRT was detected in the chromosomal fraction by Western blotting and its binding partners were identified as core and linker histones by ligand overlay assay. Surface plasmon resonance sensor analyses revealed that CRT is bound to chromatin fibers. Moreover, we found that CRT has both supercoiling activity, which assists core histone assembly into chromatin fibers, and binding ability to histone H2A/H2B dimers and histone H3/H4 tetramers. Unlike the chromosome scaffold proteins, indirect immunofluorescent staining revealed that CRT is located on the surface of metaphase chromosomes. These results suggest that CRT plays a role which involves chromatin dynamics on the surface of mitotic chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号