首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (M(r)s) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same M(r) (20 kDa), whereas DS chains from scoliotic cartilage were of greater M(r) (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

2.
The content, types and the fine structures of proteoglycans (PGs) present in human normal nasal cartilage (HNNC) were investigated and compared with those in human scoliotic nasal cartilage (HSNC). Three PG types were identified in both HNNC and HSNC; the large-sized high buoyant density aggrecan, which is the predominant PG population, and the small-sized low buoyant density biglycan and decorin. HSNC contained a significantly higher amount of keratan sulfate (KS)-rich aggrecan (30%) of smaller hydrodynamic size as compared to HNNC. The average molecular sizes (Mrs) of aggecan-derived chondroitin sulfate (CS) chains in both HNNC and HSNC were identical (18 kDa), but they significantly differ in disaccharide composition, since CS isolated from HSNC contained higher proportions of 6-sulfated disaccharides as compared to those from HNNC. Scoliotic tissue contained also higher amounts (67%) of the small PGs, biglycan and decorin as compared to HNNC. It is worth noticing that both normal and scoliotic human nasal cartilage contain also non-glycanated forms of decorin and biglycan. Dermatan sulfate (DS) was the predominant glycosaminoglycan (GAG) present on biglycan and decorin in both tissues. The small PGs-derived CS chains in both normal and scoliotic cartilage had the same Mr (20 kDa), whereas DS chains from scoliotic cartilage were of greater Mr (32 kDa) than those from normal cartilage (24 kDa). Furthermore, scoliotic tissue-derived DS chains contained higher amounts of iduronate (20%) as compared to those of normal cartilage (12%). Disaccharide analysis of small PGs showed that both HNNC and HSNC were rich in 4-sulfated disaccharides and in each case, the small size PGs contained a considerably higher proportion of 4-sulfated disaccharides than the aggrecan of the same tissue. The higher amounts of matrix PGs identified in scoliotic tissue as well as the differences in fine chemical composition of their GAG chains may reflect the modified architecture and functional failure of scoliotic tissue.  相似文献   

3.
1. Heparan sulphate from bovine lung was fractionated with cetylpyridinium chloride. Solubilisation of complexes was accomplished by increasing concentrations of NaCl in a step-wise manner. Fractions I-IV, which were low-sulphated, contained more D-glucuronic acid than L-iduronic acid, fraction V contained equal proportions while fraction VI was L-iduronic acid-rich. 2. Gel chromatography of heparan sulphates II-IV in 0.5 M sodium acetate yielded extremely asymmetric profiles, while fractions V, VI and heparin did not. 3. Heparan sulphate IV was separated into aggregatable and non-aggregatable species by gel chromatography in 0.5 M sodium acetate. The particle/molecular weights of the two species were determined by light scattering. In 0.15 M NaCl or KCl the aggregatable chains yielded particle weights of 60 000-100 000 while the molecular weight was 20 000 (in 4.0 M guanidine HCl). Non-aggregatable chains afforded 'monomeric' values in 0.15 M NaCl or KCl. 4. Periodate oxidation of D-glucuronic acid residues in N-acetylated block regions followed by scission in alkali was used to fragment aggregating and non-aggregating heparan sulphate IV. The former chains yielded, on average, shorter oligosaccharides than did the latter. Reoxidation of the remaining D-glucuronic acid residues (adjacent to N-sulphated amino sugars) in the oligosaccharides followed by alkaline cleavage resulted in distinctly different fragmentation patterns in the two cases. The iduronate-containing oligosaccharides derived from aggregatable chains were markedly degraded into fragments ranging from glucosamine-L-iduronic acid-glucosamine-(C-3 fragment) to higher saccharides. Only higher saccharides were obtained from fragments of non-aggregatable chains. 5. It is concluded that self-associating heparan sulphates comprise both D-glucuronic acid- and L-iduronic acid-containing repeating units and that these units are arranged in an alternating or mixed fashion. These characteristics are analogous to those observed with self-associating dermatan sulphate species (Fransson, L.-A. and C?ster, L. (1979) Biochim. Biophys. Acta 582, 132-144).  相似文献   

4.
The influence of monensin on biosynthesis, processing and secretion of proteodermatan sulfate from human skin fibroblasts was studied with the aid of a specific immunological procedure. Double-labeling experiments with [3H]leucine and [35S]sulfate indicated that monensin caused a dose-dependent parallel decrease of sulfate incorporation into total and of secretion of 3H-labeled proteodermatan sulfate. Compared with the untreated control, a greater proportion of incorporated [35S]sulfate than of incorporated [3H]leucine became secreted. Other monensin effects were a moderate intracellular accumulation of glycosaminoglycan-free core protein, a reduced chain length and a greatly reduced epimerization of D-glucuronic to L-iduronic acid residues. In contrast to the formation of N-acetylgalactosamine 4-sulfate residues 6-sulfation was not affected. Conversion of high-mannose-type oligosaccharides to complex-type N-glycans which normally occurred concomitantly with glycosaminoglycan biosynthesis was inhibited. Withdrawal of monensin made possible an additional sulfation of intracellularly accumulated proteodermatan sulfate. The newly formed sulfate esters did not cluster at the non-reducing ends of the glycosaminoglycan chains. Cells preexposed to monensin and labeled with [3H]glucosamine either in the absence or continuous presence of the drug incorporated similar amounts of 3H radioactivity into proteodermatan sulfate. The results suggest that epimerization of D-glucuronic acid residues and 4-sulfation occur predominantly in the trans cisternae of the Golgi apparatus whereas chain polymerisation and 6-sulfation take place predominantly in the cis Golgi complex.  相似文献   

5.
The structure of dermatan [35S]sulphate-chondroitin [35S]sulphate copolymers synthesized and secreted by fibroblasts in culture was studied. 35S-labelled glycosaminoglycans were isolated from the medium, a trypsin digest of the cells and the cell residue after 72h of 35SO42-incorporation. The galactosaminoglycan component (dermatan sulphatechondroitin sulphate copolymers) was isolated and subjected to various degradation procedures including digestion with testicular hyaluronidase, chondroitinase-AC and-ABC and periodate oxidation followed by alkaline elimination. The galactosaminoglycans from the various sources displayed significant structural differences with regard to the distribution of various repeating units, i.e. IdUA-GalNAc-SO4 (L-iduronic acid-N-acetyl-galactosamine sulphate), GlcUA-GalNAc-SO4 (D-glucuronic acid-N-acetylgalactosamine-sulphate) and IdUA(-SO4)-GalNAc (L-iduronosulphate-N-acetylgalactosamine). The galactosaminoglycans of the cell residue contained larger amounts of IdUA-GalNAc-SO4 than did those isolated from the medium or those released by trypsin. In contrast, the glycans from the latter 2 sources contained large proportions of periodate-resistant repeat periods [GlcUA-GalNAc-SO4 and IdUA(-SO4)-GalNAc]. Periods containing L-iduronic acid sulphate were particularly prominent in copolymers found in the medium. Kinetic studies indicated that the 35S-labelled glycosaminoglycan of the cell residue accumulated radioactivity more slowly than did the glycans of other fractions, indicating that the material remaining with the cells was not exclusively a precursor of the secreted polymers. The presence of copolymers rich in glucuronic acid or iduronic acid sulphate residues in the soluble fractions may be the result of selective secretion from the cells. Alternatively, extracellular, polymer-level modifications such as C-5 inversion of L-iduronic acid to D-glucuronic acid, or sulphate rearrangements, would yield similar results.  相似文献   

6.
Proteoglycans (PGs) were dissociatively extracted from human umbilical cord arteries (UCAs) with 4 M guanidine hydrochloride containing Triton X-100 and protease inhibitors, purified by Q-Sepharose anion exchange chromatography and lyophilized. They were analysed by gel filtration, SDS/PAGE and agarose gel electrophoresis before and after treatment with chondroitinase ABC. It was found that the PG preparation was especially enriched in chondroitin/dermatan sulphate PGs. The predominant PG fraction included small PGs that emerged from Sepharose CL-2B with Kav = 0.74. Their molecular mass, estimated by SDS/PAGE, was 160-200 kDa and 90-150 kDa, i.e. it was typical for biglycan and decorin, respectively. Treatment with chondroitinase ABC yielded the core proteins of 45 and 47 kDa, characteristic for both small PGs. Remarkable amounts of the 45 kDa protein were detected in non-treated PG samples, suggesting the presence of free core proteins of biglycan and decorin. Large PGs were present in lower amounts. In intact form they were eluted from Sepharose CL-2B with Kav = 0.17 and 0.43. Digestion with chondroitinase ABC yielded the core proteins with a molecular mass within the range of 180-360 kDa but predominant were the bands of 200, 250 and 360 kDa. The large PGs probably represent various forms of versican or perlecan bearing chondroitin sulphate chains.  相似文献   

7.
Despite their wide occurrence, proteoglycans (PGs) have never been isolated from the saliva of higher animals. We found that the Collocalia glycoproteins isolated from edible birds'-nests (the dried forms of regurgitated saliva of male Collocalia swiftlets) were rich in a PG containing nonsulfated chondroitin glycosaminoglycans (GAGs). We have devised a method to isolate a PG from the water extract of the white nest built by Aerodramus fuciphagus (white nest swiftlets) with a yield of 2-mg PG per gram nest. This PG contained 83% of carbohydrates, of which 79% were GalNAc and GlcUA (D-glucuronic acid) in an equimolar ratio. By using chondroitin AC lyase, the structure of GAGs in this PG was established to be chondroitin ( --> 4GlcUAbeta1 --> 3GalNAcbeta1 --> )(n) chains. The average molecular mass of the chondroitin chain was estimated to be 49 kDa by gel filtration. We have isolated a linkage region hexasaccharide, DeltaHexUAalpha1 --> 3GalNAcbeta1 --> 4GlcUAbeta1 --> 3Galbeta1 --> 3Galbeta1 --> 4Xyl, from this PG by chondroitinase ABC digestion to show that the GAGs in this PG are also linked to the core protein through the common tetrasaccharide linker, GlcUAbeta1 --> 3Galbeta1 --> 3Galbeta1 --> 4Xyl, found in various PGs. As water was not effective in extracting uronic acid-containing glycoconjugates from the black nest built by black nest swiftlets (A. maximus), we used 4 M guanidium chloride and anion-exchange chromatography in the presence of urea to extract and isolate about 30 mg of a chondroitin PG preparation from 10 g of the desialylated black nest. As the biological significance of chondroitin is still not well understood, bird's nest should become a convenient source for preparing this unique GAG to study its biological functions.  相似文献   

8.
9.
1. The extracellular matrix (ECM) of rat skeletal muscle contains several proteoglycans (PGs). The more abundant correspond to a chondroitin/dermatan sulfate PG or decorin. 2. Decorin isolated from rat skeletal muscle ECM has a smaller molecular size than human fibroblast decorin. 3. The difference in size is mainly due to the glycosaminoglycan (GAG) chain length rather than the core protein size. 4. Peptide analysis of trypsin treated decorins shows at least three peptides with the same electrophoretic mobility.  相似文献   

10.
The biosynthesis of dermatan sulfate is a complex process that involves, inter alia, formation of L-iduronic acid residues by C5-epimerization of D-glucuronic acid residues already incorporated into the growing polymer. It has been shown previously that this reaction is promoted by the presence of the sulfate donor 3'-phosphoadenosine-5'-phosphosulfate. In the present investigation, the role of sulfation in the biosynthesis of L-iduronic acid-rich galactosaminoglycans was examined more closely by a study of the substrate specificities and kinetic properties of the sulfotransferases involved in dermatan sulfate biosynthesis. Comparison of the acceptor reactivities of oligosaccharides from chondroitin and dermatan, in an in vitro system containing microsomes from cultured human skin fibroblasts and 3'-phosphoadenosine-5'-phosphosulfate, showed that Km values for the dermatan fragments were substantially lower than those for their chondroitin counterparts. Calculation of Vmax values likewise showed that dermatan was the better substrate. Whereas dermatan incorporated [35S]sulfate exclusively at the C4 position of N-acetylgalactosamine residues, approximately equal amounts of radioactivity were found at the C4 and C6 positions in the labelled chondroitin. Under standard assay conditions, the 4-O-sulfation of dermatan proceeded about six times faster than the 4-O-sulfation of chondroitin. On the basis of these results, we propose that L-iduronic acids, formed in the course of the biosynthesis of dermatan sulfates, enhance sulfation of their adjacent N-acetylgalactosamine residues, and will thereby be locked in the L-ido configuration.  相似文献   

11.
In this study, the amounts and the fine structural characteristics of versican and decorin present in human colon adenocarcinomas (HCC) were investigated and compared with those in human normal colon (HNC). HCC is characterized by significant increase in the amounts of versican and decorin (13- and 8-fold in terms of protein, respectively). These two proteoglycans (PGs) were the predominant in HCC (86% of total uronic acid). In HNC, versican and decorin contained both chondroitin sulfate/dermatan sulfate chains (CS/DS), with DS to be the predominant one (90-93%). The molecular sizes (M(r)s) estimated for DS and CS chains were 25-28 and 21-28 kDa, respectively. In CS/DS chains isolated from both versican and decorin, 4-sulfated disaccharides accounted for 79-86% of total disaccharide units, respectively, whereas lower amounts of 6- and non-sulfated units were also recorded. In contrast, the tumor-associated versican and decorin were of smaller hydrodynamic size with lower glycosaminoglycan (GAG) content per PG molecule as compared with those found in HNC. In HCC, both PGs contained mainly CS chains (up to 86%) and the M(r)s of CS and DS chains were also found to be of smaller size (12 and 16 kDa, respectively). The sulfation patterns of CS/DS chains from both PGs were also significantly different. They were composed mainly of 6-sulfated disaccharides (63-70%), whereas 4-sulfated units accounted for 23-31%. A significant increase in the proportion of non-sulfated disaccharides was also recorded. These findings indicate that the colon adenocarcinoma is characterized by a remarkable increase in the concentration of versican and decorin. Furthermore, these PGs are significantly modified at the post-translational level, i.e. the type, length and the sulfation pattern of their GAG chains. These specific structural alterations of versican and decorin may influence the biology of cancer cells in HCC.  相似文献   

12.
Current literature concerning smooth muscle blood vessels has shown versican as the main proteoglycan (PG) component of the matrix. To show whether smooth muscle matrix has the same PG distribution when present in organs, other than the blood vessels, the inner circular smooth muscle layer of the small intestine was obtained by dissection as a highly purified tissue and analyzed by biochemical and cytochemical methods. The smooth muscle layer PGs were extracted from dog small intestine with 4 M guanidine-HCl in the presence of proteinase inhibitors, purified by charge equilibrium, isolated by equilibrium CsCl density gradients, and analyzed in terms of anion exchange, size, and glycosaminoglycan (GAG) distribution. Proteoheparan sulfate itself represented 91.5% of the PGs present in this tissue. The remainder was proteodermatan sulfate. Cytochemical analyses using the cationic dye cuprolinic blue associated with enzymatic treatments with chondroitinases ABC and heparitinase III showed the arrangement and identification of PGs in basal lamina and intramuscular connective tissues. The PGs in the basal lamina were proteoheparan sulfate, and those associated with collagen fibrils in the endomysium and perimysium were rich in dermatan sulfate. In contrast to the blood vessels, inner circular muscle smooth tissue in intestine has, as the main PG, perlecan.  相似文献   

13.
The regulation of vascular endothelial cell behavior during angiogenesis and in disease by transforming growth factor-beta(1) (TGF-beta(1)) is complex, but it clearly involves growth factor-induced changes in extracellular matrix synthesis. Proteoglycans (PGs) synthesized by endothelial cells contribute to the formation of the vascular extracellular matrix and also influence cellular proliferation and migration. Since the effects of TGF-beta(1) on vascular smooth muscle cell growth are dependent on cell density, it is possible that TGF-beta(1) also directs different patterns of PG synthesis in endothelial cells at different cell densities. In the present study, dense and sparse cultures of bovine aortic endothelial cells were metabolically labeled with [(3)H]glucosamine, [(35)S]sulfate, or (35)S-labeled amino acids in the presence of TGF-beta(1). The labeled PGs were characterized by DEAE-Sephacel ion exchange chromatography and Sepharose CL-4B molecular sieve chromatography. The glycosaminoglycan M(r) and composition were analyzed by Sepharose CL-6B chromatography, and the core protein M(r) was analyzed by SDS-polyacrylamide gel electrophoresis, before and after digestion with papain, heparitinase, or chondroitin ABC lyase. These experiments indicate that the effect of TGF-beta(1) on vascular endothelial cell PG synthesis is dependent on cell density. Specifically, TGF-beta(1) induced an accumulation of small chondroitin/dermatan sulfate PGs (CS/DSPGs) with core proteins of approximately 50 kDa in the medium of both dense and sparse cultures, but a cell layer-associated heparan sulfate PG with a core protein size of approximately 400 kDa accumulated only in dense cultures. Moreover, only in the dense cell cultures did TGF-beta(1) cause CS/DSPG hydrodynamic size to increase, which was due to the synthesis of CS/DSPGs with longer glycosaminoglycan chains. The heparan sulfate PG and CS/DSPG core proteins were identified as perlecan and biglycan, respectively, by Western blot analysis. The present data suggest that TGF-beta(1) promotes the synthesis of both perlecan and biglycan when endothelial cell density is high, whereas only biglycan synthesis is stimulated when the cell density is low. Furthermore, glycosaminoglycan chains are elongated only in biglycan synthesized by the cells at a high cell density.  相似文献   

14.
Dupuytren's disease is a palmar fibromatosis associated with changes in fibroblast activity that also affect the metabolism of extracellular matrix components. In contrast to disease connected alterations in collagen and non-collagenous glycoproteins (mainly fibronectin), the metabolism of proteoglycans, being glycosaminoglycan modified glycoproteins, is poorly understood. Thus, the aim of the present study was the characterization of matrix proteoglycans (PGs) derived from normal fascia and Dupuytren's fascia. Extracted and purified PGs (particularly small PGs) were analysed for content, molecular mass, immunoreactivity and glycosaminoglycan chain structure. The matrix of normal fascia mainly contains decorin [small dermatan sulfate (DS) PG] with biglycan (another small DSPG) and large chondroitin sulfate(CS)/DSPG representing minor components. Dupuytren's disease is associated with the remodeling of matrix PG composition. The most prominent alteration is an accumulation of biglycan frequently bearing DS chains with higher molecular masses. Moreover, the amount of large CS/DSPG is increased. In contrast, decorin displays changes affecting mainly DS chain structure reflected in (i) an increase in some chain molecular masses, (ii) an enhanced content of iduronate disaccharide clusters, and (iii) oversulfation of disaccharide repeats. The PG alterations observed in Dupuytren's fascia may influence the matrix properties and contribute to disease progression.  相似文献   

15.
Bone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons. PGs and GAGs play a major role in bone morphogenesis, homeostasis and degenerative bone disease. The ability to isolate and characterize PG and GAG content from archaeological skeletons would unveil valuable paleontological information. We therefore optimized methods for the extraction of both PGs and GAGs from archaeological human skeletons. PGs and GAGs were successfully extracted from both archaeological human bones and teeth, and characterized by their electrophoretic mobility in agarose gel, degradation by specific enzymes and HPLC. The GAG populations isolated were chondroitin sulfate (CS) and hyaluronic acid (HA). In addition, a CSPG was detected. The localization of CS, HA, three small leucine rich PGs (biglycan, decorin and fibromodulin) and glypican was analyzed in archaeological human bone slices. Staining patterns were different for juvenile and adult bones, whilst adolescent bones had a similar staining pattern to adult bones. The finding that significant quantities of PGs and GAGs persist in archaeological bones and teeth opens novel venues for the field of Paleontology.  相似文献   

16.
Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.  相似文献   

17.
Alkaline extraction of whale intestine, followed by pronase digestion and precipitation of heparin (ω-heparin) with dodecyltrimethylammonium chloride gave a supernatant fraction containing dermatan sulfate. Ethanol at 20% concentration precipitated dermatan sulfate from the supernatant fraction. The crude dermatan sulfate was further fractionated by ion-exchange column chromatography on Dowex-1 (Cl? form), eluting stepwise with aqueous sodium chloride. The fractions eluted with 1.5M and 1.75M sodium chloride contained a typical dermatan sulfate. Chemical and enzymic studies of these preparations revealed that the sulfate groups were located solely at O-4 of the 2-acetamido-2-deoxy-D-galactose residues. L-Iduronic acid was assumed to be distributed uniformly in the backbone of the polysaccharide chain, with D-glucuronic acid being located in the linkage region to the protein core. A new method for determining the ratio of D-glucuronic acid to L-iduronic acid is also described.  相似文献   

18.
The phytopathogenic fungus Botrytis cinerea produces a set of polygalacturonases (PGs) which are involved in the enzymatic degradation of pectin during plant tissue infection. Two polygalacturonases secreted by B. cinerea in seven-day-old liquid culture were purified to apparent homogeneity by chromatography. PG I was an exopolygalacturonase of molecular weight 65 kDa and pI 8.0 and PG II was an endopolygalacturonase of 52 kDa and pI 7.8. Enzymatic activity of PG I and PG II was partially inhibited by 1 mM CaCl2, probably by calcium chelation of polygalacturonic acid, the substrate of the enzyme.  相似文献   

19.
Proteoglycans (PGs) synthesized by the epidermis during stages crucial to the subepidermal migration of neural crest cells in the trunk of the axolotl (Ambystoma mexicanum, Urodela, Amphibia) embryo were studied. The glycosaminoglycan chains were biosynthetically labeled with [35S]sulfate in vitro during a period corresponding to the onset of migration. After extraction with guanidine HCl, the radiolabeled PGs were separated according to size by molecular-sieve chromatography on Sepharose CL-2B under dissociative conditions. This resulted in the separation of high-molecular-weight PGs, which eluted in the void volume, and low-molecular-weight PGs, eluting in a broad peak with a mean Kav of 0.7. The large PGs were also found to elute in the void volume when chromatographed on a Sephacryl S-1000 column. The low-molecular-weight PGs contained heparan sulfate and chondroitin sulfate (CS) and were not further characterized. The glycosaminoglycan component of the high-molecular-weight PG was completely degraded by chondroitinase ABC, while a large portion was resistant to chondroitinase AC, indicating the presence of dermatan sulfate (DS). These CS/DS chains were of unusually large size (Mr approximately 150,000) as estimated by chromatography on Sepharose CL-4B, relating the elution position to hyaluronan standards. Moreover, the chains were found to have a lower surface charge density than standard CS, and may therefore be undersulfated. After reduction and alkylation the high-molecular-weight PGs were included on both Sepharose CL-2B and Sephacryl S-1000 columns, eluting at Kav 0.2 and 0.4, respectively. Hence, the high-molecular-weight material appears to consist of large PG complexes, stabilized by intermolecular disulfide bonds. A CS/DSPG of similar size as the reduced monomeric form of the high-molecular-weight PG was found in small amounts in the total extract of 35S-labeled material.  相似文献   

20.
1. Proteoglycans were extracted from sclera with 4 M-guanidine hydrochloride in the presence of proteinase inhibitors and purified by ion-exchange chromatography and density-gradient centrifugation. 2. The entire proteoglycan pool was characterized by compositional analyses and by specific chemical (periodate oxidation) and enzymic (chondroitinases) degradations. The glycan moieties of the molecules were exclusively galactosaminoglycans (dermatan sulphate-chondroitin sulphate co-polymers). In addition, the preparations contained small amounts of oligosaccharides. 3. The scleral proteodermatan sulphates were fractionated into one larger (I) and one smaller (II) component by gel chromatography. Proteoglycan I was eluted in a more excluded position on gel chromatography in 0.5 M-sodium acetate than in 4.0 M-guanidine hydrochloride. Reduced and alkylated proteoglycan I was eluted in the same position (in 0.5 M-sodium acetate) as was the starting material (in 4.0 M-guanidine hydrochloride). The elution position of proteoglycan II was the same in both solvents. Proteoglycans I and II had s0 20,w values of 2.8 x 10(-13) and 2.2 x 10(-13) s respectively in 6.0 M-guanidine hydrochloride. 4. The two proteoglycans differed with respect to the nature of the protein core and the co-polymeric structure of their side chains. Also proteoglycan I contained more side chains than did proteoglycan II. The dermatan sulphate side chains of proteoglycan I were D-glucuronic acid-rich (80%), whereas those of proteoglycan II contained equal amounts of D-glucuronic acid and L-iduronic acid. Furthermore, the co-polymeric features of the side chains of proteoglycans I and II were different. The protein core of proteoglycan I was of larger size than that of proteoglycan II. The latter had an apparent molecular weight of 46 000 (estimated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis), whereas the former was greater than 100 000. In addition, the amino-acid composition of the two core preparations was different. 5. As proteoglycan I altered its elution position on gel chromatography in 4 M-guanidine hydrochloride compared with 0.5 M-sodium acetate it is proposed that a change in conformation or a disaggregation took place. If the latter hypothesis is favoured, aggregation may be due to self-association or mediated by an extrinsic molecule, e.g. hyaluronic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号