首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variation in flowering time of Arabidopsis thaliana was studied in an experiment with mutant lines. The pleiotropic effects of flowering time genes on morphology and reproductive yield were assessed under three levels of nutrient supply. At all nutrient levels flowering time and number of rosette leaves at flowering varied among mutant lines. The relationship between these two traits depended strongly on nutrient supply. A lower nutrient supply first led to an extension of the vegetative phase, while the mean number of leaves at flowering was hardly affected. A further reduction resulted in no further extension of the vegetative phase and, on average, plants started flowering with a lower leaf number. At low nutrients, early flowering affected the timing of production of siliques rather than the total output, whereas late flowering was favorable at high nutrients. This may explain the fact that many plant species flower at a relatively small size under poor conditions. Flowering time genes had pleiotropic effects on the leaf length, number of rosette and cauline leaves, and number of axillary flowering shoots of the main inflorescence. Silique production was positively correlated with the number of axillary shoots of the main inflorescence; the number of axillary primordia appeared to have a large impact on reproductive yield.  相似文献   

2.
3.
The Arabidopsis thaliana CONSTANS (CO) gene which promotes flowering in long days was recently isolated by chromosome walking. The mapping of QTLs controlling flowering time in Brassica species has identified genomic regions that contain homologues of the CO gene. Four genes homologous to the Arabidopsis CO gene were isolated from a pair of homoeologous loci in each of two doubled-haploid Brassica napus lines displaying different flowering times, N-o-1 and N-o-9. The four genes, BnCOa1, BnCOa9, BnCOb1 and BnCOb9, are located on linkage groups N10 and N19, and are highly similar to each other and to the Arabidopsis CO gene. Two regions of the proteins are particularly well conserved, a N-terminal region with two putative zinc fingers and a C-terminal region which may contain a nuclear localization signal. All four genes appear to be expressed in B. napus. The BnCOa1 allele was shown to complement the co-2 mutation in Arabidopsis in a dosage-dependent manner causing earlier flowering than in wild type under both long- and short-day conditions.  相似文献   

4.
植物从营养生长到生殖生长的转变是开花发育的关键,在合适的时间开花对植物的生长和繁衍极为重要,植物开花时间的调控对农业生产发展意义重大。植物开花是由遗传因子和环境因子协同调节的一个复杂过程。近年来,对不同植物开花调控的研究,特别是对模式植物拟南芥(Arabidopsis thaliana(L.) Heynh.)的开花调控研究取得了显著进展,已探明开花时间分子调控的6条主要途径分别是光周期途径、春化途径、自主途径、温度途径、赤霉素途径和年龄途径。各遗传调控途径既相互独立又相互联系,构成一个复杂的开花调控网络。本文综述了模式植物拟南芥开花时间调控分子机制相关研究的最新进展,并对未来的研究进行了展望。  相似文献   

5.
6.
7.
In a screen for MADS box genes which activate and/or repress flowering in rice, we identified a gene encoding a MADS domain protein (OsSOC1) related to the Arabidopsis gene AtSOC1. AtSOC1 and OsSOC1 show a 97% amino acid similarity in their MADS domain. The rice gene contains a large first intron of 27.6 kb compared to the 1 kb intron in Arabidopsis. OsSOC1 is located on top of the short arm of chromosome 3, tightly linked to the heading date locus, Hd9. OsSOC1 is expressed in vegetative tissues, and expression is elevated at the time of floral initiation, 40-50 days after sowing, and remains uniformly high thereafter, similar to the expression pattern of AtSOC1. The constitutive expression of OsSOC1 in Arabidopsis results in early flowering, suggesting that the rice gene is a functional equivalent of AtSOC1. We were not able to identify FLC-like sequences in the rice genome; however, we show that ectopic expression of the Arabidopsis FLC delays flowering in rice, and the up-regulation of OsSOC1 at the onset of flowering initiation is delayed in the AtFLC transgenic lines. The reciprocal recognition and flowering time effects of genes introduced into either Arabidopsis or rice suggest that some components of the flowering pathways may be shared. This points to a potential application in the manipulation of flowering time in cereals using well characterized Arabidopsis genes.  相似文献   

8.
The acetylation level of histones on lysine residues regulated by histone acetyltransferases and histone deacetylases plays an important but under‐studied role in the control of gene expression in plants. With the aim of characterizing the Arabidopsis RPD3/HDA1 family histone deacetylase HDA5, we present evidence showing that HDA5 displays deacetylase activity. Mutants defective in the expression of HDA5 displayed a late‐flowering phenotype. Expression of the flowering repressor genes FLC and MAF1 was up‐regulated in hda5 mutants. Furthermore, the gene activation markers, histone H3 acetylation and H3K4 trimethylation on FLC and MAF1 chromatin were increased in hda51 mutants. Chromatin immunoprecipitation analysis showed that HDA5 binds to the chromatin of FLC and MAF1. Bimolecular fluorescence complementation assays and co‐immunoprecipitation assays showed that HDA5 interacts with FVE, FLD and HDA6, indicating that these proteins are present in a protein complex involved in the regulation of flowering time. Comparing gene expression profiles of hda5 and hda6 mutants by RNA‐seq revealed that HDA5 and HDA6 co‐regulate gene expression in multiple development processes and pathways.  相似文献   

9.
10.
开花时间对植物的繁殖成功至关重要。广泛分布的物种经常发生开花时间的分化, 从而能够更好地适应不同的环境条件。为了探索植物开花行为发生适应性分化的分子机制, 首先要明确调控开花行为的遗传通路。本文梳理了植物各类群调控开花时间的遗传通路, 以期为开花时间适应性分化的分子机制研究提供依据。 植物从营养生长向繁殖转变时, 其开花行为主要受到光照、温度、水分等外界环境因子和赤霉素等内在因素的影响。通过对模式植物拟南芥(Arabidopsis thaliana)和其他类群的研究, 总结出了调控植物开花时间的6条通路, 包括日照长度和光质影响开花的光依赖通路, 长时间冷暴露后促进植物开花的春化通路, 高温或低温环境影响开花的温度通路, 以及赤霉素通路、年龄通路和自主通路3条内部调节过程。植物开花时间调控的6条上游通路信号传递到下游的开花整合基因FT(FLOWERING LOCUS T)和SOC1(SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1), 整合基因将这些复杂的调节因子整合后进一步传递到下游花分生组织, 从而启动开花。此外, 非编码RNA、转座子对开花时间的调控也具有重要作用。部分遗传通路被证实在植物适应环境的过程中起到了重要作用。目前对植物开花调控的研究已经有一百多年历史, 理论相对成熟。然而, 仍然存在许多具有争议和未解决的问题, 如开花基因的表达方式、开花行为的特殊调控机制、开花时间变异的适应性意义等等, 需要更进一步的研究。  相似文献   

11.
12.
In plants, light is not only an energy source but also a very important signal that modulates development and differentiation. Here, we report a putative photo-regulatory factor sequence in LKP1 (LOV kelch protein 1). LKP1 cDNA encodes a protein of 610 amino acids and with a molecular weight of 65 905 with an LOV domain and kelch repeats. LOV domains are present in a number of sensor proteins involved in the detection of light, oxygen or voltage. The LKP1 LOV is very similar to the LOV domains in NPH1, a plasma membrane-associated blue light receptor kinase that regulates phototropism (Huala, E., Oeller, P.W., Liscum, E., Han, I-S., Larsen, E. & Briggs, W.R. (1997) Science, 278, 2120-2123). LKP1 mRNA accumulates in roots, stems, flowers and siliques. It is most abundant in leaves, and least abundant in seeds. Transgenic plants with a beta-glucuronidase (GUS) reporter gene driven by a 1.5 kb LKP1 promoter display strong GUS activity in leaves. Transgenic plants with a 35S:LKP1 cDNA gene overexpress LKP1 mRNA. These plants have elongated hypocotyls and petioles with elongated cells, and exhibit distinct cotyledon movement during the day. Expression of 35S:LKP1 in transgenic Arabidopsis promotes late flowering in plants grown under long-day, but not under short-day conditions. Vernalization does not affect the late flowering phenotype of the 35S:LKP1 plants. Transgenic plants possessing the 35S:GFP-LKP1 construct also have long hypocotyles and petioles, and a late flowering phenotype, suggesting that the GFP-LKP1 fusion protein is active. The GFP-associated fluorescence in 35S:GFP-LKP1 plants is observed in nuclei and cytosol, indicating that LKP1 is a new nucleo-cytoplasmic factor that influences flowering time in the long day pathway of Arabidopsis.  相似文献   

13.
Le Corre V 《Molecular ecology》2005,14(13):4181-4192
Flowering Locus C (FLC) and Frigida are two interacting genes controlling flowering time variation in Arabidopsis thaliana. Variation at these genes was surveyed in 12 A. thaliana populations sampled in France. These populations were also screened for variation at molecular markers [12 microsatellites and 19 cleaved amplified polymorphic sequence (CAPS) markers] and at seven quantitative traits measured with and without vernalization. Seven populations were highly polymorphic at markers (H(S) = 0.57 at microsatellites, 0.24 at CAPS) and showed heritable variation for bolting time and some other traits. Five populations were genetically fixed or nearly fixed. Q(ST) for bolting time without vernalization was significantly higher than F(ST), suggesting local divergent selection. One of the two haplotype groups at FLC (FLC(A)) was very predominant (frequency of 99%). The first exon of Frigida showed elevated nonsynonymous variation, and nine loss-of-function mutations were found throughout the gene. The association between loss-of-function and earlier bolting was confirmed. Overall, 18 Frigida haplotypes were detected. The pattern of variation at Frigida was largely similar to that found at markers and traits, with the same populations being fixed or highly diverse. Metapopulation dynamics is thus probably the main factor shaping genetic variation in A. thaliana. However, F(ST) for functional (FRI) vs. nonfunctional (FRI(Delta)) haplotypes was significantly higher than F(ST) at markers. This suggested that loss-of-function at Frigida is under local selection for flowering time.  相似文献   

14.
In many plants the transition from vegetative growth to flowering is controlled by environmental cues. One of these cues is day length or photoperiod, which synchronizes flowering of many species with the changing seasons. Recently, advances have been made in understanding the molecular mechanisms that confer photoperiodic control of flowering and, in particular, how inductive events occurring in the leaf, where photoperiod is perceived, are linked to floral evocation that takes place at the shoot apical meristem. We discuss recent data obtained using molecular genetic approaches on the function of regulatory proteins that control flowering time in Arabidopsis thaliana. These data are compared with the results of physiological analyses of the floral transition, which were performed in a range of species and directed towards identification of the transmitted floral singals.  相似文献   

15.
To determine whether population differentiation in flowering time is consistent with differences in current selection, we quantified phenotypic selection acting through female reproductive success on flowering phenology and floral display in two Scandinavian populations of the outcrossing, perennial herb Arabidopsis lyrata in two years. One population was located in an alpine environment strongly affected by grazing, whereas the other was close to sea level and only moderately affected by herbivory. Multiple regression models indicated directional selection for early end of flowering in one year in the lowland population, and directional selection for early start of flowering in one year in the alpine population. As expected, there was selection for more inflorescences in the lowland population. However, in the alpine population, plants with many inflorescences were selectively grazed and the number of inflorescences produced was negatively related to female fitness in one year and not significantly related to female fitness in the second year. The results are consistent with the hypothesis that genetic differentiation in flowering phenology between the study populations is adaptive, and indicate that interactions with selective grazers may strongly influence selection on floral display in A. lyrata.  相似文献   

16.
17.
 We have mapped QTLs (quantitative trait loci) for an adaptive trait, flowering time, in a selfing annual, Arabidopsis thaliana. To obtain a mapping population we made a cross between an early-summer, annual strain, Li-5, and an individual from a late over-wintering natural population, Naantali. From the backcross to Li-5 298 progeny were grown, of which 93 of the most extreme individuals were genotyped. The data were analysed with both interval mapping and composite interval mapping methods to reveal one major and six minor QTLs, with at least one QTL on each of the five chromosomes. The QTL on chromosome 4 was a major one with an effect of 17.3 days on flowering time and explaining 53.4% of the total variance. The others had effects of at most 6.5 days, and they accounted for only small portions of the variance. Epistasis was indicated between one pair of the QTLs. The result of finding one major QTL and little epistasis agrees with previous studies on flowering time in Arabidopsis thaliana and other species. That several QTLs were found was expected considering the large number of possible candidate loci. In the light of the suggested genetic models of gene action at the candidate loci, epistasis was to be expected. The data showed that major QTLs for adaptive traits can be detected in non-domesticated species. Received: 15 January 1997/Accepted: 21 February 1997  相似文献   

18.
19.
CONSTANS (CO) is an important floral regulator in the photoperiod pathway, integrating the circadian clock and light signal into a control for flowering time. It is known that CO promotes flowering in Arabidopsis under long-day conditions. CONSTANS-LIKE 9 (COL9) is a member of the CONSTANS-LIKE gene family, encoding a nuclear protein. The expression of COL9 is regulated by the circadian clock in the photoperiod pathway and is detected in various organs. Unexpectedly, overexpression of COL9 in transgenic Arabidopsis resulted in delayed flowering, while co-suppression lines and a transferred DNA (T-DNA) knockout line showed earlier flowering under long-day conditions. Overexpression of COL9 did not enhance the late-flowering phenotype in a co mutant background. Double overexpressors produced by overexpression of CO in COL9 transgenic lines showed an early flowering phenotype similar to single CO overexpressors. The pattern of oscillation of a number of circadian-associated genes remained unchanged in the COL9 transgenic lines. Compared with wild-type plants, the abundance of CO and FLOWERING LOCUS T (FT) mRNA was reduced in the COL9 overexpression lines. Our results indicate that COL9 is involved in regulation of flowering time by repressing the expression of CO, concomitantly reducing the expression of FT and delaying floral transition.  相似文献   

20.
Natural selection driven by water availability has resulted in considerable variation for traits associated with drought tolerance and leaf‐level water‐use efficiency (WUE). In Arabidopsis, little is known about the variation of whole‐plant water use (PWU) and whole‐plant WUE (transpiration efficiency). To investigate the genetic basis of PWU, we developed a novel proxy trait by combining flowering time and rosette water use to estimate lifetime PWU. We validated its usefulness for large‐scale screening of mapping populations in a subset of ecotypes. This parameter subsequently facilitated the screening of water use and drought tolerance traits in a recombinant inbred line population derived from two Arabidopsis accessions with distinct water‐use strategies, namely, C24 (low PWU) and Col‐0 (high PWU). Subsequent quantitative trait loci mapping and validation through near‐isogenic lines identified two causal quantitative trait loci, which showed that a combination of weak and nonfunctional alleles of the FRIGIDA (FRI) and FLOWERING LOCUS C (FLC) genes substantially reduced plant water use due to their control of flowering time. Crucially, we observed that reducing flowering time and consequently water use did not penalize reproductive performance, as such water productivity (seed produced per unit of water transpired) improved. Natural polymorphisms of FRI and FLC have previously been elucidated as key determinants of natural variation in intrinsic WUE (δ13C). However, in the genetic backgrounds tested here, drought tolerance traits, stomatal conductance, δ13C. and rosette water use were independent of allelic variation at FRI and FLC, suggesting that flowering is critical in determining lifetime PWU but not always leaf‐level traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号