首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fifth increased branching ramosus (rms) mutant, rms5, from pea (Pisum sativum), is described here for phenotype and grafting responses with four other rms mutants. Xylem sap zeatin riboside concentration and shoot auxin levels in rms5 plants have also been compared with rms1 and wild type (WT). Rms1 and Rms5 appear to act closely at the biochemical or cellular level to control branching, because branching was inhibited in reciprocal epicotyl grafts between rms5 or rms1 and WT plants, but not inhibited in reciprocal grafts between rms5 and rms1 seedlings. The weakly transgressive or slightly additive phenotype of the rms1 rms5 double mutant provides further evidence for this interaction. Like rms1, rms5 rootstocks have reduced xylem sap cytokinin concentrations, and rms5 shoots do not appear deficient in indole-3-acetic acid or 4-chloroindole-3-acetic acid. Rms1 and Rms5 are similar in their interaction with other Rms genes. Reciprocal grafting studies with rms1, rms2, and rms5, together with the fact that root xylem sap cytokinin concentrations are reduced in rms1 and rms5 and elevated in rms2 plants, indicates that Rms1 and Rms5 may control a different pathway than that controlled by Rms2. Our studies indicate that Rms1 and Rms5 may regulate a novel graft-transmissible signal involved in the control of branching.  相似文献   

2.
Decapitation-induced axillary bud outgrowth is a vital mechanism whereby shoots are able to continue normal growth and development. In many plants, including wild-type garden pea (Pisum sativum L.), this process can be inhibited by exogenous auxin. Using the ramosus (rms) increased branching mutants of pea, we present evidence that this response to auxin is dependent on graft-transmissible substance(s) regulated by the genes Rms1 and Rms2. The response to exogenous auxin is massively diminished in decapitated rms1 and rms2 mutant plants. However, basipetal auxin transport is not reduced in intact or decapitated mutants. Grafting rms1 or rms2 shoots onto wild-type rootstocks restored the auxin response, indicating that Rms1 and Rms2 gene action in the rootstock is sufficient to enable an auxin response in mutant shoots. We conclude that Rms1 and Rms2 act in the rootstock and shoot to control levels of mobile substance(s) that interact with exogenous auxin in the inhibition of bud outgrowth after decapitation. At least for rms1, the reduced auxin response is unlikely to be due to an inability of auxin to decrease xylem sap cytokinin content, as this is already low in intact rms1 plants. Consequently, we have genetic evidence that auxin action in decapitated plants depends on at least one novel long-distance signal.  相似文献   

3.
Increased-branching mutants of garden pea (Pisum sativum; ramosus [rms]) and Arabidopsis (Arabidopsis thaliana; more axillary branches) were used to investigate control of cytokinin export from roots in relation to shoot branching. In particular, we tested the hypothesis that regulation of xylem sap cytokinin is dependent on a long-distance feedback signal moving from shoot to root. With the exception of rms2, branching mutants from both species had greatly reduced amounts of the major cytokinins zeatin riboside, zeatin, and isopentenyl adenosine in xylem sap compared with wild-type plants. Reciprocally grafted mutant and wild-type Arabidopsis plants gave similar results to those observed previously in pea, with xylem sap cytokinin down-regulated in all graft combinations possessing branched shoots, regardless of root genotype. This long-distance feedback mechanism thus appears to be conserved between pea and Arabidopsis. Experiments with grafted pea plants bearing two shoots of the same or different genotype revealed that regulation of root cytokinin export is probably mediated by an inhibitory signal. Moreover, the signaling mechanism appears independent of the number of growing axillary shoots because a suppressed axillary meristem mutation that prevents axillary meristem development at most nodes did not abolish long-distance regulation of root cytokinin export in rms4 plants. Based on double mutant and grafting experiments, we conclude that RMS2 is essential for long-distance feedback regulation of cytokinin export from roots. Finally, the startling disconnection between cytokinin content of xylem sap and shoot tissues of various rms mutants indicates that shoots possess powerful homeostatic mechanisms for regulation of cytokinin levels.  相似文献   

4.
The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.  相似文献   

5.
The rms4 mutant of pea ( Pisum sativum L.) was used in grafting studies and cytokinin analyses of the root xylem sap to provide evidence that, at least for pea, the shoot can modify the import of cytokinins from the root. The rms4 mutation, which confers a phenotype with increased branching in the shoot, causes a very substantial decrease (down to 40-fold less) in the concentration of zeatin riboside (ZR) in the xylem sap of the roots. Results from grafts between wild-type (WT) and rms4 plants indicate that the concentration of cytokinins in the xylem sap of the roots is determined almost entirely by the genotype of the shoot. WT scions normalize the cytokinin concentration in the sap of rms4 mutant roots, whereas mutant scions cause WT roots to behave like those of self-grafted mutant plants. The mechanism whereby rms4 shoots of pea cause a down-regulation in the export of cytokinins from the roots is unknown at this time. However, our data provide evidence that the shoot transmits a signal to the roots and thereby controls processes involved in the regulation of cytokinin biosynthesis in the root.  相似文献   

6.
Cytokinin phytohormones regulate a variety of developmental processes in the root such as meristem size, vascular pattern, and root architecture [1-3]. Long-distance transport of cytokinin is supported by the discovery of cytokinins in xylem and phloem sap [4] and by grafting experiments between wild-type and cytokinin biosynthesis mutants [5]. Acropetal transport of cytokinin (toward the shoot apex) has also been implicated in the control of shoot branching [6]. However, neither the mode of transport nor a developmental role has been shown for basipetal transport of cytokinin (toward the root apex). In this paper, we combine the use of a new technology that blocks symplastic connections in the phloem with a novel approach to visualize radiolabeled hormones in planta to examine the basipetal transport of cytokinin. We show that this occurs through symplastic connections in the phloem. The reduction of cytokinin levels in the phloem leads to a destabilization of the root vascular pattern in a manner similar to mutants affected in auxin transport or cytokinin signaling [7]. Together, our results demonstrate a role for long-distance basipetal transport of cytokinin in controlling polar auxin transport and maintaining the vascular pattern in the root meristem.  相似文献   

7.
F. Bangerth 《Planta》1994,194(3):439-442
When xylem exudate of previously untreated Phaseolus vulgaris plants was analysed for cytokinins by radioimmunoassay, a low concentration (about 5 ng · ml–1) was found. However, when the plants were decapitated about 16 h before the xylem exudate was collected, an almost 25-fold increase in cytokinin concentration was observed. Twenty-four hours after decapitation this increase even reached 4000 compared to control plants. Applying naphthaleneacetic acid (NAA) to the shoot of decapitated plants almost eliminated the effect of shoot tip removal on cytokinin concentration, suggesting that cytokinins in the xylem exudate of intact plants are under the control of the polar auxin transport system. Other xylem constituents, such as potassium or free amino acids did not show this strong increase after decapitation and did not respond to NAA application. It is concluded that the observed auxin/cytokinin interaction has an important regulatory role to play, not only in apical dominance but in many other correlative events as well.Abbreviations AD apical dominance - CKs cytokinin(s) - iAde/iAdo isopentenyladenine/iospentenyladenosine - NAA naphthaleneacetic acid - Z/ZR zeatin/zeatin riboside  相似文献   

8.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

9.
Salicylic acid (SA) and its glucoside (SAG) were detected in xylem sap of Brassica napus by HPLC–MS. Concentrations of SA and SAG in xylem sap from the root and hypocotyl of the plant, and in extracts of shoots above the hypocotyl, increased after infection with the vascular pathogen Verticillium longisporum. Both concentrations were correlated with disease severity assessed as the reduction in shoot length. Furthermore, SAG levels in shoot extracts were correlated with the amount of V. longisporum DNA in the hypocotyls. Although the concentration of SAG (but not SA) in xylem sap of infected plants gradually declined from 14 to 35 days post infection, SAG levels remained significantly higher than in uninfected plants during the whole experiment. Jasmonic acid (JA) and abscisic acid (ABA) levels in xylem sap were not affected by infection with V. longisporum. SA and SAG extend the list of phytohormones potentially transported from root to shoot with the transpiration stream. The physiological relevance of this transport and its contribution to the distribution of SA in plants remain to be elucidated.  相似文献   

10.
Pea rms6 mutants exhibit increased basal branching   总被引:3,自引:0,他引:3  
Our studies on two branching mutants of pea ( Pisum sativum L.) have identified a further Ramosus locus , Rms6, with two recessive or partially recessive mutant alleles: rms6-1 (type line S2-271) and rms6-2 (type line K586). Mutants rms6-1 and rms6-2 were derived from dwarf and tall cultivars, Solara and Torsdag, respectively. The rms6 mutants are characterized by increased branching from basal nodes. In contrast, mutants rms1 through rms5 have increased branching from both basal and aerial (upper stem) nodes. Buds at the cotyledonary node of wild-type (WT) plants remain dormant but in rms6 plants these buds were usually released from dormancy. Their growth was either subsequently inhibited, sometimes even prior to emergence above ground, or they grew into secondary stems. The mutant phenotype was strongest for rms6-1 on the dwarf background. Although rms6-2 had a weak single-mutant phenotype, the rms3-1 rms6-2 double mutant showed clear transgression and an additive branching phenotype, with a total lateral length almost 2-fold greater than rms3-1 and nearly 5-fold greater than rms6-2 . Grafting studies between WT and rms6-1 plants demonstrated the primary action of Rms6 may be confined to the shoot. Young WT and rms6-1 shoots had similar auxin levels, and decapitated plants had a similar magnitude of response to applied auxin. Abscisic acid levels were elevated 2-fold at node 2 of young rms6-1 plants. The Rms6 locus mapped to the R to Gp segment of linkage group V (chromosome 3). The rms6 mutants will be useful for basic research and also have possible agronomical value.  相似文献   

11.
We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.  相似文献   

12.
Based upon the phenotype of young, dark-grown seedlings, a cytokinin-resistant mutant, cnr1, has been isolated, which displays altered cytokinin- and auxin-induced responses. The mutant seedlings possess short hypocotyls and open apical hooks (in dark), and display agravitropism, hyponastic cotyledons, reduced shoot growth, compact rosettes and short roots with increased adventitious branching and reduced number of root hairs. A number of these features invariably depend upon auxin/cytokinin ratio but the cnr1 mutant retains normal sensitivity towards auxin as well as auxin polar transport inhibitor, TIBA, although upregulation of primary auxin-responsive Aux/IAA genes is reduced. The mutant shows resistance towards cytokinin in hypocotyl/root growth inhibition assays, displays reduced regeneration in tissue cultures (cytokinin response) and decreased sensitivity to cytokinin for anthocyanin accumulation. It is thus conceivable that due to reduced sensitivity to cytokinin, the cnr1 mutant also shows altered auxin response. Surprisingly, the mutant retains normal sensitivity to cytokinin for induction of primary response genes, the type-A Arabidopsis response regulators, although the basal level of their expression was considerably reduced as compared to the wild-type. The zeatin and zeatin riboside levels, as estimated by HPLC, and the cytokinin oxidase activity were comparable in the cnr1 mutant and the wild-type. The hypersensitivity to red light (in hypocotyl growth inhibition assay), partial photomorphogenesis in dark, and hypersensitivity to sugars, are some other features displayed by the cnr1 mutant. The lesion in the cnr1 mutant has been mapped to the top of chromosome 1 where no other previously known cytokinin-resistant mutant has been mapped, indicating that the cnr1 mutant defines a novel locus involved in hormone, light and sugar signalling.  相似文献   

13.
The phloem sap of Ricinus seedlings was analyzed for cytokinins and the concentration was compared with that in cotyledons and xylem sap. The dominant cytokinin in the phloem sap was isopentenyladenine (70 nM) when the endosperm was attached to the cotyledons; zeatin, dihydrozeatin and cytokinin-ribosides were present at relatively low concentrations (1–2 nM). Removal of the endosperm and incubation of the cotyledons in buffer led to a sharp decrease in the level of isopentenyladenine in the phloem sap, down to the value for zeatin, namely 1–2 nM. Similar low cytokinin concentrations were found in the xylem sap, too, whereas in the cotyledons the cytokinin content was at least 10-fold higher. Incubation of the cotyledons with various cytokinins (isopentenyladenine, zeatin and their ribosides) led to an increase of each of the applied cytokinins in the phloem sap, including also the metabolically closely related cytokinins. Zeatin was especially well loaded. It is concluded that the phloem translocates most free bases and ribosides of the various cytokinin species, if they are offered to the phloem. The data also show that the cytokinin levels in the phloem, which may be far higher than in the xylem, are subject to strong fluctuations depending on the physiological situation.This work was supported by the Deutsche Forschungsgemeinschaft (SFB 137). The experimental assistance by P. Geigenberger and the help in cytokinin analysis by Dr. A. Fußeder, Dr. B. Wagner, W. Peters (all Bayreuth) and by Prof. E. Weiler (Bochum) is gratefully acknowledged. Also the constructive discussions with Profs. E. Weiler (Bochum) and E. Beck (Bayreuth) are much appreciated.  相似文献   

14.
Multiple shoots differentiated from hypocotyl explants of Sesbania aculeata (Pers.) syn S. cannabina (Retz.) Pers., a leguminous woody shrub, when cultured on Murashige and Skoog's basal medium supplemented with auxin (IBA, NAA) or auxin and cytokinin (IBA + BAP, NAA + BAP). Shoot budding occurred directly from the explant as well as from callus. Differentiation of shoot and root occurred in one step in the same concentration of auxin or auxin and cytokinin. Elongation of shoots occurred in the shoot induction medium.  相似文献   

15.
Mutants altered in their response to auxins and cytokinins have been isolated in the moss Physcomitrella patens either by screening clones from mutagenized spores for growth on high concentrations of cytokinin or auxin, in which case mutants showing altered sensitivities can be recognized 3–4 weeks later, or by non-selective isolation of morphologically abnormal mutants, some of which are found to have altered sensitivities. Most of the mutants obtained selectively are also morphologically abnormal. The mutants are heterogeneous in their responses to auxin and cytokinin, and the behaviour of some is consistent with their being unable to make auxin, while that of others may be due to their being unable to synthesize cytokinin. Physiological analysis of the mutants has shown that both endogenous auxin and cytokinin are likely to play important and interdependent roles in several steps of gametophytic development. Although their morphological abnormalities lead to sterility, genetic analysis of some of the mutants has been possible by polyethyleneglycol induced protoplast fusion.Abbreviations NTG N-methyl-N-nitro-N-nitrosoguanidine - NAA 1-naphthalene acetic acid - 2,4D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - IAP 6-( 2isopentenyl) aminopurine - NAR NAA resistant mutants - BAR BAP resistant mutants  相似文献   

16.
17.
Although cytokinin plays a central role in plant development, our knowledge about the signal transduction pathway initiated by this plant hormone is fragmentary. By randomly introducing enhancer elements into theArabidopsis genome throughAgrobacterium-mediated transformation, 5 cytokinin independent mutant calli (cki1-1, −2, −3, −4 andcki2) were obtained. These mutants exhibit typical cytokinin responses, including rapid proliferation, chloroplast differentiation, shoot induction and inhibition of root formation, in the absence of cytokinin. TheCKl1 gene encodes a product similar to the sensor histidine kinases of two-component systems, and its overexpression in plants induces typical cytokinin responses (Kakimoto 1996). Here I report that overexpression of this gene did not alter the auxin reqirement ofArabidopsis. Another mutant,many shoots, which was also identified on the same screening, produced many adventitious shoots on cotyledons, petioles and true leaves. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

18.
Bud outgrowth is regulated by the interplay of multiple hormones, including auxin, cytokinin, strigolactones, and an unidentified long-distance feedback signal that moves from shoot to root. The model of bud outgrowth regulation in pea (Pisum sativum) includes these signals and a network of five RAMOSUS (RMS) genes that operate in a shoot-root-shoot loop to regulate the synthesis of, and response to, strigolactones. The number of components in this network renders the integration of new and existing hypotheses both complex and cumbersome. A hypothesis-driven computational model was therefore developed to help understand regulation of shoot branching. The model evolved in parallel with stepwise laboratory research, helping to define and test key hypotheses. The computational model was used to verify new mechanisms involved in the regulation of shoot branching by confirming that the new hypotheses captured all relevant biological data sets. Based on cytokinin and RMS1 expression analyses, this model is extended to include subtle but important differences in the function of RMS3 and RMS4 genes in the shoot and rootstock. Additionally, this research indicates that a branch-derived signal upregulates RMS1 expression independent of the other feedback signal. Furthermore, we propose xylem-sap cytokinin promotes sustained bud outgrowth, rather than acting at the earlier stage of bud release.  相似文献   

19.
20.
Classic plant tissue culture experiments have shown that exposure of cell culture to a high auxin to cytokinin ratio promotes root formation and a low auxin to cytokinin ratio leads to shoot regeneration. It has been widely accepted that auxin and cytokinin play an antagonistic role in the control of organ identities during organogenesis in vitro. Since the auxin level is highly elevated in the shoot meristem tissues, it is unclear how a low auxin to cytokinin ratio promotes the regeneration of shoots. To identify genes mediating the cytokinin and auxin interaction during organogenesis in vitro, three allelic mutants that display root instead of shoot regeneration in response to a low auxin to cytokinin ratio are identified using a forward genetic approach in Arabidopsis. Molecular characterization shows that the mutations disrupt the AUX1 gene, which has been reported to regulate auxin influx in plants. Meanwhile, we find that cytokinin substantially stimulates auxin accumulation and redistribution in calli and some specific tissues of Arabidopsis seedlings. In the aux1 mutants, the cytokinin regulated auxin accumulation and redistribution is substantially reduced in both calli and specific tissues of young seedlings. Our results suggest that auxin elevation and other changes stimulated by cytokinin, instead of low auxin or exogenous auxin directly applied, is essential for shoot regeneration. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号