首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Occurrence of infections due to the drug resistant Staphylococcus aureus is on rise necessitating the need for rapid development of new antibacterial agents. In our present work, a series of new 3-phenylquinazolin-4(3H)-one derivatives were designed, synthesized and evaluated for their antibacterial activity against ESKAP (E. coli, S. aureus, K. pneumoniae, A. baumannii, P. aeroginosa) pathogen panel and pathogenic mycobacterial strains. The study revealed that compounds 4a, 4c, 4e, 4f, 4g, 4i, 4o and 4p exhibited selective and potent inhibitory activity against Staphylococcus aureus with MIC values in the range of 0.125–8 µg/mL. Further, the compounds 4c, 4e and 4g were found to be non toxic to Vero cells (CC50 = >10–>100 µg/mL) and exhibited favourable selectivity index (SI = 40–>200). The compounds 4c, 4e and 4g also showed potent inhibitory activity against various MDR-S. aureus including VRSA. The promising results obtained indicated the potential use of the above series of compounds as promising antibacterial agents for the treatment of multidrug resistant Staphylococcus aureus infections.  相似文献   

2.
3.
万古霉素耐药金黄色葡萄球菌生物学特性   总被引:1,自引:0,他引:1  
目的观察金黄色葡萄球菌对万古霉素耐药后生物学特性的变化,探讨有效方法,为临床正确诊断奠定基础。方法使用万古霉素体外诱导将1株h-VRSA逐步诱导为VISA;观察原代菌及其诱导菌的形态结构、培养特性和生化反应结果并与标准菌株ATCC 29213比较,了解金黄色葡萄球菌对万古霉素耐药后生物学特性变化规律;比较手工法、仪器法和PCR检测法的细菌鉴定结果。结果金黄色葡萄球菌对万古霉素耐药后主要生物学特性改变为:细胞壁增厚、细胞表面粗糙,有结节状凸起、菌落变小,溶血环和色素消失,血浆凝固酶、甘露醇、甘露糖等生化反应由阳性转为阴性。生物学特性改变可导致手工法和仪器法细菌鉴定结果错误,但对PCR检测鉴定结果没有影响。结论金葡菌对万古霉素耐药后生物学特性改变可导致常规方法细菌鉴定结果错误,应引起临床的重视。  相似文献   

4.
Vancomycin is mainly used as an antibacterial agent of last resort, but recently vancomycin-resistant bacterial strains have been emerging. Although new antimicrobials have been developed in order to overcome drug-resistant bacteria, many are structurally complex beta-lactams or quinolones. In this study, we aimed to create new anti-drug-resistance antibacterials which can be synthesized in a few steps from inexpensive starting materials. Since sulfa drugs function as p-aminobenzoic acid mimics and inhibit dihydropteroate synthase (DHPS) in the folate pathway, we hypothesized that sulfa derivatives would act as folate metabolite-mimics and inhibit bacterial folate metabolism. Screening of our sulfonanilide libraries, including benzenesulfonanilide-type cyclooxygenase-1-selective inhibitors, led us to discover benzenesulfonanilides with potent anti-methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant Enterococcus (VRE) activity, that is, N-3,5-bis(trifluoromethyl)phenyl-3,5-dichlorobenzenesulfonanilide (16b) [MIC=0.5microg/mL (MRSA), 1.0microg/mL (VRE)], and 3,5-bis(trifluoromethyl)-N-(3,5-dichlorophenyl)benzenesulfonanilide (16c) [MIC=0.5microg/mL (MRSA), 1.0microg/mL (VRE)]. These compounds are more active than vancomycin [MIC=2.0microg/mL (MRSA), 125microg/mL (VRE)], but do not possess an amino group, which is essential for DHPS inhibition by sulfa drugs. These results suggested that the mechanism of antibacterial action of compounds 16b and 16c is different from that of sulfa drugs. We also confirmed the activity of these compounds against clinical isolates of Gram-positive bacteria.  相似文献   

5.
Bacterial cells are mostly studied during planktonic growth although in their natural habitats they are often found in communities such as biofilms with dramatically different physiological properties. We have examined another type of community namely cellular aggregates observed in strains of the human pathogen Staphylococcus aureus. By laser-diffraction particle-size analysis (LDA) we show, for strains forming visible aggregates, that the aggregation starts already in the early exponential growth phase and proceeds until post-exponential phase where more than 90% of the population is part of the aggregate community. Similar to some types of biofilm, the structural component of S. aureus aggregates is the polysaccharide intercellular adhesin (PIA). Importantly, PIA production correlates with the level of aggregation whether altered through mutations or exposure to sub-inhibitory concentrations of selected antibiotics. While some properties of aggregates resemble those of biofilms including increased mutation frequency and survival during antibiotic treatment, aggregated cells displayed higher metabolic activity than planktonic cells or cells in biofilm. Thus, our data indicate that the properties of cells in aggregates differ in some aspects from those in biofilms. It is generally accepted that the biofilm life style protects pathogens against antibiotics and the hostile environment of the host. We speculate that in aggregate communities S. aureus increases its tolerance to hazardous environments and that the combination of a biofilm-like environment with mobility has substantial practical and clinical importance.  相似文献   

6.
We evaluated the interaction between Punica granatum (pomegranate) methanolic extract (PGME) and antibiotics against 30 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus (MSSA). Susceptibility testing of the isolates to PGME and antibiotics was performed by the broth dilution method. Synergic activity was detected between PGME and the 5 antibiotics tested, chloramphenicol, gentamicin, ampicillin, tetracycline, and oxacillin, ranging from 38% to 73%. For some isolates, PGME did not interfere with the action of any of the antibiotics tested. The bactericidal activity of PGME (0.1 x MIC) in combination with ampicillin (0.5 x MIC) was assessed using chosen isolates by time-kill assays, and they confirmed the synergic activity. Using this combination, cell viability was reduced by 99.9% and 72.5% in MSSA and MRSA populations, respectively. PGME increased the post-antibiotic effect (PAE) of ampicillin from 3 to 7 h. In addition, PGME demonstrated the potential to either inhibit the efflux pump NorA or to enhance the influx of the drug. The detection of in vitro variant colonies of S. aureus resistant to PGME was low and they did not survive. In conclusion, PGME dramatically enhanced the activity of all antibiotics tested, and thus, offers an alternative for the extension of the useful lifetime of these antibiotics.  相似文献   

7.
8.
The culure of Staph. aureus in the exponential growth phase contained 14-18 mg/g of dry orthophosphate biomass and 18-22 mg/g of dry acid insoluble polyphosphate biomass. The extracellular extract of the culture had a phosphohydrolase activity with respect to high molecular polyphosphates, tripolyphosphate and pyrophosphate. Penicillin and bacitracin which inhibited the biosynthesis of the cell wall had no effect on the content of polyphosphates and the phosphohydrolase activity of Staph. aureus. Heliomycin which inhibited the biosynthesis of RNA increased the content of polyphosphates by 1.5 times and decreased the content of ATP by 30 per cent in the cells of Staph. aureus.  相似文献   

9.
This work describes the preparation of quinoline compounds as possible anti-bacterial agents. The synthesized quinoline derivatives show anti-bacterial activity towards Staphylococcus aureus. It is interesting to observe that the synthetic 5,7-dibromo-2-methylquinolin-8-ol (4) shows a similar minimum inhibitory concentration of 6.25 μg/mL as compared to that of methicillin (3.125 μg/mL) against Staphylococcus aureus.  相似文献   

10.
11.
A library of hydroxycinnamic acid amides (HCAAs) and analogues were synthesized using solid-phase synthesis technique. These compounds were screened for antibacterial against methicillin-resistant Staphylococcus aureus (MRSA) (11 strains) and vancomycin-resistant S. aureus (VRSA) (4 strains). Dihydrocaffeoyl analogues showed activity against VRSA which were better than the reference drugs, vancomycin and oxacillin. These compounds also exhibited antibacterial activity against MRSA, which were more potent than oxacillin.  相似文献   

12.
《Phytomedicine》2015,22(4):469-476
Six compounds (16), isolated from the methanol extract of the roots of the African medicinal plant Zanthoxylum capense Thunb. (Rutaceae), and seven ester derivatives (713) were evaluated for their antibacterial activities and modulatory effects on the MIC of antibiotics (erythromycin, oxacillin, and tetracycline) and ethidium bromide (EtBr) against a Staphylococcus aureus reference strain (ATCC 6538). Using the same model, compounds 113 were also assessed for their potential as efflux pump inhibitors by a fluorometric assay that measures the accumulation of the broad range efflux pump substrate EtBr. Compounds 8 and 11 were further evaluated for their antibacterial, modulatory and EtBr accumulation effects against four additional S. aureus strains, which included two clinical methicillin-resistant S. aureus (MRSA) strains. Compounds (113) have not shown antibacterial activity at the concentration ranges tested. When evaluated against S. aureus ATCC 6538, oxychelerythrine (1) a benzophenanthridine alkaloid, showed the highest modulatory activity enhancing the susceptibility of this strain to all the tested antibiotics from two to four-fold. Ailanthoidiol diacetate (8) and ailanthoidiol di-2-ethylbutanoate (11) were also good modulators when combined with EtBr, increasing the bacteria susceptibility by four and two-fold, respectively. In the EtBr accumulation assay, using ATCC 6538 strain, the phenylpropanoid (+)-ailanthoidiol (6) and most of its ester derivatives (811) exhibited higher activity than the positive control verapamil. The highest effects were found for compounds 8 and 11 that also increased the accumulation of EtBr, using S. aureus ATCC 25923 as model. Furthermore, both compounds (8, 11) were able to enhance the ciprofloxacin activity against the MRSA clinical strains tested, causing a reduction of the antibiotic MIC values from two to four-fold. The EtBr accumulation assay revealed that this modulation activity was not due to an inhibition of efflux pumps mechanism.These results suggested that Z. capense constituents may be valuable as leads for restoring antibiotic activity against MRSA strains.  相似文献   

13.
A new actinomycete strain designated SK4-6, was isolated. This organism exhibited strong activity against bacteria including methicillin-resistant Staphylococcus aureus and Micrococcus luteus, in addition to the causative agents of Candidiasis and Aspergillosis diseases, Candida albicans and Aspergillus species respectively. Morphological and chemical studies indicated that this organism belongs to the genus Streptomyces. Analysis of the 16S rRNA sequence of strain SK4-6 showed a high similarity, 99%, with S. qinlingensis. Optimization of cultural conditions was carried out using Plackett–Burman statistical design where seven variables were examined. Starch, pH and inoculum size showed a positive effect on the production of the active substances, however, sucrose, (NH4)2SO4 and yeast extract repress the production.  相似文献   

14.
Penicillin-binding protein 2a (PBP2a) of Staphylococcus aureus is refractory to inhibition by available beta-lactam antibiotics, resulting in resistance to these antibiotics. The strains of S. aureus that have acquired the mecA gene for PBP2a are designated as methicillin-resistant S. aureus (MRSA). The mecA gene was cloned and expressed in Escherichia coli, and PBP2a was purified to homogeneity. The kinetic parameters for interactions of several beta-lactam antibiotics (penicillins, cephalosporins, and a carbapenem) and PBP2a were evaluated. The enzyme manifests resistance to covalent modification by beta-lactam antibiotics at the active site serine residue in two ways. First, the microscopic rate constant for acylation (k2) is attenuated by 3 to 4 orders of magnitude over the corresponding determinations for penicillin-sensitive penicillin-binding proteins. Second, the enzyme shows elevated dissociation constants (Kd) for the non-covalent pre-acylation complexes with the antibiotics, the formation of which ultimately would lead to enzyme acylation. The two factors working in concert effectively prevent enzyme acylation by the antibiotics in vivo, giving rise to drug resistance. Given the opportunity to form the acyl enzyme species in in vitro experiments, circular dichroism measurements revealed that the enzyme undergoes substantial conformational changes in the course of the process that would lead to enzyme acylation. The observed conformational changes are likely to be a hallmark for how this enzyme carries out its catalytic function in cross-linking the bacterial cell wall.  相似文献   

15.
Topoisomerase IV is the primary cellular target for most quinolones in Gram-positive bacteria; however, its interaction with these agents is poorly understood. Therefore, the effects of four clinically relevant antibacterial quinolones (ciprofloxacin, and three new generation quinolones: trovafloxacin, levofloxacin, and sparfloxacin) on the DNA cleavage/religation reaction of Staphylococcus aureus topoisomerase IV were characterized. These quinolones stimulated enzyme-mediated DNA scission to a similar extent, but their potencies varied significantly. Drug order in the absence of ATP was trovafloxacin > ciprofloxacin > levofloxacin > sparfloxacin. Potency was enhanced by ATP, but to a different extent for each drug. Under all conditions examined, trovafloxacin was the most potent quinolone and sparfloxacin was the least. The enhanced potency of trovafloxacin correlated with several properties. Trovafloxacin induced topoisomerase IV-mediated DNA scission more rapidly than other quinolones and generated more cleavage at some sites. The most striking correlation, however, was between quinolone potency and inhibition of enzyme-mediated DNA religation: the greater the potency, the stronger the inhibition. Dose-response experiments with two topoisomerase IV mutants that confer clinical resistance to quinolones (GrlA(Ser80Phe) and GrlA(Glu84Lys)) indicate that resistance is caused by a decrease in both drug affinity and efficacy. Trovafloxacin is more active against these enzymes than ciprofloxacin because it partially overcomes the effect on affinity. Finally, comparative studies on DNA cleavage and decatenation suggest that the antibacterial properties of trovafloxacin result from increased S. aureus topoisomerase IV-mediated DNA cleavage rather than inhibition of enzyme catalysis.  相似文献   

16.
17.
We have shown that the intentional engineering of a natural product biosynthesis pathway is a useful way to generate stereochemically complex scaffolds for use in the generation of combinatorial libraries that capture the structural features of both natural products and synthetic compounds. Analysis of a prototype library based upon nonactic acid lead to the discovery of triazole-containing nonactic acid analogs, a new structural class of antibiotic that exhibits bactericidal activity against drug resistant, Gram-positive pathogens including Staphylococcus aureus and Enterococcus faecalis.  相似文献   

18.
The antimicrobial activity of 10 natural abietanes isolated from Plectranthus grandidentatus and P. hereroensis acetonic extract was evaluated against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). The results revealed that the most active diterpenes were coleon U (1), 7alpha-acetoxy-6beta-hydroxyroyleanone (2) and horminone (3). Minimum inhibitory concentration (MIC) values ranging 0.98-15.63 microg/ml were obtained for MRSA clinical strains, and MIC values of 15.63 and 31.25 microg/ml were obtained for VRE clinical strains. Some structure-activity relationships are emphasized.  相似文献   

19.
《Phytomedicine》2015,22(2):223-230
The in vitro antimicrobial activities of five compounds isolated from lichens, collected in several Southern regions of Chile (including the Chilean Antarctic Territory), were evaluated alone and in combination with five therapeutically available antibiotics, using checkerboard microdilution assay against methicillin-resistant clinical isolates strains of Staphylococcus aureus. MIC90, MIC50, as well as MBC90 and MBC50, for the lichen compounds were evaluated. The MIC90 was ranging from 32 µg/ml for perlatolic acid to 128 µg/ml for α-collatolic acid. MBC90 was ranging from onefold up to twofold the MIC90 for each compound. A synergistic action was observed in combination with gentamicin, whilst antagonism was observed for some lichen compounds in combination with levofloxacin. All combinations with erythromycin were indifferent, whilst variability was observed for clindamycin and oxacillin combinations. Data from checkerboard assay were analysed and interpreted using the fractional inhibitory concentration index and the response surface approach using the ΔE model. Discrepancies were found between both methods for some combinations. These could mainly be explained by the failure of FIC approach, being too much subjective and sensitive to experimental errors. These findings suggest, however, that the natural compounds from lichens are good candidates for the individuation of novel templates for the development of new antimicrobial agents or combinations of drugs for chemotherapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号