首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2.
3.
4.
5.
6.
Although atomic-resolution crystal structures of the conserved C-terminal domain of several species of TBP and their complexes with DNA have been determined, little information is available concerning the structure in solution of full-length TBP containing both the conserved C-terminal and nonconserved N-terminal domains. Quantitation of the amino acid side chain oxidation products generated by synchrotron X-ray radiolysis by mass spectrometry has been used to determine the solvent accessibility of individual residues in monomeric Saccharomyces cerevisiae TATA binding protein (TBP) free in solution and in the TBP-DNA complex. Amino acid side chains within the C-terminal domain of unliganded full-length TBP that are predicted to be accessible from crystal structures of the isolated domain are protected from oxidation. Residues within the N-terminal domain are also protected from oxidation in both the absence and presence of DNA. Some residues within the DNA-binding "saddle" of the C-terminal domain are protected upon formation of a TBP-DNA complex as expected, while others are protected in both the absence and presence of bound DNA. In addition, residues on the upper side of the beta-sheets undergo reactivity changes as a function of DNA binding. These data suggest that the DNA-binding saddle of monomeric unliganded yeast TBP is only partially accessible to solvent, the N-terminal domain is partially structured, and the N- and C-terminal domains form a different set of contacts in the free and DNA-bound protein. The functional implications of these results are discussed.  相似文献   

7.
Recombinant full-length Saccharomyces cerevisiae TATA binding protein (TBP) and its isolated C-terminal conserved core domain (TBPc) were prepared with measured high specific DNA-binding activities. Direct, quantitative comparison of TATA box binding by TBP and TBPc reveals greater affinity by TBPc for either of two high-affinity sequences at several different experimental conditions. TBPc associates more rapidly than TBP to TATA box bearing DNA and dissociates more slowly. The structural origins of the thermodynamic and kinetic effects of the N-terminal domain on DNA binding by TBP were explored in comparative studies of TBPc and TBP by "protein footprinting" with hydroxyl radical (*OH) side chain oxidation. Some residues within TBPc and the C-terminal domain of TBP are comparably protected by DNA, consistent with solvent accessibility changes calculated from core domain crystal structures. In contrast, the reactivity of some residues located on the top surface and the DNA-binding saddle of the C-terminal domain differs between TBP and TBPc in both the presence and absence of bound DNA; these results are not predicted from the crystal structures. A strikingly different pattern of side chain oxidation is observed for TBP when a nonionic detergent is present. Taken together, these results are consistent with the N-terminal domain actively modulating TATA box binding by TBP and nonionic detergent modulating the interdomain interaction.  相似文献   

8.
9.
10.
Cui Y  Wen J  Hung Sze K  Man D  Lin D  Liu M  Zhu G 《Analytical biochemistry》2003,315(2):175-182
The interaction of Ca(2+)-free calmodulin (apoCaM) with the IQ motif corresponding to the calmodulin-binding domain of neurogranin has been studied by nuclear magnetic resonance (NMR) methods. The NMR spectra of uncomplexed apoCaM and apoCaM in complex with the IQ motif recorded at 750 MHz were studied and the backbone assignments of the protein in both forms were obtained by triple-resonance multidimensional NMR experiments. Chemical shift perturbations were used to map the binding surfaces. Only a single set of resonances was observed throughout the titration, indicating that the binding interaction is under fast exchange. Analysis of chemical shift changes indicates that (a) the main interaction and conformational changes occur in the C-terminal domain of calmodulin and (b) linker-1 (residues 40-44) between EF-1 and EF-2, linker-3 (residues 112-117) between EF-3 and EF-4, and the end of the alpha-helix H (residues 145-148) may be involved in the binding process. The dissociation constant (K(d)), estimated by fitting the chemical shift changes against the IQ peptide concentration, ranged from about 1.2 x 10(-5) to 8.8 x 10(-5) M. This result demonstrates that the interaction falls into the weak binding regime.  相似文献   

11.
12.
13.
14.
15.
Khrapunov S  Pastor N  Brenowitz M 《Biochemistry》2002,41(30):9559-9571
The intrinsic fluorescence of the six tyrosines located within the C-terminal domain of the Saccharomyces cerevisiae TATA binding protein (TBP) and the single tryptophan located in the N-terminal domain has been used to separately probe the structural changes associated with each domain upon DNA binding or oligomerization of the protein. The unusually short-wavelength maximum of TBP fluorescence is shown to reflect the unusually high quantum yield of the tyrosine residues in TBP and not to result from unusual tryptophan fluorescence. The anisotropy of the C-terminal tyrosines is very high in monomeric, octameric, and DNA-complexed TBP and comparable to that observed in much larger proteins. The tyrosines have low accessibility to an external fluorescence quencher. The anisotropy of the single tryptophan located within the N-terminal domain of TBP is much lower than that of the tyrosines and is accessible to an external fluorescence quencher. Tyrosine, but not tryptophan, fluorescence is quenched upon TBP-DNA complex formation. Only the tryptophan fluorescence is shifted to longer wavelengths in the protein-DNA complex. In addition, the accessibility of the tryptophan residue to the external quencher and the internal motion of the tryptophan residue increase upon DNA binding by TBP. These results show the following: (i) The structure of the C-terminal domain structure is unchanged upon TBP oligomerization, in contrast to the N-terminal domain [Daugherty, M. A., Brenowitz, M., and Fried, M. G. (2000) Biochemistry 39, 4869-4880]. (ii) The environment of the tyrosine residues within the C-terminal domain of TBP is structurally rigid and unaffected by oligomerization or DNA binding. (iii) The C-terminal domain of TBP is uniformly in close proximity to bound DNA. (iv) While the N-terminal domain unfolds upon DNA binding by TBP, its increased correlation time shows that the overall structure of the protein is more rigid when complexed to DNA. A model that reconciles these results is proposed.  相似文献   

16.
17.
18.
Khrapunov S  Brenowitz M 《Biochemistry》2007,46(16):4876-4887
The localization of a single tryptophan to the N-terminal domain and six tyrosines to the C-terminal domain of TBP allows intrinsic fluorescence to separately report on the structures and dynamics of the full-length TATA binding protein (TBP) of Saccharomyces cerevisiae and its C-terminal DNA binding domain (TBPc) as a function of self-association and DNA binding. TBPc is more compact than the C-terminal domain within the full-length protein. Quenching of the intrinsic fluorescence by DNA and external dynamic quenchers shows that the observed tyrosine fluorescence is due to the four residues surrounding the "DNA binding saddle" of the C-terminal domain. TBP's N-terminal domain unfolds and changes its position relative to the C-terminal domain upon DNA binding. It partially shields the DNA binding saddle in octameric TBP, shifting upon dissociation to monomers to expose the saddle to DNA. Structure-energetic correlations were obtained by comparing the contribution that electrostatic interactions make to DNA binding by TBP and TBPc; DNA binding by TBPc is more hydrophobic than that by TBP, suggesting that the N-terminal domain either interacts with bound DNA directly or screens a part of the C-terminal domain, diminishing its electronegativity. The competition between divalent cations, K+, and DNA is not straightforward. Divalent cations strengthen binding of TBP to DNA and do so more strongly for TBPc. We suggest that divalent cations affect the structure of the bound DNA perhaps by stabilizing its distorted conformation in complexes with TBPc and TBP and that the N-terminal domain mimics the effects of divalent cations. These data support an autoinhibitory mechanism in which competition between the N-terminal domain and DNA for the saddle diminishes the DNA binding affinity of the full-length protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号