首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genome of Abelson murine leukemia virus (A-MuLV) consists of sequences derived from both BALB/c mouse deoxyribonucleic acid and the genome of Moloney murine leukemia virus. Using deoxyribonucleic acid linear intermediates as a source of retroviral deoxyribonucleic acid, we isolated a recombinant plasmid which contained 1.9 kilobases of the 3.5-kilobase mouse-derived sequences found in A-MuLV (A-MuLV-specific sequences). We used this clone, designated pSA-17, as a probe restriction enzyme and Southern blot analyses to examine the arrangement of homologous sequences in BALB/c deoxyribonucleic acid (endogenous Abelson sequences). The endogenous Abelson sequences within the mouse genome were interrupted by noncoding regions, suggesting that a rearrangement of the cell sequences was required to produce the sequence found in the virus. Endogenous Abelson sequences were arranged similarly in mice that were susceptible to A-MuLV tumors and in mice that were resistant to A-MuLV tumors. An examination of three BALB/c plasmacytomas and a BALB/c early B-cell tumor likewise revealed no alteration in the arrangement of the endogenous Abelson sequences. Homology to pSA-17 was also observed in deoxyribonucleic acids prepared from rat, hamster, chicken, and human cells. An isolate of A-MuLV which encoded a 160,000-dalton transforming protein (P160) contained 700 more base pairs of mouse sequences than the standard A-MuLV isolate, which encoded a 120,000-dalton transforming protein (P120).  相似文献   

2.
3.
Virus-specific RNA sequences were detected in mouse cells infected with murine leukemia virus by hybridization with radioactively labeled DNA complementary to Moloney murine leukemia virus RNA. The DNA was synthesized in vitro using the endogenous virion RNA-dependent DNA polymerase and the DNA product was characterized by size and its ability to protect radioactive viral RNA. Virus-specific RNA sequences were found in two lines of leukemia virus-infected cells (JLS-V11 and SCRF 60A) and also in an uninfected line (JLS-V9). Approximately 0.3% of the cytoplasmic RNA in JLS-VII cells was virus-specific and 0.9% of SCRF 60A cell RNA was virus-specific. JLS-V9 cells contained approximately tenfold less virus-specific RNA than infected JLS-VII cells. Moloney leukemia virus DNA completely annealed to JLS-VII or SCRF 60A RNA but only partial annealing was observed with JLS-V9 RNA. This difference is ascribed to non-homologies between the RNA sequences of Moloney virus and the endogenous virus of JLS-V9 cells.Virus-specific RNA was found to exist in infected cells in three major size classes: 60–70 S RNA, 35 S RNA and 20–30 S RNA. The 60–70 S RNA was apparently primarily at the cell surface, since agents which remove material from the cell surface were effective in removing a majority of the 60–70 S RNA. The 35 S and 20–30 S RNA is relatively unaffected by these procedures. Sub-fractionation of the cytoplasm indicated that approximately 35% of the cytoplasmic virus-specific RNA in infected cells is contained in the membrane-bound material. The membrane-bound virus-specific RNA consists of some residual 60–70 S RNA and 35 S RNA, but very little 20–30 S RNA. Virus-specific messenger RNA was identified in polyribosome gradients of infected cell cytoplasm. Messenger RNA was differentiated from other virus-specific RNAs by the criterion that virus-specific messenger RNA must change in sedimentation rate following polyribosome disaggregation. Two procedures for polyribosome disaggregation were used: treatment with EDTA and in vitro incubation of polyribosomes with puromycin in conditions of high ionic strength. As identified by this criterion, the virus-specific messenger RNA appeared to be mostly 35 S RNA. No function for the 20–30 S was determined.  相似文献   

4.
5.
Adenovirus type 2 fiber mRNA exists in several forms in the cytoplasm which differ in the presence or absence of extra 5'-leader segments (L. T. Chow and T. R. Broker, Cell 15:497-510, 1978). We have investigated the possibility that forms possessing extra leader segments serve as precursors to the mature form in the cytoplasm. Pulse-labeled fiber mRNA became considerably shorter (150 to 250 bases) during a chase; however, most of the pulse-labeled species failed to hybridize to DNA fragments known to encode extra leader segments. Moreover, the entire decrease in size appeared to be due to extensive shortening of the polyadenylic acid tail. Mature-sized fiber mRNA was synthesized normally in cells infected with the nondefective adenovirus type 2-simian virus 40 hybrid virus Ad2+ND5, in which the region encoding the extra leader segments is deleted. These results indicate that the additional 5'-leader segments present in wild-type adenovirus type 2 fiber mRNA are not required for the production of mature fiber mRNA and that species that possess them are not cytoplasmic precursors to the mature form.  相似文献   

6.
Formation of the Moloney murine leukemia virus envelope mRNA involves the removal of a 5,185-base pair-long intron. Deletion analysis of two Moloney murine leukemia virus-derived expression vectors revealed the existence of two short regions within the viral intron which are required for the efficient formation of the spliced RNA species. One region was present upstream from the 3' splice junction, extended at least 85 nucleotides beyond the splice site, and was not more than 165 nucleotides long. As yeast polymerase II introns, the Moloney murine leukemia virus intron contains the sequence 5'-TACTAAC-3' 15 nucleotides upstream from the 3' splice site. A second region located in the middle of the intron, within a 560-nucleotide-long sequence, was also essential for formation of the spliced RNA species. The efficient splicing of the env mRNA in the absence of expression of viral genes raises the possibility that similar mechanisms are used to remove introns of (some) cellular genes.  相似文献   

7.
8.
9.
10.
11.
Expression of brome mosaic virus (BMV) coat protein and internal genes of many other positive-strand RNA viruses requires initiation of subgenomic mRNA synthesis from specific internal sites on minus-strand genomic RNA templates. Biologically active viral cDNA clones were used to investigate the sequences controlling production of BMV subgenomic RNA in vivo. Suitable duplications directed production of specifically initiated, capped subgenomic RNAs from new sites in the BMV genome. Previously implicated promoter sequences extending 20 bases upstream (-20) and 16 bases downstream (+16) of the subgenomic RNA initiation site directed only low-level synthesis. Subgenomic RNA production at normal levels required sequences extending to at least -74 but not beyond -95. Loss of an (rA)18 tract immediately upstream of the -20 to +16 "core promoter" particularly inhibited subgenomic RNA synthesis. The -38 to -95 region required for normal initiation levels contains repeats of sequence elements in the core promoter, and duplications creating additional upstream copies of these repeats stimulated subgenomic RNA synthesis above wild-type levels. At least four different subgenomic RNAs can be produced from a single BMV RNA3 derivative. For all derivatives producing more than one subgenomic RNA, a gradient of accumulation progressively favoring smaller subgenomic RNAs was seen.  相似文献   

12.
13.
mRNA containing type C endogenous virus-specific sequences was indentified in JLS-V9 cells (an uninfected BALB/c-derived cell line) by annealing extracted RNA with 3H-labeled virus-specific DNA. The criterion for virus-specific RNA being mRNA was that it co-sedimented with polyribosomes in a sucrose gradient and that it changed to lower sedimentation value if polyribosomes were disagregated prior to centrifugation. It was not possible to identify virus-specific mRNA in unfractionated cytoplasm from JLS-V9 cells since large amounts of virus-specific ribonucleoprotein which was not mRNA had sedimentation values similar to polyribosomes and obscured the analysis. Virus-specific mRNA could be readily identified in polyribosomes which had been purified through a step gradient of 1 and 2 M sucrose, and consisted of two species with sedimentation values of 38S and 27S. The amount of virus-specific RNA in different JLS-V9 cell fractions was quantitated in comparison to cell fractions obtained from M-MuLV clone no. 1 cells (a line of NIH 3T3 cells producing Moloney murine leukemia virus). Approximately 40% of the total virus-specific mRNA was recovered in the purified polyribosomes in M-MuLV no. 1 cells. The amount of virus-specific RNA on polyribosomes appeared to be quite similar for JLS-V9 cells and M-MuLV clone no.1 cells .In contrast, the level of virus-specific protein in JLS-V9 cells (as monitored by radioimmunoassay of the internal structural protein p30) was less than 2% the level in the M-MuLV clone no. 1 cells.  相似文献   

14.
Poly (A) containing RNA extracted from Moloney murine leukemia virus infected mouse cells was hybridized with long single-stranded complementary DNA, prepared in detergent disrupted virions. Visualization of the hybrids in the electron microscope revealed among the structures, circles and circles with tails. Measurements performed on the circular molecules revealed two major species with circumferences corresponding to 3 and 8.2 kilobases. The latter structures had identical size to circles obtained after annealing of cDNA with the viral genome, 35S RNA. Circularization of a small viral RNA (3 kb) from infected cells in the RNA-cDNA hybrids is a direct evidence that like the 35S RNA it shares similar nucleotide sequences at both the 5' and 3' ends. The presence of 5' end sequences common to the two RNA species indicates the existence of a spliced viral RNA. Furthermore, based on the circularization of viral RNA in the hybrids, we suggest a new way to quantitate and determine the lengths of spliced RNA in retrovirus infected cells.  相似文献   

15.
16.
Lovastatin blocks the biosynthesis of the isoprenoid precursor, mevalonate. When Friend murine erythroleukemia (MEL) cells are cultured in medium containing lovastatin, the precursor of murine leukemia virus envelope glycoprotein (gPr90env) fails to undergo proteolytic processing, which normally occurs in the Golgi complex. Consequently, newly synthesized envelope proteins are not incorporated into viral particles that are shed into the culture medium. gPr90env appears to be localized in a pre-Golgi membrane compartment, based on its enrichment in subcellular fractions containing NADPH-cytochrome c reductase activity and the sensitivity of its carbohydrate chains to digestion with endoglycosidase H. Arrest of gPr90env processing occurs at concentrations of lovastatin that are not cytostatic, and the effect of the inhibitor is prevented by addition of mevalonate to the medium. The low molecular mass GTP-binding proteins, rab1p and rab6p, which are believed to function in early steps of the exocytic pathway, are normally modified posttranslationally by geranylgeranyl isoprenoids. However, in MEL cells treated with 1 microM lovastatin, nonisoprenylated forms of these proteins accumulate in the cytosol prior to arrest of gPr90env processing. These observations suggest that lovastatin may prevent viral envelope precursors from reaching the Golgi compartment by blocking the isoprenylation of rab proteins required for ER to Golgi transport.  相似文献   

17.
18.
Friend murine leukemia virus (F-MuLV) is a replication-competent, ecotropic, NB-tropic retrovirus which produces a rapidly fatal erythroleukemia in susceptible strains of mice. We previously molecularly cloned the entire F-MuLV genome. Transfection of this cloned DNA into NIH 3T3 mouse fibroblasts produces a virus with the same leukemia-inducing characteristics as F-MuLV. To identify which portion of the F-MuLV genome is responsible for causing leukemia, we made recombinant viruses between subgenomic fragments of F-MuLV DNA and another retrovirus--Amphotroph clone 4070. Amphotroph clone 4070 is a replication-competent, amphotrophic, N-tropic virus which does not produce any detectable malignancy in mice. A 2.4-kilobase-pair fragment of F-MuLV DNA was isolated. This DNA fragment encompassed approximately 700 base pairs from the 3' end of the F-MuLV pol gene and 1.7 kilobase pairs of the env gene including all of gp70 and the N-terminal four-fifths of p15E. A molecularly cloned fragment of Amphotroph DNA was ligated to the 2.4-kilobase-pair F-MuLV DNA, and an 8.3-kilobase-pair hybrid F-MuLV-Amphotroph DNA was subcloned into a new plasmid (p5a25-H). Transfection of p5a25-H DNA into fibroblasts resulted in the production of a replication-competent, ecotropic, N-tropic retrovirus--5a25-H virus. Inoculation of this virus into newborn NIH Swiss mice caused leukemia within 4 to 6 months. The disease caused by 5a25-H was pathologically and histologically indistinguishable from the disease caused by F-MuLV. We conclude that the F-MuLV sequences needed to cause disease are contained in these 2.4 kilobase pairs of DNA.  相似文献   

19.
20.
We studied the synthesis of B-tropic murine leukemia viral DNA in vitro by detergent-disrupted virions. The reaction products (detected by the Southern transfer technique) included full-length, infectious, double-stranded DNA and several subgenomic fragments. Restriction endonuclease analysis and hybridization and specific probes revealed two classes of subgenomic fragments: some were derived from the right end of the genome, and some were derived from the left end. Most of the fragments harbored one long terminal repeat copy at their ends, suggesting that they were initiated correctly. S1 nuclease and restriction endonuclease treatments of these fragments indicated that a single-stranded gap was present near the first initiation site of plus strong-stop DNA. The treatments also suggested the presence of a second initiation site flanked by a single-stranded gap 0.9 kilobase pairs from the right end of the genome. Our data clearly show that plus-strand DNA is synthesized at both ends of the genome, by using plus strong stop as the first initiation site and additional initiation sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号