首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Liu-Chen LY 《Life sciences》2004,75(5):511-536
Chronic or repeated administration of κ opioid agonists leads to tolerance to the subsequent drug administration. The mechanisms underlying tolerance are complex and changes at the receptor level contribute in part to the development of tolerance. This review focuses on agonist-induced phosphorylation, desensitization, internalization and down-regulation of the κ opioid receptor. In vivo studies on the rat and guinea pig brains are reviewed, followed by in vitro investigations on cells and tissues endogenously expressing the κ opioid receptor. The bulk of the article describes the studies performed after cloning of the opioid receptors on regulation and trafficking of the κ opioid receptors (KORs) expressed in various cell systems. Topics reviewed and discussed include biochemical mechanisms of desensitization, internalization and down-regulation, differences in the regulation of the rat and the human κ opioid receptors (rKOR and hKOR, respectively) and the structural basis for the species variations, differential abilities of agonists in inducing regulation of the hKOR, the relationship (or the lack thereof) of KOR internalization to activation of p42/p44 mitogen-activated kinase and to adenylyl cyclase superactivation, the role of the PDZ domain-containing protein NHERF-1/EBP50 in the trafficking of the hKOR and the relationship between receptor phosphorylation and tolerance development in mice. There are still questions remained to be answered. Among the issues to be resolved are the signals that direct the sorting of internalized hKORs to the recycling and degradation pathways, the recycling pathway(s) of the internalized hKOR, the molecular bases of differential regulation of the KORs by agonists and the occurrence of agonist-induced KOR internalization occur in vivo and, if so, its role in tolerance and dependence.  相似文献   

2.
LY255582 is a pan opioid selective receptor antagonist that has been shown to have high affinity for mu, delta, and kappa receptors in vitro. In order to better understand the in vivo opioid receptor selectivity of LY255582, we developed in vivo receptor occupancy assays in the rat for the opioid mu, kappa and delta receptors using the occupancy tracers naltrexone, GR103545 and naltriben respectively. Individual assays for each target were established and then a "triple tracer" assay was created where all three tracers were injected simultaneously, taking advantage of LC/MS/MS technology to selectively monitor brain tracer levels. This is the first report of a technique to concurrently measure receptor specific occupancy at three opioid receptors in the same animal. The opioid subtype selective antagonists cyprodime, JDTic and naltrindole were used to validate selectivity of the assay. Examination of LY255582 in dose-occupancy experiments demonstrated a relative order of potency of mu>kappa>delta, reproducing the previously reported order determined with in vitro binding.  相似文献   

3.
Several approaches have been taken for these in vivo studies. In many studies, the use of semi-quantitative immuno-electron microscopy is the approach of choice. Endogenous opioid receptors display differential subcellular distributions with mu opioid receptor (MOPR) being mostly present on the plasma membrane and delta-opioid receptor (DOPR) and kappa-opioid receptor (KOPR) having a significant intracellular pool. Etorphine and DAMGO cause endocytosis of the MOPR, but morphine does not, except in some dendrites. Interestingly, chronic inflammatory pain and morphine treatment promote trafficking of intracellular DOPR to the cell surface which may account for the enhanced antinociceptive effects of DOPR agonists. KOPR has been reported to be associated with secretory vesicles in the posterior pituitary and translocated to the cell surface upon salt loading along with the release of vasopressin. The study of endogenous opioid receptors using in vivo models has produced some interesting results that could not have been anticipated in vitro. In vivo studies, therefore, are essential to provide insight into the mechanisms underlying opioid receptor regulation.  相似文献   

4.
We studied the effects of acute and chronic in vivo inhibition of acetylcholinesterase on both the density and function of brain muscarinic cholinergic receptors. Adult male rats were treated either once or multiple times over a period of 10 days with the irreversible acetylcholinesterase inhibitor diisopropylfluorophosphate (DFP). The concentration and affinity of muscarinic receptors in various brain regions were determined using radioligand binding techniques. Acute DFP treatment resulted in a significant reduction in receptor number only in the brain stem, while chronic treatment caused receptor down-regulation in the brain stem, cerebral cortex, and striatum. There was no change in ligand affinity in any of the brain regions. In sharp contrast, muscarinic receptor function was fully preserved, in terms of coupling of the receptors to increased phosphoinositide hydrolysis in the cerebral cortex, hippocampus, and striatum, or inhibition of cyclic AMP formation in the cerebral cortex or striatum. Therefore, there is a marked lack or correlation between DFP-induced muscarinic receptor down-regulation and receptor desensitization.  相似文献   

5.
1. A review of the effects of long-term administration of antidepressants and neuroleptics on receptors in the central nervous system is presented. 2. The effects of antidepressants on adenylate cyclase activity and on receptor binding in brain tissue are discussed. Effects on a variety of receptor types are considered. 3. The utilization of electrophysiological, behavioral, and neurochemical studies to assess receptor function after chronic antidepressant administration is discussed, as is the use of peripheral receptor estimations in clinical studies. 4. Animal studies on the actions of chronic administration of neuroleptics on pre- and postsynaptic dopamine receptors are reviewed. Effects of these drugs on dopamine receptors in humans are considered from the following perspectives: postmortem and in vivo binding studies in schizophrenia, tardive dyskinesia, and central versus peripheral receptor estimation.  相似文献   

6.
Regulation of certain central nervous system (CNS) functions by the immune system may involve interferons (IFNs) acting through opioid receptors. Human recombinant interferon alpha (hrIFN alpha), as well as natural IFN alpha, have been reported to modulate a variety of physiological CNS functions both in vivo and in vitro. If the mechanism is via opioid receptors then IFN alpha should inhibit the binding of certain opioid radioligands to brain membranes. This study reports the inhibitory effect of hrIFN alpha on the binding of 3H-naloxone to rat brain membranes in vitro. The inhibitory effect at 37 degrees C is hrIFN alpha concentration dependent over the range of 500 to 6000 antiviral units per ml (U/ml) with 500 micrograms of membrane protein. The presence of NaCl (100mM) increases specific binding of naloxone and attenuates the inhibitory effect of hrIFN alpha. The inhibitory effect of hrIFN alpha is sensitive to temperature with maximum inhibition observed at 37 degrees C, and less as incubation temperature is reduced. These data suggest that IFN alpha may modulate certain physiologic functions via opioid pathways in the brain.  相似文献   

7.
Chronic in vivo or in vitro application of GABA(A) receptor agonists alters GABA(A) receptor peptide expression and function. Furthermore, chronic in vitro application of N-methyl-D-aspartate (NMDA) agonists and antagonists alters GABA(A) receptor function and mRNA expression. However, it is unknown if chronic in vivo blockade of NMDA receptors alters GABA(A) receptor function and peptide expression in brain. Male Sprague-Dawley rats were chronically administered the noncompetitive NMDA receptor antagonist MK-801 (0.40 mg/kg, twice daily) for 14 days. Chronic blockade of NMDA receptors significantly increased hippocampal GABA(A) receptor alpha4 and gamma2 subunit expression while significantly decreasing hippocampal GABA(A) receptor alpha2 and beta2/3 subunit expression. Hippocampal GABA(A) receptor alpha1 subunit peptide expression was not altered. In contrast, no significant alterations in GABA(A) receptor subunit expression were found in cerebral cortex. Chronic MK-801 administration also significantly decreased GABA(A) receptor-mediated hippocampal Cl- uptake, whereas no change was found in GABA(A) receptor-mediated cerebral cortical Cl- uptake. Finally, chronic MK-801 administration did not alter NMDA receptor NR1, NR2A, or NR2B subunit peptide expression in either the cerebral cortex or the hippocampus. These data demonstrate heterogeneous regulation of GABA(A) receptors by glutamatergic activity in rat hippocampus but not cerebral cortex, suggesting a new mechanism of GABA(A) receptor regulation in brain.  相似文献   

8.
Several lines of data support the existence of two classes of delta receptors: the delta cx binding site, which is the delta binding site of the mu-delta opioid receptor complex, and the delta ncx, which is the noncomplexed delta receptor. [D-Ala2,Leu5,Cys6]Enkephalin (DALCE) is an extended analog of [Leu5]enkephalin, which has been shown to bind irreversibly to delta receptors via the terminal cysteine by formation of a disulfide bond with the receptor. In vivo studies have shown that DALCE produces short-lived antinociceptive actions, followed by long-term antagonism of delta receptor-mediated antinociception. The major goal of the present study was to examine the effect of DALCE on the delta cx and delta ncx binding sites in vitro and in vivo. Intracerebroventricular administration of 40 micrograms DALCE failed to decrease [3H][D-Ala2,D-Leu5]enkephalin binding to the delta cx and delta ncx binding sites. Pretreatment of membranes with DALCE in vitro greatly reduced the Bmax of the delta ncx binding site, without significantly altering the Bmax of the delta cx binding site. These findings suggest that when administered in vivo, DALCE fails to distribute uniformly throughout the brain, and that it therefore binds covalently to opioid receptors mostly in the periventricular regions. Viewed collectively, these data support the hypothesis that DALCE acts as a selective delta ncx antagonist, and that the delta ncx binding site, which is sensitive to DALCE, is most likely synonymous with the recently described delta 1 receptor.  相似文献   

9.
We studied the effects of acute and chronic in vivo inhibition of acetylcholinesterase on both the density and function of brain muscarinic cholinergic receptors. Adult male rats were treated either once or multiple times over a period of 10 days with the irreversible acetylcholinesterase inhibitor diisopropylfluorophosphate (DFP). The concentration and affinity of muscarinic receptors in various brain regions were determined using radioligand binding techniques. Acute DFP treatment resulted in a significant reduction in receptor number only in the brain stem, while chronic treatment caused receptor downregulation in the brain stem, cerebral cortex, and striatum. There was no change in ligand affinity in any of the brain regions. In sharp contrast, muscarinic receptor function was fully preserved, in terms of coupling of the receptors to increased phosphoinositide hydrolysis in the cerebral cortex, hippocampus, and striatum, or inhibition of cyclic AMP formation in the cerebral cortex or striatum. Therefore, there is a marked lack or correlation between DFP-induced muscarinic receptor down-regulation and receptor desensitization.  相似文献   

10.
11.
As G protein-coupled receptors (GPCRs) are the target of numerous signaling molecules, including about half of the therapeutic drugs currently used, it is important to understand the consequences of homologous (ligand-induced) receptor regulation. Continuous exposure of GPCRs to agonist in vitro most frequently results in receptor down-regulation, but receptor up-regulation may occur as well. These phenomena are expected to play a role in the physiological adaptation to endogenous ligands and also in the response to repetitive administration of drugs in the clinic. However, there is little information on homologous regulation of GPCRs in vivo. Here, we report on the regulation of melanocortin-1 receptor (MC1R) expression in melanoma cells implanted into mice. Two melanoma cell lines were investigated, D10 and B16F1, which in vitro had previously been shown to undergo homologous receptor up- and down-regulation, respectively. After implantation into mice and exposure to the natural MC1R agonist alpha-melanocyte-stimulating hormone (alpha-MSH), cell-surface MC1R expression was evaluated by competition binding experiments in tumor membrane preparations. In B 16F1 cells, a single injection of 50 to 500 microg alpha-MSH induced a rapid but moderate dose-dependent MC1R down-regulation which could be totally reverted within 16-24 h. By continuous administration of alpha-MSH via osmotic minipumps, MC1R down-regulation was considerably amplified and reached the level observed in vitro, demonstrating that prolonged receptor interaction was necessary to induce a maximal effect in vivo. Similar results were obtained in vitro, which demonstrates that homologous MC1R regulation in B16F1 cells is essentially independent of the physiological environment. In D10 cells, however, up-regulation could not be reproduced in vivo, suggesting that MC1R up-regulation is more dependent on the physiological environment. These results demonstrate the importance of in vivo receptor regulation studies, in particular in view of the potential use of MC1R as a target for melanoma therapy.  相似文献   

12.
Both [D-Ala2,Glu4]Deltorphin and [D-Ala2,4'-I-Phe3,Glu4]Deltorphin are highly selective ligands for delta, relative to mu, opioid receptors. Radiolabeled [D-Ala2, 4'-125I-Phe3,Glu4]Deltorphin ([125I]Deltorphin) was prepared with a specific activity of 2200 Ci/mmol from [D-Ala2, 4'-NH2-Phe3, Glu4]Deltorphin through a diazonium salt intermediate. The inhibition of [125I]Deltorphin binding to rat brain membranes by ligands selective for mu, delta, and kappa opioid receptors is consistent with binding by the radioligand to a single site having the properties of a delta opioid receptor. The results of these studies are in good agreement with those obtained by structurally different delta opioid receptor ligands. The similarity between the delta receptor site labeled by [125I]Deltorphin and those labeled by other delta receptor agonists, in contrast to differences seen by in vivo studies of their analgesic effects, is discussed.  相似文献   

13.
Maher CE  Martin TJ  Childers SR 《Life sciences》2005,77(10):1140-1154
Previous studies have shown that chronic opiate treatment decreases mu opioid-stimulated [35S]GTPgammaS binding in specific brain regions. To extend these findings, the present study investigated DAMGO-stimulated [35S]GTPgammaS binding in membrane homogenates and coronal sections from rats non-contingently administered heroin. Rats were administered saline or increasing doses of heroin i.v. hourly up to 288 mg/kg/day over 40 days. In brain sections, chronic heroin administration decreased DAMGO-stimulated [35S]GTPgammaS binding in medial thalamus and amygdala, with no effect in cingulate cortex or nucleus accumbens. Chronic heroin administration also reduced [35S]GTPgammaS binding stimulated by the principal metabolite of heroin, 6-monoacetylmorphine. In contrast, no significant changes in mu opioid receptor binding were observed in amygdala or thalamus using [3H]DAMGO autoradiography. In membranes from amygdala and thalamus, chronic heroin treatment decreased the maximal effect of DAMGO in stimulating [35S]GTPgammaS binding, with no effect on DAMGO potency. GTPgammaS saturation analysis showed that chronic heroin treatment decreased the Bmax, and increased the K(D), of DAMGO-stimulated [35S]GTPgammaS binding. These data suggest potential mechanisms by which chronic agonist treatment produces opioid receptor/G-protein desensitization in brain.  相似文献   

14.
Abstract : Phosphorylation of specific amino acid residues is believed to be crucial for the agonist-induced regulation of several G protein-coupled receptors. This is especially true for the three types of opioid receptors (μ, δ, and α), which contain consensus sites for phosphorylation by numerous protein kinases. Protein kinase C (PKC) has been shown to catalyze the in vitro phosphorylation of μ- and δ-opioid receptors and to potentiate agonist-induced receptor desensitization. In this series of experiments, we continue our investigation of how opioid-activated PKC contributes to homologous receptor down-regulation and then expand our focus to include the exploration of the mechanism(s) by which μ-opioids produce PKC translocation in SH-SY5Y neuroblastoma cells. [d Ala2,N-Me-Phe4,Gly-ol]enkephalin (DAMGO)-induced PKC translocation follows a time-dependent and biphasic pattern beginning 2 h after opioid addition, when a pronounced translocation of PKC to the plasma membrane occurs. When opioid exposure is lengthened to >12 h, both cytosolic and particulate PKC levels drop significantly below those of control-treated cells in a process we termed “reverse translocation.” The opioid receptor antagonist naloxone, the PKC inhibitor chelerythrine, and the L-type calcium channel antagonist nimodipine attenuated opioid-mediated effects on PKC and μ-receptor down-regulation, suggesting that this is a process partially regulated by Ca2+-dependent PKC isoforms. However, chronic exposure to phorbol ester, which depletes the cells of diacylglycerol (DAG) and Ca2+-sensitive PKC isoforms, before DAMGO exposure, had no effect on opioid receptor down-regulation. In addition to expressing conventional (PKC-α) and novel (PKC-ε) isoforms, SH-SY5Y cells also contain a DAG-and Ca2+-independent, atypical PKC isozyme (PKC-ξ), which does not decrease in expression after prolonged DAMGO or phorbol ester treatment. This led us to investigate whether PKC-ξ is similarly sensitive to activation by μ-opioids. PKC-ξ translocates from the cytosol to the membrane with kinetics similar to those of PKC-α and ε in response to DAMGO but does not undergo reverse translocation after longer exposure times. Our evidence suggests that direct PKC activation by μ-opioid agonists is involved in the processes that result in μ-receptor down-regulation in human neuroblastoma cells and that conventional, novel, and atypical PKC isozymes are involved.  相似文献   

15.
This study investigated the mechanism of agonist-induced opioid receptor down-regulation. Incubation of HEK 293 cells expressing FLAG-tagged delta and mu receptors with agonists caused a time-dependent decrease in opioid receptor levels assayed by immunoblotting. Pulse-chase experiments using [(35)S]methionine metabolic labeling indicated that the turnover rate of delta receptors was accelerated 5-fold following agonist stimulation. Inactivation of functional G(i) and G(o) proteins by pertussis toxin-attenuated down-regulation of the mu opioid receptor, while down-regulation of the delta opioid receptor was unaffected. Pretreatment of cells with inhibitors of lysosomal proteases, calpain, and caspases had little effect on mu and delta opioid receptor down-regulation. In marked contrast, pretreatment with proteasome inhibitors attenuated agonist-induced mu and delta receptor down-regulation. In addition, incubation of cells with proteasome inhibitors in the absence of agonists increased steady-state mu and delta opioid receptor levels. Immunoprecipitation of mu and delta opioid receptors followed by immunoblotting with ubiquitin antibodies suggested that preincubation with proteasome inhibitors promoted accumulation of polyubiquitinated receptors. These data provide evidence that the ubiquitin/proteasome pathway plays a role in agonist-induced down-regulation and basal turnover of opioid receptors.  相似文献   

16.
ABSTRACT

As G protein-coupled receptors (GPCRs) are the target of numerous signaling molecules, including about half of the therapeutic drugs currently used, it is important to understand the consequences of homologous (ligand-induced) receptor regulation. Continuous exposure of GPCRs to agonist in vitro most frequently results in receptor down-regulation, but receptor up-regulation may occur as well. These phenomena are expected to play a role in the physiological adaptation to endogenous ligands and also in the response to repetitive administration of drugs in the clinic. However, there is little information on homologous regulation of GPCRs in vivo. Here, we report on the regulation of melanocortin-1 receptor (MC1R) expression in melanoma cells implanted into mice. Two melanoma cell lines were investigated, D10 and B16F1, which in vitro had previously been shown to undergo homologous receptor up- and down-regulation, respectively. After implantation into mice and exposure to the natural MC1R agonist α-melanocyte-stimulating hormone (α-MSH), cell-surface MC1R expression was evaluated by competition binding experiments in tumor membrane preparations. In B16F1 cells, a single injection of 50 to 500?µg α-MSH induced a rapid but moderate dose-dependent MC1R down-regulation which could be totally reverted within 16–24?h. By continuous administration of α-MSH via osmotic minipumps, MC1R down-regulation was considerably amplified and reached the level observed in vitro, demonstrating that prolonged receptor interaction was necessary to induce a maximal effect in vivo. Similar results were obtained in vitro, which demonstrates that homologous MC1R regulation in B16F1 cells is essentially independent of the physiological environment. In D10 cells, however, up-regulation could not be reproduced in vivo, suggesting that MC1R up-regulation is more dependent on the physiological environment. These results demonstrate the importance of in vivo receptor regulation studies, in particular in view of the potential use of MC1R as a target for melanoma therapy.  相似文献   

17.
Although (-)-125I-iodopindolol (IPIN) can be used to label beta-adrenergic receptors in the central nervous system (CNS) in vivo, use of this ligand for receptor imaging studies in humans may be limited due to its relatively poor penetration into the CNS. A series of derivatives related to pindolol was therefore studied in an effort to determine the factors that might influence the penetration and interaction of these compounds with central beta-adrenergic receptors in vivo. Evaluation of the ability of these derivatives to displace the binding of IPIN in the brain upon systemic administration provides an assessment of whether the derivatives penetrate and interact with central beta-adrenergic receptors in vivo. Multiple regression analyses showed that the most important factor which influences the ability of the pindolol derivatives to penetrate into the brain and interact with beta-adrenergic receptors in vivo is the affinity of the derivatives for binding to beta-adrenergic receptors in vitro. Both lipophilicity and the molecular weights of the derivatives are important secondary factors which influence their in vivo potency.  相似文献   

18.
The mu-opioid receptor (MOR) is the G-protein coupled receptor primarily responsible for mediating the analgesic and rewarding properties of opioid agonist drugs such as morphine, fentanyl, and heroin. We have utilized a combination of traditional and modified membrane yeast two-hybrid screening methods to identify a cohort of novel MOR interacting proteins (MORIPs). The interaction between the MOR and a subset of MORIPs was validated in pulldown, co-immunoprecipitation, and co-localization studies using HEK293 cells stably expressing the MOR as well as rodent brain. Additionally, a subset of MORIPs was found capable of interaction with the delta and kappa opioid receptors, suggesting that they may represent general opioid receptor interacting proteins (ORIPS). Expression of several MORIPs was altered in specific mouse brain regions after chronic treatment with morphine, suggesting that these proteins may play a role in response to opioid agonist drugs. Based on the known function of these newly identified MORIPs, the interactions forming the MOR signalplex are hypothesized to be important for MOR signaling and intracellular trafficking. Understanding the molecular complexity of MOR/MORIP interactions provides a conceptual framework for defining the cellular mechanisms of MOR signaling in brain and may be critical for determining the physiological basis of opioid tolerance and addiction.  相似文献   

19.
Highly selective opioid receptor antagonists are essential pharmacological probes in opioid receptor structural characterization and opioid agonist functional studies. Currently, there is no highly selective, nonpeptidyl and reversible mu opioid receptor antagonist available. Among a series of naltrexamine derivatives that have been designed and synthesized, two compounds, NAP and NAQ, were previously identified as novel leads for this purpose based on their in vitro and in vivo pharmacological profiles. Both compounds displayed high binding affinity and selectivity to the mu opioid receptor. To further study the interaction of these two ligands with the three opioid receptors, the recently released opioid receptor crystal structures were employed in docking studies to further test our original hypothesis that the ligands recognize a unique ‘address’ domain in the mu opioid receptor involving Trp318 that facilitates their selectivity. These modeling results were supported by site-directed mutagenesis studies on the mu opioid receptor, where the mutants Y210A and W318A confirmed the role of the latter in binding. Such work not only enriched the ‘message–address’ concept, also facilitated our next generation ligand design and development.  相似文献   

20.
The delta-opioid receptor (DOR) can undergo proteolytic down-regulation by endocytosis of receptors followed by sorting of internalized receptors to lysosomes. Although phosphorylation of the receptor is thought to play an important role in controlling receptor down-regulation, previous studies disagree on whether phosphorylation is actually required for the agonist-induced endocytosis of opioid receptors. Furthermore, no previous studies have determined whether phosphorylation is required for subsequent sorting of internalized receptors to lysosomes. We have addressed these questions by examining the endocytic trafficking of a series of mutant versions of DOR expressed in stably transfected HEK 293 cells. Our results confirm that phosphorylation is not required for agonist-induced endocytosis of truncated mutant receptors that lack the distal carboxyl-terminal cytoplasmic domain containing sites of regulatory phosphorylation. However, phosphorylation is required for endocytosis of full-length receptors. Mutation of all serine/threonine residues located in the distal carboxyl-terminal tail domain of the full-length receptor to alanine creates functional mutant receptors that exhibit no detectable agonist-induced endocytosis. Substitution of these residues with aspartate restores the ability of mutant receptors to undergo agonist-induced endocytosis. Studies using green fluorescent protein-tagged versions of arrestin-3 suggest that the distal tail domain, when not phosphorylated, inhibits receptor-mediated recruitment of beta-arrestins to the plasma membrane. Biochemical and radioligand binding studies indicate that, after endocytosis occurs, phosphorylation-defective mutant receptors traffic to lysosomes with similar kinetics as wild type receptors. We conclude that phosphorylation controls endocytic trafficking of opioid receptors primarily by regulating a "brake" mechanism that prevents endocytosis of full-length receptors in the absence of phosphorylation. After endocytosis occurs, subsequent steps of membrane trafficking mediating sorting and transport to lysosomes do not require receptor phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号