首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of isolation on exploratory behavior has been shown to differ depending on the developmental stages of male rats. However, there has been little systematic comparison of the frequencies and the patterns of exploratory behavior across the developmental stages. The present study assessed the frequencies of exploration using the emergence test and exploratory patterns in the open-field test in three developmental stages of male rats: juvenile, post-puberty, and adult. A lower propensity for exploration was observed in rats isolated during the juvenile stage, as assessed by increased latency and decreased duration of exploratory behaviors compared to pair-reared rats, and this tendency was maintained in adulthood. Altered patterns of exploratory behavior were demonstrated both in rats isolated in adulthood, who showed an increased active pattern, and those pair-reared following puberty, who shifted to a more passive pattern. However, rats isolated during the juvenile stage did not change their exploratory patterns following puberty. These results suggest that the changes in the exploratory pattern, which can be observed in adulthood, are associated with the emergence of adult-like dominance relationships. Juvenile-isolated rats did not show these changes following puberty, suggesting the importance of social interaction as juveniles for the ontogenetic emergence of behavioral flexibility implicated in the regulation of exploratory patterns.  相似文献   

2.
Castrated androgen-insensitive rats exhibited mounting and intromission patterns in response to testosterone propionate (TP), estradiol benzoate (EB), or EB combined with dihydrotestosterone (DHT) treatment in adulthood. Treatment with DHT alone was ineffective in stimulating male mating behavior in the mutant rats. Since androgen-insensitive rats, like normal males, have the potential to show mounting behavior following hormone treatment in adulthood, the neural substrate underlying this behavior must be masculinized during development. The effectiveness of gonadal hormones in activating the entire copulatory sequence in castrated littermate males (King-Holtzman) was also examined. TP treatment induced mating behavior in the control rats. DHT also stimulated the complete copulatory pattern, although it was not as effective as TP. The administration of EB, however, did not induce ejaculation in control rats. These results do not support the hypothesis that the activation of male mating behavior by testosterone requires its metabolite estrogen (aromatization hypothesis).  相似文献   

3.
Research on age-related changes in morphology, social behavior, and cognition suggests that the development of bonobos (Pan paniscus) is delayed in comparison to chimpanzees (Pan troglodytes). However, there is also evidence for earlier reproductive maturation in bonobos. Since developmental changes such as reproductive maturation are induced by a number of endocrine processes, changes in hormone levels are indicators of different developmental stages. Age-related changes in testosterone excretion are an indirect marker for the onset of puberty in human and non-human primates. In this study we investigated patterns of urinary testosterone levels in male and female bonobos and chimpanzees to determine the onset of puberty. In contrast to other studies, we found that both species experience age-related changes in urinary testosterone levels. Older individuals of both sexes had significantly higher urinary testosterone levels than younger individuals, indicating that bonobos and chimpanzees experience juvenile pause. The males of both species showed a similar pattern of age-related changes in urinary testosterone levels, with a sharp increase in levels around the age of eight years. This suggests that species-differences in aggression and male mate competition evolved independently of developmental changes in testosterone levels. Females showed a similar pattern of age-related urinary testosterone increase. However, in female bonobos the onset was about three years earlier than in female chimpanzees. The earlier rise of urinary testosterone levels in female bonobos is in line with reports of their younger age of dispersal, and suggests that female bonobos experience puberty at a younger age than female chimpanzees.  相似文献   

4.
This study examined the role of gonadal androgens during puberty on the development of environment-related social interaction (SI) in male rats. SI in an unfamiliar environment versus SI in a familiar environment was evaluated in young adult rats as a function of sex and gonadal status. Intact male rats at 60 days of age exhibited a differential response to the two environments, whereas SI in intact female rats at 60 days was equivalent in the two environments. Furthermore, male rats castrated as juveniles and tested for SI at 60 days displayed a pattern of environment-related SI similar to SI in intact adult female rats. This effect of juvenile castration on SI in male rats was prevented by chronic exposure to testosterone propionate (TP) over Days 30 through 60. SI in male rats castrated in adulthood, on the other hand, was not altered either 2 or 4 weeks postcastration. The results from this study indicate that pubertal secretions of gonadal androgen(s) are necessary for the development of environment-related SI in male rats. In contrast, secretions of gonadal androgens in adulthood do not appear to be critical for the continued expression of environment-related SI, as suggested by the observation that environment-related SI in male rats remains unchanged by castration in adulthood.  相似文献   

5.
The developmental changes of hypothalamic, pituitary, striatum and pineal gland tachykinin concentrations, as well as the response to estradiol-benzoate (EB) administration, were studied in offspring of control and melatonin (MEL) treated mother rats. Female rats were studied throughout different phases of the sexual development: infantile, prepubertal and pubertal periods, in the four following groups; control-offspring+vehicle; control-offspring+EB; MEL-offspring+vehicle; MEL-offspring+EB. Hypothalamic NKA in control-offspring+ vehicle was significantly increased only at 27 days of age and in control-offspring+EB at 27 days of age and during the infantile period. Hypothalamic SP levels increased similarly in control-offspring+EB during the infantile period but the EB influence was more pronounced with significantly increased concentrations at 32 days of age. Prenatal melatonin treatment produced major alterations in these patterns of postnatal development. In MEL-offspring+EB tachykinins concentrations in the hypothalamus during infantile and prepubertal periods did not increase, however at 37 days of age, they showed significantly higher values than in control-offspring+EB groups. The developmental pattern of pituitary NKA and SP concentrations in both; control-offspring+vehicle and control-offspring+EB groups, showed similar values from the infantile period to puberty, indicating that NKA and SP concentrations remained at similar levels independently of the sexual stage, only at 27 days of age in control-offspring+EB significantly increased values were found as compared to MEL-offspring+EB. Prenatal melatonin did not produce marked modifications, only significantly lower NKA and SP concentrations in MEL-offspring+EB group were observed at 25 days of age in comparison to control-offspring+EB group. Striatal NKA and SP concentrations showed a similar developmental pattern. In control-offspring, EB treatment produced NKA and SP decreased concentrations at the infantile period than in control-offspring+vehicle and significantly increased concentrations during the prepubertal period, then during the pubertal period NKA and SP concentrations decreased in control-group+EB. However, prenatal melatonin treatment reduced the levels of striatal NKA and SP during the prepubertal period after EB treatment and delayed until pubertal period the increase previously observed in control group during the prepubertal period. In MEL-offspring+vehicle group striatal concentrations of both tachykinins remained at low levels from infantile period until pubertal period. Prenatal melatonin and EB did not produce major alterations in SP pineal concentrations throughout sexual development. Plasma estradiol concentrations were significantly higher in the groups that received EB treatment than in those that received vehicle during prepubertal and juvenile periods in control-offspring+EB group and during the pubertal period in MEL-offspring+EB group. These data indicate that prenatal MEL treatment may influence NKA and SP developmental pattern from the infantile period until adulthood in the female rat.  相似文献   

6.
Most temperate butterflies exhibit a tightly synchronized unimodal adult emergence to facilitate mate location. Exceptions are presumably subject to unusual selection pressure. This study examines the pattern of emergence in Maniola jurtina , which was found to exhibit both unimodal and bimodal emergence patterns at different sites in south-east England. The bimodal pattern was found on chalk grassland; elsewhere the emergence was unimodal. Adults from each emergence peak rarely meet, suggesting that there may be some degree of reproductive isolation. Morphological measurements and electrophoretic analysis of allozyme frequencies are carried out to quantify differentiation between emergence peaks. Captive stock was reared to examine differences in the immature stages. Butterflies from each emergence differ significantly in most morphological variables measured, those from the second peak tending to be smaller. The immature stages differ in morphology and longevity of the egg stage. Allozyme frequencies did not differ between peaks, suggesting that they are not reproductively isolated. Explanations for the maintenance of differences between emergence peaks despite gene flow are discussed. I propose that division of offspring between two emergence times may have evolved to avoid the risk inherent in placing all offspring in one peak which may be rendered inviable by temporal fluctuations in habitat quality.  相似文献   

7.
The aim of the present study was to assess the activities of the progesterone (Pr) transforming enzyme systems 3alpha-oxidoreductase (3alpha-OR), 5alpha-reductase (5alpha-R) and 20alpha-oxidoreductase (20alpha-OR) in the hypothalamus of the male rat, at different stages of sexual maturation and following castration and adrenalectomy. Special attention was paid to transformation to 3alpha-reduced compounds previously shown to inhibit FSH synthesis and secretion. Homogenates of hypothalamic tissue were incubated with 14C-progesterone. Pr-metabolites were isolated, identified by gas chromatography/mass-spectrometry (GC/MS) and measured by liquid scintillation counting (LSC). In adult rats a ratio of 6:2.5:1 for 5alpha-R:3alpha-OR:20alpha-OR enzyme- activities was found. The hypothalamic 5alpha-R and particularly 3alpha-OR activities were considerably higher before puberty (10-20 day old rats) than in adulthood. Adrenalectomy in adult rats resulted in an increased activity of the three enzyme systems. No significant changes were seen following castration. Among the isolated metabolites, 3alpha-hydroxy-pregn-4-en-20-one (3alpha-Pr) and 3alpha-hydroxy-5alpha-pregnane-20-one (5alpha,3alpha-Pr) were identified. Conversion to both these neurosteroids was considerably higher during prepuberty than in adulthood. The finding that before puberty the hypothalamus has a markedly increased capacity to convert Pr to 3alpha-reduced compounds, such as 3alpha-Pr, known to effectively inhibit FSH release, warrants further research into the mechanisms regulating the hypothalamic formation of biologically active Pr derivatives and their role in the regulation of gonadotropin secretion.  相似文献   

8.
Developmental patterns in immunoactive inhibin and FSH concentrations in peripheral blood were determined for Suffolk and DLS (Dorset x Leicester x Suffolk) rams born in January Blood samples were taken every 3 to 4 wk when testes were developing during puberty (5 to 44 wk of age) and redeveloping in early adulthood (17 to 23 months of age). Suffolk lambs had a greater average daily gain (195 vs. 143 g/day, P<0.01), and they developed larger testes (P<0.01) than DLS lambs. Inhibin and FSH concentrations peaked at about the same pubertal (8 wk) and early adult (19 or 20 months) ages in both breeds. Elevations in FSH were greater (P< 0.05) in Suffolk than DLS rams at each stage of development. The pubertal inhibin peak was nearly 70% larger (P<0.01) in DLS than Suffolk rams, and the early adult peak was comparable in rams of both breeds, but much smaller (P<0.01) than the pubertal peak. Nonetheless, inhibin was positively correlated (r=0.48 to 0.57) with FSH in both breeds during each developmental stage. Inhibin and testicular size were negatively correlated in Suffolk (r=-0.74) and DLS (r=-0.86) rams during puberty, and positively correlated in DLS rams (r=0.46) in early adulthood. We conclude that 1) inhibin concentrations are higher in juvenile rams at the time Sertoli cell numbers are being established than in adult rams during testicular recrudescence and 2) rises in FSH concentration participate in regulating corresponding rises in inhibin concentration in both stages of testicular development.  相似文献   

9.
The dynamics of exploratory activity in male and female Wistar rats before weaning and over the course of puberty was investigated. Behavior of animals was examined on the 18th, 35th, and 50th postnatal days in a modified light-dark test and on the 24th postnatal day in an open-field test. It was found that exploratory activity of males considerably changed over the course of puberty period. From the 18th to 35th postnatal days, the number of animals exploring a light compartment increased. From the 35th to 50th postnatal days, the duration of the light compartment investigation increased. The only change in exploratory activity of female rats consisted in an increase in the number of transitions between the light and dark compartments from 35th to 50th postnatal days. The results suggest different mechanisms of exploratory behavior development in male and female rats.  相似文献   

10.
Juvenile obesity is a rising epidemic due largely to consumption of caloric dense, fat-enriched foods. Nevertheless, literature on fat-induced neuroendocrine and metabolic disturbances during adolescence, preceding obesity, is limited. This study aimed to examine early events induced by a fat diet (45% calories from saturated fat) in male rats fed the diet during the pre- and post-pubertal period. The neuroendocrine endpoints studied were the levels of circulating leptin, insulin and corticosterone, as well as their receptors in the hypothalamus and hippocampus. Hormonal levels were determined by radioimmunoassay and receptors’ levels by western blot analysis. Leptinemia was increased in pubertal rats and in adult rats fed the fat diet from weaning to adulthood, but not in those fed from puberty to adulthood. Modifications in the developmental pattern from puberty to adulthood were observed for most of the brain receptors studied. In adult animals fed the fat diet from weaning onwards, the levels of leptin receptors in the hypothalamus and glucocorticoid receptors in the hippocampus were decreased compared to chow-fed controls. Switching from fat to normal chow at puberty onset restored the diet-induced alterations on circulating leptin, but not on its hypothalamic receptors. These data suggest that when a fat-enriched diet, resembling those consumed by many teenagers, provided in rats during pubertal growth, it can longitudinally influence the actions of leptin and corticosterone in the brain. The observed alterations at a preobese state may constitute early signs of the disturbed energy balance toward overweight and obesity.  相似文献   

11.
Early life exposure to Bisphenol A (BPA), a component of polycarbonate plastics and epoxy resins, alters sociosexual behavior in numerous species including humans. The present study focused on the ontogeny of these behavioral effects beginning in adolescence and assessed the underlying molecular changes in the amygdala. We also explored the mitigating potential of a soy-rich diet on these endpoints. Wistar rats were exposed to BPA via drinking water (1 mg/L) from gestation through puberty, and reared on a soy-based or soy-free diet. A group exposed to ethinyl estradiol (50 μg/L) and a soy-free diet was used as a positive estrogenic control. Animals were tested as juveniles or adults for anxiety-like and exploratory behavior. Assessment of serum BPA and genistein (GEN), a soy phytoestrogen, confirmed that internal dose was within a human-relevant range. BPA induced anxiogenic behavior in juveniles and loss of sexual dimorphisms in adult exploratory behavior, but only in the animals reared on the soy-free diet. Expression analysis revealed a suite of genes, including a subset known to mediate sociosexual behavior, associated with BPA-induced juvenile anxiety. Notably, expression of estrogen receptor beta (Esr2) and two melanocortin receptors (Mc3r, Mc4r) were downregulated. Collectively, these results show that behavioral impacts of BPA can manifest during adolescence, but wane in adulthood, and may be mitigated by diet. These data also reveal that, because ERβ and melanocortin receptors are crucial to their function, oxytocin/vasopressin signaling pathways, which have previously been linked to human affective disorders, may underlie these behavioral outcomes.  相似文献   

12.
Leptin is a potent growth-stimulating factor of bone. The effects of leptin on bone growth differ significantly between axial and appendicular regions. Gender differences of leptin function have also been suggested in normal pubertal development. To explore the mechanisms underlying these effects, we investigated the spatial and temporal expressions of the active form of the leptin receptor (Ob-Rb) in the tibial and spinal growth plates of the female and male rats during postnatal development. The 1-, 4-, 7-, 12- and 16-week age stages are representative for early life, puberty and early adulthood after puberty, respectively. Quantitative real-time PCR was used for Ob-Rb mRNA examination and comparison. The spatial location of Ob-Rb was determined by immunohistochemical analysis. There were gender- and region-specific differences in Ob-Rb mRNA expression in the growth plate. Mainly cytoplasm staining of Ob-Rb immunoreactivity was observed in the spinal and tibial growth plate chondrocytes of both genders. Spatial differences of region- and gender-related Ob-Rb expression were not observed. Ob-Rb immunoreactivity was detected in the resting, proliferative and prehypertrophic chondrocytes in early life stage and during puberty. After puberty, staining was mainly located in the late proliferative and hypertrophic chondrocytes. The results of Ob-Rb HSCORE analysis were similar to those obtained from quantitative real-time PCR. Our study indicated direct effects on the chondrocytes of the growth plate in different development stages. The region-specific expression patterns of Ob-Rb gene might be one possible reason for contrasting phenotypes in limb and spine. Different Ob-Rb expression patterns might partly contribute to age- and gender- related differences in trabecular bone mass.  相似文献   

13.
Overfeeding during perinatal life leads to an overweight phenotype that persists throughout the juvenile stage and into adulthood, however, the mechanim(s) underlying this effect are poorly understood. We hypothesized that obesity due to neonatal overfeeding is maintained by changes in energy expenditure and that these changes differ between males and females. We investigated feeding, physical activity, hormonal and metabolic alterations that occur in adult rats made obese by having been nursed in small litters (SL) compared with those from control litters (CL). There were no differences in absolute food intake between the groups, and juvenile and adult SL rats ate less chow per gram body weight than the CL did in the dark (active) phase. Juvenile, but not adult SL rats did have reduced whole body energy expenditure, but there were no differences between the groups by the time they reached adulthood. Adult SL females (but not males) had reduced brown adipose tissue (BAT) temperatures compared with CL in the first half of the dark phase. Our results indicate a persistent overweight phenotype in rats overfed as neonates is not associated with hyperphagia at any stage, but is reflected in reduced energy expenditure into the juvenile phase. The reduced dark phase BAT activity in adult SL females is not sufficient to reduce total energy expenditure at this stage of life and there is an apparently compensatory effect that prevents SL and CL from continuing to diverge in weight that appears between the juvenile and adult stages.  相似文献   

14.
15.
Social isolation during early development is one of the most potent stressors that can cause alterations in the processes of brain maturation, leading to behavioral and neurochemical changes that may persist to adulthood. Exposure to palatable diets during development can also affect neural circuits with long-term consequences. The aims of the present study were to investigate the long-term effects of isolation stress during the pre-pubertal period on the exploratory and anxiety-like behavior, the oxidative stress parameters and the respiratory chain enzymes activities in the hippocampus of adult male rats under chronic palatable diets. The results showed that isolated rats receiving either normal or high-fat diet during the pre-pubertal period presented an anxiolytic-like behavior. The animals exposed to stress and treated with high-carbohydrate diet, rich in disaccharides, on the other hand, presented the opposite pattern of behavior. Stress in the pre-pubertal period also leads to decreased activity of the antioxidant enzymes and the mitochondrial respiratory chain complexes II and IV and decreased total thiol content. These effects were reversed by high-fat diet when it was associated with stress. The effects of a sub-acute pre-pubertal isolation stress on anxiety-like behavior and on hippocampal oxidative imbalance during adulthood appear to be modulated by different types of diets, and probably different mechanisms are involved.  相似文献   

16.
Parasitism of the tobacco hornworm, Manducasexta, by the braconid wasp Cotesiacongregata, induces developmental arrest of the host in the larval stage. During the final instar of the host, its juvenile hormone (JH) titer is elevated, preventing host metamorphosis. This study investigated the effects of hormonal manipulation of the host on the parasitoid’s emergence behavior. The second larval ecdysis of the wasps coincides with their emergence from the host, and application of the juvenile hormone analogue methoprene to day 4 fifth instar hosts either delayed or totally suppressed the subsequent emergence of the wasps. Effects of methoprene were dose-dependent and no parasitoids emerged following treatment of host larvae with doses >50 μg. Parasitoids which failed to emerge eventually succumbed as unecydsed pharate third instar larvae in the hemocoel of the host. Effects of host methoprene treatment on parasitoid metamorphosis were also assessed, and metamorphic disruption occurred at much lower dosages compared with doses necessary to suppress parasitoid emergence behavior. The inhibitory effect of methoprene on parasitoid emergence behavior appears to be mediated by effects of this hormone on the synthesis or release of ecdysis-triggering hormone (ETH) in the parasitoid, the proximate endocrine cue which triggers ecdysis behavior in free-living insects. ETH accumulated in the epitracheal Inka cells of parasitoids developing in methoprene-treated hosts, suggestive of a lack of hormone release. Thus, the hormonal modulation of parasitoid emergence behavior appears to be complex, involving a suite of hormones including JH, ecdysteroid, and peptide hormones.  相似文献   

17.
Neonatal exposure to endocrine disruptors induces developmental abnormalities in the male reproductive system. As to investigate whether neonatal exposure affects spermatogenesis in juvenile and pubertal testes, Sprague-Dawley rat pups were given various endocrine disruptors by a single injection on the day of birth at concentrations ranging between 4 microM and 40 mM and sacrificed on day 21 (juvenile) or 50 (puberty). The testes were weighed and examined histologically at each stage. Further, the metabolites of steroidogenesis were analyzed using normal-phase high performance liquid chromatography. Neonatal exposure significantly reduced testis weights and steroid biosynthesis of juveniles, but they were highly restored at puberty.  相似文献   

18.
Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI‐induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long‐term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI‐induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 193–202, 2015  相似文献   

19.
The mammalian intestine harbors a complex microbial ecosystem that influences many aspects of host physiology. Exposure to specific microbes early in development affects host metabolism, immune function, and behavior across the lifespan. Just as the physiology of the developing organism undergoes a period of plasticity, the developing microbial ecosystem is characterized by instability and may also be more sensitive to change. Early life thus presents a window of opportunity for manipulations that produce adaptive changes in microbial composition. Recent insights have revealed that increasing physical activity can increase the abundance of beneficial microbial species. We therefore investigated whether six weeks of wheel running initiated in the juvenile period (postnatal day 24) would produce more robust and stable changes in microbial communities versus exercise initiated in adulthood (postnatal day 70) in male F344 rats. 16S rRNA gene sequencing was used to characterize the microbial composition of juvenile versus adult runners and their sedentary counterparts across multiple time points during exercise and following exercise cessation. Alpha diversity measures revealed that the microbial communities of young runners were less even and diverse, a community structure that reflects volatility and malleability. Juvenile onset exercise altered several phyla and, notably, increased Bacteroidetes and decreased Firmicutes, a configuration associated with leanness. At the genus level of taxonomy, exercise altered more genera in juveniles than in the adults and produced patterns associated with adaptive metabolic consequences. Given the potential of these changes to contribute to a lean phenotype, we examined body composition in juvenile versus adult runners. Interestingly, exercise produced persistent increases in lean body mass in juvenile but not adult runners. Taken together, these results indicate that the impact of exercise on gut microbiota composition as well as body composition may depend on the developmental stage during which exercise is initiated.  相似文献   

20.
Resource limitation during the juvenile stages frequently results in developmental delays and reduced size at maturity, and dietary restriction during adulthood can affect longevity and reproductive output. Variation in food intake can also result in alteration to the normal pattern of resource allocation among body parts or life-history stages. My primary aim in this study was to determine how varying juvenile and/or adult feeding regimes affect particular female and male traits in the sexually cannibalistic praying mantid Pseudomantis albofimbriata. Praying mantids are sit-and-wait predators whose resource intake can vary dramatically depending on environmental conditions within and across seasons, making them useful for studying the effects of feeding regime on various facets of reproductive fitness. In this study, there was a significant trend/difference in development and morphology for males and females as a result of juvenile feeding treatment, however, its effect on the fitness components measured for males was much greater than on those measured for females. Food-limited males were less likely to find a female during field enclosure experiments and smaller males were slower at finding a female in field-based experiments, providing some of the first empirical evidence of a large male size advantage for scrambling males. Only adult food limitation affected female fecundity, and the ability of a female to chemically attract males was also most notably affected by adult feeding regime (although juvenile food limitation did play a role). Furthermore, the significant difference/trend in all male traits and the lack of difference in male trait ratios between treatments suggests a proportional distribution of resources and, therefore, no trait conservation by food-limited males. This study provides evidence that males and females are under different selective pressures with respect to resource acquisition and is also one of very few to show an effect of juvenile food quantity on adult reproductive fitness in a hemimetabolous insect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号