首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In our previous study, we indicated for the first time that C-28 hydroxylation plays a significant role in the metabolism of 1alpha, 25-dihydroxyvitamin D(2) [1alpha,25(OH)(2)D(2)] by identifying 1alpha,24(S),25,28-tetrahydroxyvitamin D(2) [1alpha,24(S),25, 28(OH)(4)D(2)] as a major renal metabolite of 1alpha,25(OH)(2)D(2) [G. S. Reddy and K-Y. Tserng Biochemistry 25, 5328-5336, 1986]. The present study was performed to establish the physiological significance of C-28 hydroxylation in the metabolism of 1alpha, 25(OH)(2)D(2). We perfused rat kidneys in vitro with 1alpha, 25(OH)(2)[26,27-(3)H]D(2) (5 x 10(-10)M) and demonstrated that 1alpha,24(R),25-trihydroxyvitamin D(2) [1alpha,24(R),25(OH)(3)D(2)] and 1alpha,24(S),25,28(OH)(4)D(2) are the only two major physiological metabolites of 1alpha,25(OH)(2)D(2). In the same perfusion experiments, we also noted that there is no conversion of 1alpha,25(OH)(2)D(2) into 1alpha,25,28-trihydroxyvitamin D(2 )[1alpha,25,28(OH)(3)D(2)]. Moreover, 1alpha,24(S),25,28(OH)(4)D(2) is not formed in the perfused rat kidney when synthetic 1alpha,25, 28(OH)(3)D(2) is used as the starting substrate. This finding indicates that C-28 hydroxylation of 1alpha,25(OH)(2)D(2) occurs only after 1alpha,25(OH)(2)D(2) is hydroxylated at C-24 position. At present the enzyme responsible for the C-28 hydroxylation of 1alpha, 24(R),25(OH)(3)D(2) in rat kidney is not known. Recently, it was found that 1alpha,25(OH)(2)D(3)-24-hydroxylase (CYP24) can hydroxylate carbons 23, 24, and 26 of various vitamin D(3) compounds. Thus, it may be speculated that CYP24 may also be responsible for the C-28 hydroxylation of 1alpha,24(R),25(OH)(3)D(2) to form 1alpha, 24(S),25,28(OH)(4)D(2). The biological activity of 1alpha,24(S),25, 28(OH)(4)D(2), determined by its ability to induce intestinal calcium transport and bone calcium resorption in the rat, was found to be almost negligible. Also, 1alpha,24(S),25,28(OH)(4)D(2) exhibited very low binding affinity toward bovine thymus vitamin D receptor. These studies firmly establish that C-28 hydroxylation is an important enzymatic reaction involved in the inactivation of 1alpha,25(OH)(2)D(2) in kidney under physiological conditions.  相似文献   

2.
Brassinosteroids (BRs) are biosynthesized from campesterol via several cytochrome P450 (P450)-catalyzed oxidative reactions. We report the functional characterization of two BR-biosynthetic P450s from Arabidopsis thaliana: CYP90C1/ROTUNDIFOLIA3 and CYP90D1. The cyp90c1 cyp90d1 double mutant exhibits the characteristic BR-deficient dwarf phenotype, although the individual mutants do not display this phenotype. These data suggest redundant roles for these P450s. In vitro biochemical assays using insect cell-expressed proteins revealed that both CYP90C1 and CYP90D1 catalyze C-23 hydroxylation of various 22-hydroxylated BRs with markedly different catalytic efficiencies. Both enzymes preferentially convert 3-epi-6-deoxocathasterone, (22S,24R)-22-hydroxy-5alpha-ergostan-3-one, and (22S,24R)-22-hydroxyergost-4-en-3-one to 23-hydroxylated products, whereas they are less active on 6-deoxocathasterone. Likewise, cyp90c1 cyp90d1 plants were deficient in 23-hydroxylated BRs, and in feeding experiments using exogenously supplied intermediates, only 23-hydroxylated BRs rescued the growth deficiency of the cyp90c1 cyp90d1 mutant. Thus, CYP90C1 and CYP90D1 are redundant BR C-23 hydroxylases. Moreover, their preferential substrates are present in the endogenous Arabidopsis BR pool. Based on these results, we propose C-23 hydroxylation shortcuts that bypass campestanol, 6-deoxocathasterone, and 6-deoxoteasterone and lead directly from (22S,24R)-22-hydroxy-5alpha-ergostan-3-one and 3-epi-6-deoxocathasterone to 3-dehydro-6-deoxoteasterone and 6-deoxotyphasterol.  相似文献   

3.
Human 25-hydroxyvitamin D3 (25(OH)D3) 24-hydroxylase (CYP24) cDNA was expressed in Escherichia coli, and its enzymatic and spectral properties were revealed. The reconstituted system containing the membrane fraction prepared from recombinant E. coli cells, adrenodoxin and adrenodoxin reductase was examined for the metabolism of 25(OH)D3, 1alpha,25(OH)2D3 and their related compounds. Human CYP24 demonstrated a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways towards both 25(OH)D3 and 1alpha,25(OH)2D3, whereas rat CYP24 showed almost no C-23 hydroxylation pathway [Sakaki, T. Sawada, N. Nonaka, Y. Ohyama, Y. & Inouye, K. (1999) Eur. J. Biochem. 262, 43-48]. HPLC analysis and mass spectrometric analysis revealed that human CYP24 catalyzed all the steps of the C-23 hydroxylation pathway from 25(OH)D3 via 23S, 25(OH)2D3, 23S,25,26(OH)3D3 and 25(OH)D3-26,23-lactol to 25(OH)D3-26, 23-lactone in addition to the C-24 hydroxylation pathway from 25(OH)D3 via 24R,25(OH)2D3, 24-oxo-25(OH)D3, 24-oxo-23S,25(OH)2D3 to 24,25,26,27-tetranor-23(OH)D3. On 1alpha,25(OH)2D3 metabolism, similar results were observed. These results strongly suggest that the single enzyme human CYP24 is greatly responsible for the metabolism of both 25(OH)D3 and 1alpha,25(OH)2D3. We also succeeded in the coexpression of CYP24, adrenodoxin and NADPH-adrenodoxin reductase in E. coli. Addition of 25(OH)D3 to the recombinant E. coli cell culture yielded most of the metabolites in both the C-23 and C-24 hydroxylation pathways. Thus, the E. coli expression system for human CYP24 appears quite useful in predicting the metabolism of vitamin D analogs used as drugs.  相似文献   

4.
Wüst M  Croteau RB 《Biochemistry》2002,41(6):1820-1827
The regiochemistry and facial stereochemistry of the limonene-6-hydroxylase- (CYP71D18-) mediated hydroxylation of the monoterpene olefin limonene are determined by the absolute configuration of the substrate. (-)-(4S)-Limonene is hydroxylated at the C6 allylic position to give (-)-trans-carveol as the only product, whereas (+)-(4R)-limonene yields multiple hydroxylation products with (+)-cis-carveol predominating. Specifically deuterated limonene enantiomers were prepared to investigate the net stereospecificity of hydroxylation at C6 and the mechanism of multiple product formation. The results of isotopically sensitive branching experiments of competitive and noncompetitive design were consistent with a nondissociative kinetic mechanism, indicating that (4R)-limonene has sufficient freedom of motion within the active site of CYP71D18 to allow formation of either the trans-3- or cis-6-hydroxylated product. However, the kinetic isotope effects resulting from deuterium abstraction were significantly smaller than expected for an allylic hydroxylation, and they did not approach the intrinsic isotope effect. (4S)-Limonene is oxygenated with almost complete stereospecificity for hydrogen abstraction from the trans-6-position, demonstrating rigid orientation during hydrogen abstraction and hydroxyl delivery. The oxygenation of (4R)-limonene leading to the formation of (+/-)-trans-carveol is accompanied by considerable allylic rearrangement and stereochemical scrambling, whereas the formation of (+)-cis-carveol proceeds without allylic rearrangement and with nearly complete stereospecificity for hydrogen abstraction from the cis-6-position. These results demonstrate that a single cytochrome P450 enzyme catalyzes the hydroxylation of small antipodal substrates with distinct stereochemistries and reveal that substrate-dependent positional motion of the intermediate carbon radical (and, therefore, hydroxylation stereospecificity) is determined by active-site binding complementarity. Thus, epimerization and allylic rearrangement are not inherent features of these reactions but occur when loss of active-site complementarity allows increased substrate mobility.  相似文献   

5.
Since it is widely distributed into the body, beta(3)-adrenoceptor is becoming an attractive target for the treatment of several pathologies such as obesity, type 2 diabetes, metabolic syndrome, cachexia, overactive bladder, ulcero-inflammatory disorder of the gut, preterm labour, anxiety and depressive disorders, and heart failure. New compounds belonging to the class of arylethanolamines bearing one or two stereogenic centres were prepared in good yields as racemates and optically active forms. They were, then, evaluated for their intrinsic activity towards beta(3)-adrenoceptor and their affinity for beta(1)- and beta(2)-adrenergic receptors. Stereochemical features were found to play a crucial role in determining the behaviour of such compounds. In particular, alpha-racemic, (alphaR)- and (alphaS)-2-{4-[2-(2-hydroxy-2-phenylethylamino)ethyl]phenoxy}-2- methylpropanoic acid, (alpha-rac, beta-rac)-, (alphaR, betaS)- and (alphaR, betaR)- 2-{4-[2-(2-hydroxy-2-phenylethylamino)ethyl]phenoxy}propanoic acid were found to be endowed with beta(3)-adrenoceptor agonistic activity. Whereas, (alphaS, betaS)- and (alphaS, betaR)-2-{4-[2-(2-hydroxy-2-phenylethylamino)ethyl]phenoxy}propanoic acid behaved as beta(3)-adrenoceptor inverse agonists. Such compounds showed no affinity for beta(1)- and beta(2)-adrenergic receptor, respectively. Thus, resulting highly selective beta(3)-adrenoceptor ligands.  相似文献   

6.
The active site topography of rabbit CYP4B1 has been studied relative to CYP2B1 and CYP102 using a variety of aromatic probe substrates. Oxidation of the prochiral substrate cumene by CYP4B1, but not CYP2B1 or CYP102, resulted in the formation of the thermodynamically disfavored omega-hydroxy metabolite, 2-phenyl-1-propanol, with product stereoselectivity for the (S)-enantiomer. Reaction of CYP4B1, CYP2B1, and CYP102 with phenyldiazene produced spectroscopically observable sigma-complexes for each enzyme. Subsequent oxidation of the CYP2B1 and CYP102 complexes followed by LC/ESI--MS analysis yielded heme pyrrole migration patterns similar to those in previous literature reports. Upon identical treatment, no migration products were detected for CYP4B1. Intramolecular deuterium isotope effects for the benzylic hydroxylation of o-xylene-alpha-(2)H(3), p-xylene-alpha-(2)H(3), 2-(2)H(3),6-dimethylnaphthalene, and 4-(2)H(3),4'-dimethylbiphenyl were determined for CYP4B1 and CYP2B1 to further map their active site dimensions. These probes permit assessment of the ease of equilibration, within P450 active sites, of oxidizable methyl groups located between 3 and 10 A apart [Iyer et al. (1997) Biochemistry 36, 7136--7143]. Isotope effects for the CYP4B1-mediated benzylic hydroxylation of o- and p-xylenes were fully expressed (k(H)/k(D) = 9.7 and 6.8, respectively), whereas deuterium isotope effects for the naphthyl and biphenyl derivatives were both substantially masked (k(H)/k(D) approximately equal to 1). In contrast, significant suppression of the deuterium isotope effects for CYP2B1 occurred only with the biphenyl substrate. Therefore, rapid equilibration between two methyl groups more than 6 A apart is impeded within the active site of CYP4B1, whereas for CYP2B1, equilibration is facile for methyl groups distanced by more than 8 A. Collectively, all data are consistent with the conclusion that the active site of CYP4B1 is considerably restricted relative to CYP2B1.  相似文献   

7.
Zhu CJ  Zhang JT 《Chirality》2003,15(5):448-455
To identify which cytochrome P450 (CYP) isoform(s) are responsible for the metabolism of clausenamide (CLA) enantiomers in rats, effects of various CYP isoform inducers and inhibitors on the formation of CLA metabolites were investigated in liver microsomes. In incubations with rat liver microsomes, CLA enantiomers were mainly converted to 4-hydroxy, 5-hydroxy, and 7-hydroxy-metabolites. 4-OH-CLA was the major metabolite of (+)-3R, 4S, 5S, 6R-CLA [(+)-CLA], while 7-OH-CLA was the major one of (-)-3S, 4R, 5R, 6S-CLA [(-)-CLA]. In induction studies, enzymatic parameters were used to assess the role of different CYP forms in CLA hydroxylation reactions. A marked increase in the rate of metabolism of CLA enantiomers was observed in microsomes of dexamethasone treated rats, V(max)/K(m) values for 4-OH-(+)-CLA, 7-OH-, 5-OH-, and 4-OH-(-)-CLA were 5.3, 6.5, 3.0, and 5.9 times higher than those in control microsomes, respectively. Rifampicin treatment caused corresponding 1.7-, 2.6-, 3.1-, and 2.8-fold increases. Dex and Rif also increased in the amount of (+)-5- and (+)-7-OH-CLA that were not detectable in the control group. These results suggested that inducible CYP3A1 was involved in the hydroxylation of CLA enantiomers. In inhibition studies, ketoconazone (6.25 microM) completely inhibited the production of main metabolites of (-)-CLA (100%) and (+)-CLA (97%). Triacetyloleandomycin (12.5 microM) strongly inhibited the corresponding metabolites by 34-85%. These findings also indicated that institutive CYP3A2 shared a major role in the hydroxylation of CLA enantiomers with CYP3A1 in untreated rats. Together, the data suggested that CYP3A was the predominant isoform responsible for the metabolism of CLA enantiomers.  相似文献   

8.
The structural basis for the regioselective hydroxylation of Delta-4-3-ketosteroids by human CYP3A4 was investigated. Prior studies had suggested that the chemical reactivity of the allylic 6beta-position might have a greater influence than steric constraints by the enzyme. Six highly conserved CYP3A residues from substrate recognition site 1 were examined by site-directed mutagenesis. F102A and A117L showed no spectrally detectable P450. V101G and T103A exhibited a wild-type progesterone metabolite profile. Of five mutants at residue N104, only N104D yielded holoenzyme and exhibited the same steroid metabolite profile as wild-type. Of four mutants at position S119 (A, L, T, V), the three hydrophobic ones produced 2beta-OH rather than 6beta-OH progesterone or testosterone as the major metabolite. Kinetic analysis showed S(50) values similar to wild-type for S119A (progesterone) and S119V (testosterone), whereas the V(max) values for 2beta-hydroxysteroid formation were increased in both cases. All four mutants exhibited an altered product profile for 7-hexoxycoumarin side-chain hydroxylation, whereas the stimulation of steroid hydroxylation by alpha-naphthoflavone was similar to the wild-type. The results indicate that the highly conserved residue S119 is a key determinant of CYP3A4 specificity and reveal an important role of the active site topology in steroid 6beta-hydroxylation.  相似文献   

9.
An improved synthesis of the diastereomers of 1alpha,25-dihydroxyvitamin D3 (1) was accomplished utilizing our practical route to the A-ring synthon. We applied this procedure to synthesize for the first time all possible A-ring diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). Ten-step conversion of 1-(4-methoxyphenoxy)but-3-ene (6), including enantiomeric introduction of the C-3 hydroxyl group to the olefin by the Sharpless asymmetric dihydroxylation, provided all four possible stereoisomers of A-ring enynes (3). i.e., (3R,5R)-, (3R,5S)-, (3S,5R)- and (3S,5S)-bis[(tert-butyldimethylsilyl)oxy]oct-1-en-7-yne, in good overall yield. Palladium-catalyzed cross-coupling of the A-ring synthon with the 20-epi CD-ring portion (5), (E)-(20S)-de-A,B-8-(bromomethylene)cholestan-25-ol, followed by deprotection, afforded the requisite diastereomers of 20-epi-1alpha,25-dihydroxyvitamin D3 (2). The biological profiles of the synthesized stereoisomers were assessed in terms of affinities for vitamin D receptor (VDR) and vitamin D binding protein (DBP). HL-60 cell differentiation-inducing activity and in vivo calcium-regulating potency in comparison with the natural hormone.  相似文献   

10.
Our previous study revealed that human CYP24A1 catalyzes a remarkable metabolism consisting of both C-23 and C-24 hydroxylation pathways that used both 25(OH)D(3) and 1alpha,25(OH)(2)D(3) as substrates, while rat CYP24A1 showed extreme predominance of the C-24 over C-23 hydroxylation pathway [Sakaki, T., Sawada, N., Komai, K., Shiozawa, S., Yamada, S., Yamamoto, K., Ohyama, Y. and Inouye, K. (2000) Eur. J. Biochem. 267, 6158-6165]. In this study, by using the Escherichia coli expression system for human CYP24A1, we identified 25,26,27-trinor-23-ene-D(3) and 25,26,27-trinor-23-ene-1alpha(OH)D(3) as novel metabolites of 25(OH)D(3) and 1alpha,25(OH)(2)D(3), respectively. These metabolites appear to be closely related to the C-23 hydroxylation pathway, because human CYP24A1 produces much more of these metabolites than does rat CYP24A1. We propose that the C(24)-C(25) bond cleavage occurs by a unique reaction mechanism including radical rearrangement. Namely, after hydrogen abstraction of the C-23 position of 1alpha,25(OH)(2)D(3), part of the substrate-radical intermediate is converted into 25,26,27-trinor-23-ene-1alpha(OH)D(3), while a major part of them is converted into 1alpha,23,25(OH)(3)D(3). Because the C(24)-C(25) bond cleavage abolishes the binding affinity of 1alpha,25(OH)D(3) for the vitamin D receptor, this reaction is quite effective for inactivation of 1alpha,25(OH)D(3).  相似文献   

11.
Cetirizine, terfenadine, loratadine, astemizole and mizolastine were compared for their ability to inhibit marker activities for CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP3A4 and for some glucuronidation isoenzymes in human liver microsomes. The most pronounced effects were observed with terfenadine, astemizole and loratadine which inhibited CYP3A4-mediated testosterone 6beta-hydroxylation (IC50 of 23, 21 and 32 microM, respectively) and CYP2D6-mediated dextromethorphan O-demethylation (IC50 of 18, 36 and 15 microM, respectively). In addition, loratadine markedly inhibited the CYP2C19 marker activity, (S)-mephenytoin 4-hydroxylation (Ki of 0.17 microM). Furthermore, loratadine activated the CYP2C9-catalyzed tolbutamide hydroxylation (ca. 3-fold increase at 30 microM) and inhibited some glucuronidation enzymes. Mizolastine appeared to be a relatively weak and unspecific inhibitor of CYP2E1, CYP2C9, CYP2D6 and CYP3A4 (IC50Ss in the 100 micromolar range). Cetirizine demonstrated no effect on the investigated activities. A comparison of the inhibitory potencies of cetirizine, terfenadine, loratidine, astemizole and mizolastine with their corresponding plasma concentrations in humans suggests that these antihistamines are not likely to interfere with the metabolic clearance of coadministered drugs, with the exception of loratidine, which appears to inhibit CYP2C19 with sufficient potency to warrant additional investigation.  相似文献   

12.
Limonene enantiomers and substrate analogs, including specifically fluorinated derivatives, were utilized to probe active site interactions with recombinant (-)-(4S)-limonene-3-hydroxylase (CYP71D13) and (-)-(4S)-limonene-6-hydroxylase (CYP71D18) from mint (Mentha) species. (-)-(4S)-Limonene is hydroxylated by both enzymes at the designated C3- and C6-allylic positions, with strict regio- and stereospecificity and without detectable allylic rearrangement, to give the corresponding products (-)-trans-isopiperitenol and (-)-trans-carveol. CYP71D13-catalyzed hydroxylation of (+)-(4R)-limonene also yields the corresponding trans-3-hydroxylated product ((+)-transisopiperitenol); however, the C6-hydroxylase converts (+)-(4R)-limonene to a completely different product profile dominated by the enantiopure cis-6-hydroxylated product (+)-cis-carveol along with several minor products, including both enantiomers of the trans-6-hydroxylated product ((+/-)-trans-carveol), indicating allylic rearrangement during catalysis. These results demonstrate that the regiospecificity and facial stereochemistry of oxygen insertion is dictated by the absolute configuration of the substrate. Fluorinated limonene analogs are also tightly bound by both enzymes and hydroxylated at the topologically congruent positions in spite of the polarizing effect of the fluorine atom on substrate reactivity. This strict retention of oxygenation geometry suggests a rigid substrate orientation imposed by multiple hydrophobic active site contacts. Structurally simplified substrate analogs are hydroxylated at slower rates and with substantial loss of regiospecificity, consistent with a loss of active site complementarity. Evaluation of the product profiles generated allowed assessment of the role of hydrophobic contacts in orienting the substrate relative to the activated oxygen species.  相似文献   

13.
Regiospecific 3′‐hydroxylation reaction of daidzein was performed with CYP105D7 from Streptomyces avermitilis MA4680 expressed in Escherichia coli. The apparent Km and kcat values of CYP105D7 for daidzein were 21.83 ± 6.3 µM and 15.01 ± 0.6 min?1 in the presence of 1 µM of CYP105D7, putidaredoxin (CamB) and putidaredoxin reductase (CamA), respectively. When CYP105D7 was expressed in S. avermitilis MA4680, its cytochrome P450 activity was confirmed by the CO‐difference spectra at 450 nm using the whole cell extract. When the whole‐cell reaction for the 3′‐hydroxylation reaction of daidzein was carried out with 100 µM of daidzein in 100 mM of phosphate buffer (pH 7.5), the recombinant S. avermitilis grown in R2YE media overexpressing CYP105D7 and ferredoxin FdxH (SAV7470) showed a 3.6‐fold higher conversion yield (24%) than the corresponding wild type cell (6.7%). In a 7 L (working volume 3 L) jar fermentor, the recombinants S. avermitilis grown in R2YE media produced 112.5 mg of 7,3′,4′‐trihydroxyisoflavone (i.e., 29.5% conversion yield) from 381 mg of daidzein in 15 h. Biotechnol. Bioeng. 2010. 105: 697–704. © 2009 Wiley Periodicals.  相似文献   

14.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

15.
Perfluorooctane sulfonate (PFOS) is a chemically stable compound extensively used as oil and water repellent, surface active agents in our daily life. Accumulative research evidence gradually appears the toxicity of PFOS against mammals, but the whole figure remains to be elucidated. The present study was conducted to know the effects of PFOS on human hepatic drug metabolizing-type cytochrome P450 (CYP) isoenzymes such as CYP1A2 (7-ethoxyresorufin as a substrate), CYP2A6 (coumarin), CYP2B6 (7-ethoxy-4-trifluoromethylcoumarin), CYP2C8 (paclitaxel), CYP2C9 (diclofenac), CYP2C19 (S-mephenytoin), CYP2D6 (bufuralol), CYP2E1 (chlorzoxazone) and CYP3A4 (testosterone) in human livers employing their typical substrates. Although all of the oxidation reactions tested were more or less inhibited by PFOS, diclofenac 4'-hydroxylation mediated mainly by CYP2C9 was most strongly inhibited (K(i) value of 40 nM), followed by paclitaxel 6α-hydroxylation mediated mainly by CYP2C8 (K(i) value of 4 μM). The substrate oxidation reactions catalyzed by CYP2A6, CYP2B6, CYP2C19 and CYP3A4 were moderately (K(i) values of 35 to 45 μM), and those by CYP1A2, CYP2D6 and CYP2E1 were weakly inhibited by PFOS (K(i) values of 190-300 μM). The inhibition by PFOS for coumarin 7-hydroxylation mainly catalyzed by human liver microsomal CYP2A6 as well as by the recombinant enzyme was found to be enhanced by the preincubation of PFOS with human liver microsomes and NADPH as compared to the case without preincubation. The inhibition of the human liver microsomal cumarin 7-hydroxylation was PFOS concentration-dependent, and exhibited pseudo-first-order kinetics with respect to preincubation time, yielding K(inact) and K(I) values of 0.06 min(-1) and 23 μM, respectively. These results suggest that the metabolism of medicines which are substrates for CYP2C9 may be altered by PFOS in human bodies, and that PFOS is a mechanism-based inhibitor of CYP2A6.  相似文献   

16.
The structural determinants of substrate specificity of human liver cytochrome P450 2C8 (CYP2C8) were investigated using site-directed mutants chosen on the basis of a preliminary substrate pharmacophore and a three-dimensional (3D) model. Analysis of the structural features common to CYP2C8 substrates exhibiting a micromolar K(m) led to a substrate pharmacophore in which the site of oxidation by CYP2C8 is 12.9, 8.6, 4.4, and 3.9 A from features that could establish ionic or hydrogen bonds, and hydrophobic interactions with protein amino acid residues. Comparison of this pharmacophore with a 3D model of CYP2C8 constructed using the X-ray structure of CYP2C5 suggested potential CYP2C8 amino acid residues that could be involved in substrate recognition. Twenty CYP2C8 site-directed mutants were constructed and expressed in yeast to compare their catalytic activities using five CYP2C8 substrates that exhibit different structures and sizes [paclitaxel, fluvastatin, retinoic acid, a sulfaphenazole derivative (DMZ), and diclofenac]. Mutation of arginine 241 had marked effects on the hydroxylation of anionic substrates of CYP2C8 such as retinoic acid and fluvastatin. Serine 100 appears to be involved in hydrogen bonding interactions with a polar site of the CYP2C8 substrate pharmacophore, as shown by the 3-4-fold increase in the K(m) of paclitaxel and DMZ hydroxylation after the S100A mutation. Residues 114, 201, and 205 are predicted to be in close contact with substrates, and their mutations lead either to favorable hydrophobic interactions or to steric clashes with substrates. For instance, the S114F mutant was unable to catalyze the 6alpha-hydroxylation of paclitaxel. The S114F and F205A mutants were the best catalysts for retinoic acid and paclitaxel (or fluvastatin) hydroxylation, respectively, with k(cat)/K(m) values 5 and 2.1 (or 2.4) times higher, respectively, than those found for CYP2C8. Preliminary experiments of docking of the substrate into the experimentally determined X-ray structure of substrate-free CYP2C8, which became available quite recently [Schoch, G. A., et al. (2004) J. Biol. Chem. 279, 9497], were consistent with key roles for S100, S114, and F205 residues in substrate binding. The results suggest that the effects of mutation of arginine 241 on anionic substrate hydroxylation could be indirect and result from alterations of the packing of helix G with helix B'.  相似文献   

17.
We examined and compared enantioselectivity in the oxidation of propranolol (PL) by liver microsomes from humans and Japanese monkeys (Macaca fuscata). PL was oxidized at the naphthalene ring to 4-hydroxypropranolol, 5-hydroxypropranolol and side chain N-desisopropylpropranolol by human liver microsomes with enantioselectivity of [R(+)>S(-)] in PL oxidation rates at substrate concentrations of 10 microM and 1 mM. In contrast, reversed enantioselectivity [R(+)相似文献   

18.
Cytochromes P450cam and P450BM3 oxidize alpha- and beta-thujone into multiple products, including 7-hydroxy-alpha-(or beta-)thujone, 7,8-dehydro-alpha-(or beta-)thujone, 4-hydroxy-alpha-(or beta-)thujone, 2-hydroxy-alpha-(or beta-)thujone, 5-hydroxy-5-isopropyl-2-methyl-2-cyclohexen-1-one, 4,10-dehydrothujone, and carvacrol. Quantitative analysis of the 4-hydroxylated isomers and the ring-opened product indicates that the hydroxylation proceeds via a radical mechanism with a radical recombination rate ranging from 0.7 +/- 0.3 x 10(10) s(-1) to 12.5 +/- 3 x 10(10) s(-1) for the trapping of the carbon radical by the iron-bound hydroxyl radical equivalent. 7-[2H]-alpha-Thujone has been synthesized and used to amplify C-4 hydroxylation in situations where uninformative C-7 hydroxylation is the dominant reaction. The involvement of a carbon radical intermediate is confirmed by the observation of inversion of stereochemistry of the methyl-substituted C-4 carbon during the hydroxylation. With an L244A mutation that slightly increases the P450(cam) active-site volume, this inversion is observed in up to 40% of the C-4 hydroxylated products. The oxidation of alpha-thujone by human CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 occurs with up to 80% C-4 methyl inversion, in agreement with a dominant radical hydroxylation mechanism. Three minor desaturation products are produced, with at least one of them via a cationic pathway. The cation involved is proposed to form by electron abstraction from a radical intermediate. The absence of a solvent deuterium isotope effect on product distribution in the P450cam reaction precludes a significant role for the P450 ferric hydroperoxide intermediate in substrate hydroxylation. The results indicate that carbon hydroxylation is catalyzed exclusively by a P450 ferryl species via radical intermediates whose detailed properties are substrate- and enzyme-dependent.  相似文献   

19.
Gerber JG  Rhodes RJ  Gal J 《Chirality》2004,16(1):36-44
Methadone is a clinically used opioid agonist that is oxidatively metabolized by cytochrome P450 (CYP) isoforms to a stable metabolite, EDDP. Methadone is a chiral drug administered as the racemic mixture of (R)-(-)- and (S)-(+)-methadone, but (R)-methadone is the active isomer. The cytochrome P450 (CYP) isoform involved in methadone's metabolism is thought to be CYP3A4, but human drug-drug interaction studies are not consistent with this. The ability of the common human drug-metabolizing CYPs (obtained from baculovirus-infected insect cell supersomes) to generate 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrilidine (EDDP) from racemic methadone was examined and then determined if the CYP isoforms metabolized methadone stereoselectively. Only CYP2B6, 2C19, and 3A4 generated measurable EDDP from 1 microg/ml of racemic methadone. The hierarchy of EDDP generation was CYP2B6 > CYP2C19 >/= CYP3A4. At 10 microg/ml of methadone, CYP2C9 and CYP2D6 also generated EDDP, but in at least 10-fold lower quantities than CYP2B6. Michaelis-Menten kinetic data demonstrated that CYP2B6 had the highest V(max) (44 ng/min/10pmol) and the lowest K(m) (12.6 microg/ml) for EDDP formation of all the CYP isoforms. In human liver microsomes with high and low CYP2B6 expression but equivalent CYP3A4 expression, high CYP2B6 expression microsomes generated twice the amount of EDDP from 10 microg/ml of methadone than low CYP2B6 expression microsomes. When stereoselective metabolism of racemic methadone by CYP2B6, 2C19, and 3A4 was examined using an enantiospecific methadone assay, CYP2B6 preferentially metabolized (S)-methadone, CYP2C19 preferentially metabolized (R)-methadone, and CYP3A4 showed no preference. These data suggest that multiple CYPs metabolized methadone but CYP2B6 had the highest V(max)/K(m). In addition, only CYP2B6 and 2C19 showed stereoselective metabolism. Our data could explain why the plasma concentration ratio of R/S methadone is variable and why drugs that induce CYP2B6 such as nevirapine and efavirenz also induce methadone metabolism, while the CYP3A4 inducer rifabutin has no effect on methadone pharmacokinetics.  相似文献   

20.
The roles of Phe-120 and Glu-222 in the oxidation of chiral substrates bunitrolol (BTL) and bufuralol (BF) by CYP2D6 are discussed. Wild-type CYP2D6 (CYP2D6-WT) oxidized BTL to 4-hydroxybunitrolol (4-OH-BTL) with substrate enantioselectivity of (R)-(+)-BTL > (S)-(-)-BTL. The same enzyme converted BF into 1'-hydroxybufuralol with substrate enantioselectivity of (R)-BF > (S)-BF and metabolite diastereoselectivity of (1'R)-OH < (1'S)-OH. The substitution of Phe-120 by alanine markedly increased the apparent K(m) and V(max) values for enantiomeric BTL 4-hydroxylation by CYP2D6. In contrast, the same substitution caused an increase only in V(max) values of (S)-BF 1'-hydroxylation without changing apparent K(m) values, while kinetic parameters (K(m) and V(max) values) for (R)-BF 1'-hydroxylation remained unchanged. Furthermore, the substitution of Glu-222 as well as Glu-216 by alanine remarkably decreased both the apparent K(m) and V(max) values without changing substrate enantioselectivity or metabolite diastereoselectivity. A computer-assisted simulation study using energy minimization and molecular dynamics techniques indicated that the hydrophobic interaction of an aromatic moiety of the substrate with Phe-120 and the ionic interaction of a basic nitrogen atom of the substrate with Glu-222 in combination with Glu-216 play important roles in the binding of BF and BTL by CYP2D6 and the orientation of these substrates in the active-site cavity. This modeling yielded a convincing explanation for the reversal of substrate enantioselectivity in BTL 4-hydroxylation between CYP2D6-WT and CYP2D6-V374M having methionine in place of Val-374, which supports the validity of this modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号