首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of loperamide, a drug belonging to the opiate family, on dimyristoyl phosphatidylcholine large unilamellar vesicles (DMPC LUV) was investigated by quasielastic light scattering (QLS) and Fourier transform infrared spectroscopy (FT-IR). Both techniques show that, in the presence of loperamide, DMPC LUV undergoes a two step transition in cooling: one step around the transition point of pure lipid vesicles, the other at a lower temperature. The temperature of the latter step transition is different for the head and tail regions of the drug-containing vesicles: FT-IR spectra demonstrate that the hydrophobic acyl chains transition starts at a temperature well above that of the interfacial region whereas the transition of the entire vesicle, explored by QLS, is broad and covers both temperature ranges. These transitions are thermally reversible in the FT-IR which measures local order but aggregation effects prevent the thermal reversibility of the QLS results. The nature of the drug-lipid interaction is also discussed.  相似文献   

2.
Comparative thermodynamic studies on the interactions of aqueous dispersions of dipalmitoyl phosphatidylcholine (DPPC) bilayer vesicles with hydrophobic and amphipathic species were conducted to elucidate the nature of the solute-induced interdigitated lipid phase. Cyclohexanol, a strong hydrophobic species, lowers the temperature (tm) of the lipid main phase transition from the gel to the liquid-crystalline phase. Unlike ethanol (an amphipathic species), as reported previously, cyclohexanol does not exert a biphasic effect on tm (lowering tm at lower concentrations and raising tm at higher concentrations). At cyclohexanol greater than or equal to 15.4 mg/ml or 0.154 M, the thermogram of DPPC vesicles exhibits a small transition adjacent to the main phase transition but at a lower temperature. In contrast, ethanol does not promote such a small transition. Furthermore, the enthalpy (delta H) of the transition is increased in the presence of cyclohexanol. The sign of the enthalpy change (delta H-delta Ho) is positive and that of the free energy change (delta G-delta Go) is negative, a characteristic of solute-solute hydrophobic interaction. In contrast, DPPC bilayer vesicles exhibit both (delta H-delta Ho) and (delta G-delta Go) greater than 0 in the presence of ethanol in a concentration range where lipid vesicles exist in an interdigitated phase. To support the above distinct thermodynamic observations, fluorescence steady-state polarization (P) measurements were also performed. At the temperature below tm, the value of P decreases as cyclohexanol concentration increases, while a biphasic effect on P was found in the presence of ethanol. These findings support the postulation that the solute-induced interdigitated lipid phase requires the solute molecule to be amphipathic in nature.  相似文献   

3.
J Zeng  K E Smith    P L Chong 《Biophysical journal》1993,65(4):1404-1414
6-Carboxyfluorescein was employed to examine the effect of alcohol-induced lipid interdigitation on proton permeability in L-alpha-dipalmitoylphosphatidylcholine (DPPC) large unilamellar vesicles. Proton permeability was measured by monitoring the decrease of 6-carboxyfluorescein fluorescence after a pH gradient from 3.5 (outside the vesicle) to 8.0 (inside the vesicle) was established. At 20 degrees C and below 1.2 M ethanol, the fluorescence decrease is best described by a single exponential function. Above 1.2 M ethanol, the intensity decrease is better described by a two-exponential decay law. Using the fitted rate constants and the vesicle radii determined from light-scattering measurements, the proton permeability coefficient, P, in DPPC vesicles was calculated as a function of ethanol concentration. At 20 degrees C, P increases monotonically with increasing ethanol content up to 1.0 M, followed by an abrupt increase at 1.2 M. The vesicle size also exhibits a sudden increase at around 1.2 M ethanol, which has been shown to result from vesicle aggregation rather than vesicle fusion. The abrupt increases in P and in vesicle size occur at the concentration region close to the critical ethanol concentration for the formation of the fully interdigitated gel state of DPPC. At 14 degrees C, the abrupt change in P shifts to 1.9-2.0 M ethanol, completely in accordance with the ethanol-temperature phase diagram of interdigitated DPPC. Effects of methanol and benzyl alcohol on lipid interdigitation have also been examined. At 20 degrees C, DPPC large unilamellar vesicles exhibit a dramatic change in P at 3 M methanol and at 40 mM benzyl alcohol. These concentrations come close to the critical methanol and benzyl alcohol concentrations for the formation of fully interdigitated DPPC structures determined previously by others. It can be concluded that proton permeability increases dramatically as DPPC is transformed from the noninterdigitated gel to the fully interdigitated gel state by high concentrations of alcohol. This marked increase in proton permeability can be attributed to the combined effect of the changes in membrane thickness and surface charge density, due to the ethanol-induced lipid interdigitation. The possible effects of the increased proton permeability caused by ingested ethanol on gastric mucosal membranes are discussed.  相似文献   

4.
J A Centeno  T J O'Leary 《Biochemistry》1990,29(31):7289-7296
We have investigated the effects of methanol, ethanol, and 1-propanol on the phase transitions of L-alpha-dimyristoylphosphatidylethanolamine using differential scanning calorimetry and Fourier transform infrared spectroscopy. Alcohols lower the temperature of the gel (L beta) to liquid-crystalline (L alpha) phase transition and also lower the temperature of the unhydrated crystalline (Lc) to liquid-crystalline phase transition. When the lipid/alcohol dispersions are incubated at 2 degrees C for 1-18 h, a dehydrated crystalline phase forms, which gives rise to a phase transition at about 55 degrees C. This dehydrated crystalline phase forms more quickly at higher alcohol concentrations. Although alcohol at low concentration lowers the enthalpy of the observed melting transition, at high concentrations 1-propanol markedly increases this enthalpy. The phase giving rise to this high-enthalpy melting process is distinct from both the unhydrated crystalline phase and the gel phase. Infrared spectra suggest that this phase contains significant amounts of alcohol in a solid solution with the lipid.  相似文献   

5.
The vesicular stomatitis virus glycoprotein reconstituted into dipalmitoylphosphatidylcholine (DPPC) vesicles exerts a profound effect upon the DPPC gel to liquid-crystalline phase transition. The glycoprotein was reconstituted into DPPC vesicles by octyl glucoside dialysis. The gel to liquid-crystalline phase transition of these vesicles was monitored by differential scanning calorimetry. Vesicles formed in the absence of glycoprotein (600--2100-A diameter) underwent the phase transition at 41.0 degrees C and had an associated enthalpy change of 8.0 +/- 1.6 kcal/mol. Increasing the mole ratio of glycoprotein to DPPC in the vesicles to 0.15 mol % reduced both the transition temperature and the transition enthalpy change. The enthalpy change as a function of the mole percent glycoprotein could be fit to a straight line by a least-squares procedure. Extrapolation of the results to the glycoprotein concentration where the enthalpy change was zero indicated one glycoprotein molecule bound 270 +/- 150 molecules of DPPC.  相似文献   

6.
The B -to-A conformational transition of calf thymus DNA fibers was followed employing Raman spectroscopy. The transition was induced by soaking DNA fibers in water/ethanol mixtures increasing from 60 to 85% ethanol (v/v). Intensity changes of 17 Raman vibrational bands were quantified in the region from 400 to 860 cm?1. Two bands at 500 and 784 cm?1 were employed as internal standards. These bands do not appear to change in intensity with ethanol concentration. Large intensity changes relative to these two bands are observed between 70 and 74% ethanol for backbone vibrations at 708, 808, and 835 cm?1, and base vibrations at 682, 730, and 750 cm?1. These results indicate that a highly cooperative conformational change takes place between different portions of DNA in the B -to-A transition. Relative intensity changes preceding the onset of the major transition are observed in only two bands; at 835 cm?1, assigned to a ribose–phosphate vibration, and at 750 cm?1, assigned to thymine. The implications of these pretransition changes are discussed.  相似文献   

7.
Solution behaviour of hydroxyethyl cellulose (HEC) is reported in the polymer concentration range spanning over two decades (c=0.002-5% (w/v)). The results conclude the following: (i) dilute solution regime prevailed for c<0.2% (w/v), flexible HEC fibres of typical length ≈ 1 μm and persistence length ≈ 10 nm were found here, (ii) for 0.2相似文献   

8.
By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol molecules. More highly concentrated ethanol solutions (> 7 M) solubilize the phosphatidylcholine bilayers with fluid chains fully and result in the formation of mixed lipid-alcohol micelles.  相似文献   

9.
The influence of different MgCl2 and MnCl2 concentrations on DNA conformational transitions in water-ethanol solutions was studied. It was shown that the presence of magnesium ions in solution at a concentration of 5 x 10(-4) M did not influence the decrease in the size of DNA without change in its persistent length at an alcohol concentration of about 17 % v/v. In contrast, manganese ions prevent this change in DNA parameters. At sufficiently high ethanol concentrations, the compaction of DNA followed by its precipitation takes place, which is accompanied by an increase of scattering in solution. As the concentration of Mg2+ and Mn2+ in solution increases, this process is observed at lower ethanol concentrations.  相似文献   

10.
E S Rowe  T A Cutrera 《Biochemistry》1990,29(45):10398-10404
It is well established that ethanol and other amphipathic molecules induce the formation of a fully interdigitated gel phase in saturated like-chain phosphatidylcholines (PC's). We have previously shown that the induction of interdigitation in PC's by ethanol is dependent upon the alcohol concentration, the lipid chain length, and the temperature [Nambi, P., Rowe, E. S. & McIntosh, T. J. (1988) Biochemistry 27, 9175-9182]. In the present study, we have used high-sensitivity differential scanning calorimetry to investigate the transitions of distearoylphosphatidylcholine between the noninterdigitated and the interdigitated phases. The enthalpy of the L beta' to L beta I transition is approximately half that of the L beta' to P beta' transition which occurs in the absence of ethanol. The reversibility of these transitions has also been investigated by employing both heating and cooling scans in order to establish the most stable phases as a function of temperature and ethanol concentration. It has been demonstrated that the transition to the interdigitated phase is reversible as a function of temperature. Kinetic studies on the reverse transition (L beta I to L beta') demonstrate that this transition can be very slow, requiring weeks to reach completion. The rate depends upon temperature and ethanol concentration. The slow phase changes mean that the lipid can exist for long periods of time in a phase structure which is not the most stable state. The biological significance of this type of lipid behavior is the implication that the phase structure of biological membranes may depend not only on the most stable phase structure of the lipids present but also on the synthetic pathway or other kinetic variables.  相似文献   

11.
The phase transition in multilamellar dimyristoylphosphatidylcholine (DMPC) vesicles was studied during exposure to continuous wave 1.0-GHz microwave radiation. Fluorescence depolarization measurements using a lipid-seeking molecular probe, diphenylhexatriene (DPH). were performed as a function of temperature. Semilog plots of microviscosity versus temperature illustrate the phase transition which shows a 5°C shift when the vesicles are treated with chloroform as a positive control. No shift of the phase transition was found during exposure to microwave radiation at specific absorption rates between 1 and 30 W/kg. Samples were exposed in a rectangular transmission line (TEM cell), and specific absorption rates were calculated from electrical measurements of incident, reflected, and transmitted power. Samples were exposed to increasing intensities of radiation, while the temperature was maintained at either 23.5 or 25.5 °C; these temperatures represented the two ends of the phase transition region for these vesicles. No statistically significant difference was found between exposed and control samples. These results are in contrast to those of others using laser Raman spectroscopy to measure the phase transition in similar multilamellar vesicles exposed to microwave radiation.  相似文献   

12.
The effect of ethanol-induced lipid interdigitation on the partition coefficient (Kp) of 6-propionyl-2-(dimethylamino)naphthalene (Prodan) and its two derivatives, 6-acetyl-2-(dimethylamino)naphthalene (Acdan) and 6-lauroyl-2-(dimethylamino)naphthalene (Laurdan), in L-alpha-dipalmitoylphosphatidylcholine (DPPC) vesicles has been examined by a precipitation method over the ethanol concentration range of 0-1.8 M. At 20 degrees C and in the absence of ethanol, the Kp values for Acdan, Prodan, and Laurdan are 2.0 x 10(3), 2.8 x 10(4), and 4.7 x 10(6), respectively. This result suggests that the Kp of Prodan and its derivatives is not simply a linear function of the polymethylene units. As DPPC undergoes the ethanol-induced phase transition from the noninterdigitated to the fully interdigitated gel state, Kp for Prodan and Acdan decreases by a factor of 5 and 2, respectively, whereas Kp for Laurdan exhibits no detectable changes with ethanol. The differences in Kp are in parallel with the differences in the fluorescence emission spectra of these probes over the ethanol concentration range examined. Previous fluorescence and infrared data indicated that membrane perturbation caused by the probes increases in the order: Laurdan > Prodan > Acdan. Thus, the degree of membrane perturbation also seems to be in parallel with Kp. Among these three probes, Prodan fluorescence reflects most correctly the ethanol-induced lipid interdigitation. In conclusion, the partitioning of small solutes in lipid membranes is significantly reduced by ethanol-induced lipid interdigitation, probably as a result of an increased membrane surface density due to the increased intramolecular lipid acyl chain ordering and a tighter overall intermolecular packing.  相似文献   

13.
P Smejtek  S Wang 《Biophysical journal》1991,59(5):1064-1073
Dipalmitoylphosphatidylcholine (DPPC) vesicles acquire negative surface charge on adsorption of negatively charged pentachlorophenolate (PCP-), and lipophilic ions tetraphenylborate (TPhB-), and dipicrylamine (DPA-). We have obtained (a) zeta-potential isotherms from the measurements of electrophoretic mobility of DPPC vesicles as a function of concentration of the adsorbing ions at different temperatures (25-42 degrees C), and (b) studied the effect of PCP- on gel-to-fluid phase transition by measuring the temperature dependence of zeta-potential at different PCP- concentrations. The zeta-potential isotherms of PCP- at 25, 32, and 34 degrees C correspond to adsorption to membrane in its gel phase. At 42 degrees C the zeta-potential isotherm corresponds to membrane in its fluid phase. These isotherms are well described by a Langmuir-Stern-Grahame adsorption model proposed by McLaughlin and Harary (1977. Biochemistry. 15:1941-1948). The zeta-potential isotherm at 37 degrees C does not follow the single-phase adsorption model. We have also observed anomalous adsorption isotherms for lipophilic ions TPhB- and DPA- at temperatures as low as 25 degrees C. These isotherms demonstrate a gel-to-fluid phase transition driven by ion adsorption to DPPC membrane during which the membrane changes from weakly to a strongly adsorbing state. The anomalous isotherm of PCP- and the temperature dependence of zeta-potential can be described by a two-phase model based on the combination of (a) Langmuir-Stern-Grahame model for each phase, (b) the coexistence of gel and fluid domains, and (c) depression of gel-to-fluid phase transition temperature by PCP-. Within the anomalous region the magnitude of zeta-potential rapidly increases concentration of adsorbing species, which was characterized in terms of a Esin-Markov coefficient. This effect can be exploited in membrane-based devices. Comments are also made on the possible effect of PCP, as an uncoupler, in energy transducing membranes.  相似文献   

14.
We have investigated the effects of poly(ethylene glycol) (PEG) on the structure and phase behavior of multilamellar vesicles of dihexadecylphosphatidylcholine (DHPC-MLVs) using an X-ray diffraction method. At low concentrations of PEG-6K (MW = 7500), DHPC-MLVs were in an interdigitated gel (L(beta)I) phase, a gel phase with interdigitated hydrocarbon chains. At around 24% (w/v) PEG 6K, a phase transition from the L(beta)I phase to a bilayer gel phase occurred in the DHPC-MLVs, and above this concentration, they were in a bilayer gel phase. On the other hand, ethylene glycol (EG), the monomer of PEG, did not induce this phase transition in the DHPC-MLVs. A mechanism of this phase transition is proposed and discussed; a decrease in the repulsive interaction between the head groups of the phospholipids in the bilayer gel phase with an increase in PEG concentration, which is due to a decrease in the cross-sectional area of the head group region by osmotic stress, may be the main reason for this phase transition.  相似文献   

15.
Summary The incorporation of four amphiphilic flavins (amphiflavins) as fluorescence markers bearing C18-hydrocarbon chains at various positions of the chromophore into artificial membrane vesicles has been investigated. The vesicles utilized were made from three different saturated phospholipids. The stability of the flavin-charged vesicles was found to be good over several days, depending somewhat on the temperature, the pH, and their concentration. A marked increase of the fluorescence quantum yield near the vesicle phase transition (crystalline liquid crystalline) was found which was taken to indicate that the flavin nuclei are imbedded more deeply into the hydrophobic portion of the membranes. This is further supported by a hypsochromic shift of the near flavin UV-peak and the increase of absorbance at 450 nm upon melting. Rotational relaxation times of the various amphiflavins bound to the different vesicles are obtained from measurements of the fluorescence polarizations as a function of temperature. From these data, the microviscosities in the region of the chromophors are calculated. Measurements of the fluorescence polarization as a function of the solvent viscosity and vesicle phase (crystalline-liquid crystalline) indicate that below the phase transition the flavin nucleus is protected from the suspension medium by a lipid-water interphase, which softens above phase transition. The dependence of the flavin orientation and microenvironment on the position of the substitution of the aliphatic chain is reflected in the differences of the fluorescence yields and the shape of the emission spectra.  相似文献   

16.
A purified protein fraction from the proteolipids of human brain myelin was recombined with different lipids either in aqueous buffer or in a chloroform-methanol-water (10:5:1, v/v/v) mixture. It was found that under both conditions it binds strongly to phospholipids irrespective of surface charge, the presence of cholesterol or double bonds on the fatty acyl chains. The buoyant density of the resulting lipoprotein membranes is intermediate to that of pure lipids, and proteins. The lipoproteins formed by either of these methods were observed by either freeze-fracture or negative stain electron-microscopy. The overall morphology was similar to that of pure phospholipids, showing large closed multilamellar vesicles. The presence of the protein was detected by the appearance of intramembrane particles in freeze-fracture. The addition of the N-2 protein generally increases the permeability vesicles to 22-Na-+ by 2-3 orders of magnitude depending on the concentration. The presence of calcium in the aqueous medium further increases the Na-+ efflux through negatively charged vesicles. Changes in lipid composition, surface charge, cholesterol, etc., have no appreciable influence on the effect of the protein. Differential scanning calorimetry indicates that the presence of small amounts of N-2 have no effect on the lipid phase transition from solid to liquid crystalline. As the amount of protein bound to the phospholipid increases, the enthalpy of the transition decreases, the main endothermic peak broadens, but there is no change on the midpoint temperature. Membranes containing 50% by weight of protein still show a transition with an enthalpy approximately one half that of the original lipid.  相似文献   

17.
Chen X  Shao Z  Knight DP  Vollrath F 《Proteins》2007,68(1):223-231
Time-resolved FTIR analysis was used to monitor the conformation transition induced by treating regenerated Bombyx mori silk fibroin films and solutions with different concentrations of ethanol. The resulting curves showing the kinetics of the transition for both films and fibroin solutions were influenced by the ethanol concentration. In addition, for silk fibroin solutions the protein concentration also had an effect on the kinetics. At low ethanol concentrations (for example, less than 40% v/v in the case of film), films and fibroin solutions showed a phase in which beta-sheets slowly formed at a rate dependent on the ethanol concentration. Reducing the concentration of the fibroin in solutions also slowed the formation of beta-sheets. These observations suggest that this phase represents a nucleation step. Such a nucleation phase was not seen in the conformation transition at ethanol concentrations > 40% in films or > 50% in silk fibroin solutions. Our results indicate that the ethanol-induced conformation transition of silk fibroin in films and solutions is a three-phase process. The first phase is the initiation of beta-sheet structure (nucleation), the second is a fast phase of beta-sheet growth while the third phase represents a slow perfection of previously formed beta-sheet structure. The nucleation step can be very fast or relatively slow, depending on factors that influence protein chain mobility and intermolecular hydrogen bond formation. The findings give support to the previous evidence that natural silk spinning in silkworms is nucleation-dependent, and that silkworms (like spiders) use concentrated silk protein solutions, and careful control of the pH value and metallic ion content of the processing environment to speed up the nucleation step to produce a rapid conformation transition to convert the water soluble spinning dope to a tough solid silk fiber.  相似文献   

18.
Candida Krusei has a optimum growth temperature of 37°C on SASOL ethanol-isopropanol mixture. The organism was unable to grow on isopropanol, but oxidized it partially to acetone in the presence and absence of ethanol. Growth at 40°C in the alcohol mixture was slightly faster than at 30°C over an ethanol concentration range of 0.43 to 3.6% (v/v), although at both temperatures the growth rate declined continuously with increasing concentration. At an ethanol concentration greater than 3.6% (v/v), the mixture was much more inhibitory to growth at 40 and 30°C. The inhibitory effect was due to the ethanol rather than the isopropanol. Metabolites such as acetate, acetaldehyde, and ethyl acetate accumulated in the medium, but the degree of accumulation depended upon the temperature and alcohol mixture concentration. At 40°C, acetaldehyde and acetate accumulated to a greater extent than 30°C on a 4.0% (v/v) synthetic alcohol mixture and this may also cause the greater inhibition at this temperature. The alcohol mixture is unsuitable for single cell protein (SCP) production in batch culture because of the low cell densities observed at all alcohol concentrations.  相似文献   

19.
Giant vesicles formed of 1,2-dipalmitoylphosphatidylcholine (DPPC) and sterols (cholesterol or ergosterol) in water and water/ethanol solutions have been used to examine the effect of sterol composition and ethanol concentration on the area compressibility modulus (K(a)), overall mechanical behavior, vesicle morphology, and induction of lipid alkyl chain interdigitation. Our results from micropipette aspiration suggest that cholesterol and ergosterol impact the order and microstructure of the gel (L(beta)') phase DPPC membrane. At low concentration (10-15 mol%) these sterols disrupt the long-range lateral order and fluidize the membrane (K(a) approximately 300 mN/m). Then at 18 mol%, these sterols participate in the formation of a continuous cohesive liquid-ordered (L(o)) phase with a sterol-dependent membrane density (K(a) approximately 750 for DPPC/ergosterol and K(a) approximately 1100 mN/m for DPPC/cholesterol). Finally at approximately 40 mol% both cholesterol and ergosterol impart similar condensation to the membrane (K(a) approximately 1200 mN/m). Introduction of ethanol (5-25 vol%) results in drops in the magnitude of K(a), which can be substantial, and sometimes individual vesicles with lowered K(a) reveal two slopes of tension versus apparent area strain. We postulate that this behavior represents disruption of lipid-sterol intermolecular interactions and therefore the membrane becomes interdigitation prone. We find that for DPPC vesicles with sterol concentrations of 20-25 mol%, significantly more ethanol is required to induce interdigitation compared to pure DPPC vesicles; approximately 7 vol% more for ergosterol and approximately 10 vol% more for cholesterol. For lower sterol concentrations (10-15 mol%), interdigitation is offset, but by <5 vol%. These data support the idea that ergosterol and cholesterol do enhance survivability for cells exposed to high concentrations of ethanol and provide evidence that the appearance of the interdigitated (L(beta)I) phase bilayer is a major factor in the disruption of cellular activity, which typically occurs between approximately 12 and approximately 16 vol% ethanol in yeast fermentations. We summarize our findings by producing, for the first time, "elasticity/phase diagrams" over a wide range of sterol (cholesterol and ergosterol) and ethanol concentrations.  相似文献   

20.
We have determined zeta-potentials for dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) membranes by measuring the electrophoretic mobility of multilayered vesicles and the temperatures of the gel-to-ripple-to-fluid phase transitions of sonicated vesicles by a photometric method. Some conclusions are: (1) The zeta-potentials of DMPC and DPPC vesicles become negative due to adsorption of ionized pentachlorophenol (PCP), (2) their magnitude changes, step-like, on gel-to-fluid transition and (3) the temperature of the step-like change in zeta-potential decreases with an increase in PCP concentration. (4) PCP exhibits a large effect on membrane structure: It induces an isothermal phase change from the ordered to disordered state, which is enhanced by monovalent salt in the aqueous phase. (5) Both ionized and unionized PCP decrease the melting phase transition temperature and abolish the pretransition, (6) the unionized species increases the melting transition width and (7) the ionized species is more potent in abolishing the pretransition. (8) The shorter chain lipid (DMPC) is more sensitive to the presence of PCP; the maximum decrease in delta Tt is 13 K (DMPC) and 7 K (DPPC) in the presence of ionized PCP. We have shown experimentally, by comparing the delta Tt from photometric studies with the density of adsorbed PCP derived from zeta-potential isotherms, that (9) the shift of the melting phase transition temperature increases linearly with the density of adsorbed PCP. (10) In contrast to membranes made of negatively charged lipids, the transition temperature of DMPC and DPPC membranes in the presence of PCP further decreases in the presence of monovalent salt. The salt effect is due to screening of the membrane surface leading to enhanced adsorption of ionized PCP and a depression in transition temperature. (11) It is shown that both the adsorption and the changes of gel-to-fluid phase transition temperature can be described in terms of the Langmuir-Stern-Grahame model and (12) proposed that future studies of membrane toxicity of PCP should be focused on its pH dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号