首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Up-regulation of BDNF (brain-derived neurotrophic factor) has been suggested to contribute to the action of antidepressants. However, it is unclear whether chronic treatment with antidepressants may influence acute BDNF signaling in central nervous system neurons. Because BDNF has been shown by us to reinforce excitatory glutamatergic transmission in cultured cortical neurons via the phospholipase-gamma (PLC-gamma)/inositol 1,4,5-trisphosphate (IP3)/Ca2+ pathway (Numakawa, T., Yamagishi, S., Adachi, N., Matsumoto, T., Yokomaku, D., Yamada, M., and Hatanaka, H. (2002) J. Biol. Chem. 277, 6520-6529), we examined in this study the possible effects of pretreatment with antidepressants on the BDNF signaling through the PLC-gamma)/IP3/Ca2+ pathway. Furthermore, because the PLC-gamma/IP3/Ca2+ pathway is regulated by sigma-1 receptors (Hayashi, T., and Su, T. P. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 491-496), we examined whether the BDNF signaling is modulated by sigma-1 receptors (Sig-1R). We found that the BDNF-stimulated PLC-gamma activation and the ensued increase in intracellular Ca2+ ([Ca2+]i) were potentiated by pretreatment with imipramine or fluvoxamine, so was the BDNF-induced glutamate release. Furthermore, enhancement of the interaction between PLC-gamma and TrkB (receptor for BDNF) after imipramine pretreatment was observed. Interestingly, BD1047, a potent Sig-1R antagonist, blocked the imipramine-dependent potentiation on the BDNF-induced PLC-gamma activation and glutamate release. In contrast, overexpression of Sig-1R per se, without antidepressant pretreatment, enhances BDNF-induced PLC-gamma activation and glutamate release. These results suggest that antidepressant pretreatment selectively enhance the BDNF signaling on the PLC-gamma/IP3/Ca2+ pathway via Sig-1R, and that Sig-1R plays an important role in BDNF signaling leading to glutamate release.  相似文献   

2.
Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve-muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), which requires Ca(2+) influx for its acute effect, NT3 rapidly enhances spontaneous transmitter release at the developing NMJ even when Ca(2+) influx is completely blocked, suggesting that the NT3 effect is independent of extracellular Ca(2+). Depletion of intracellular Ca(2+) stores, or blockade of inositol 1, 4, 5-trisphosphate (IP3) or ryanodine receptors, prevents the NT3-induced synaptic potentiation. Blockade of IP3 receptors can not prevent BDNF-induced potentiation, suggesting that BDNF and NT3 use different mechanisms to potentiate transmitter release. Inhibition of Ca(2+)/calmodulin-dependent kinase II (CaMKII) completely blocks the acute effect of NT3. Furthermore, the NT3-induced potentiation requires a continuous activation of CaMKII, because application of the CaMKII inhibitor KN62 reverses the previously established NT3 effect. Thus, NT3 potentiates neurotransmitter secretion by stimulating Ca(2+) release from intracellular stores through IP3 and/or ryanodine receptors, leading to an activation of CaMKII.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) has been reported to play an important role in neuronal plasticity. In this study, we examined the effect of BDNF on an activity-dependent synaptic function in an acute phase. First, we found that short-term treatment (10 min) with BDNF enhanced depolarization-evoked glutamate release in cultured cortical neurons. The enhancement diminished gradually according to the length of BDNF treatment. The BDNF-enhanced release did not require the synthesis of protein and mRNA. Both tetanus toxin and bafilomycin abolished the depolarization-evoked glutamate release with or without BDNF, indicating that BDNF acted via an exocytotic pathway. Next, we investigated the effect of BDNF on intracellular Ca(2+). BDNF potentiated the increase in intracellular Ca(2+) induced by depolarization. The Ca(2+) was derived from intracellular stores, because thapsigargin completely inhibited the potentiation. Furthermore, both thapsigargin and xestospongin C inhibited the effect of BDNF. These results suggested that the release of Ca(2+) from intracellular stores mediated by the IP(3) receptor was involved in the BDNF-enhanced glutamate release. Last, it was revealed that the enhancement of glutamate release by BDNF was dependent on the TrkB-PLC-gamma pathway. These results clearly demonstrate that short-term treatment with BDNF enhances an exocytotic pathway by potentiating the accumulation of intracellular Ca(2+) through intracellular stores.  相似文献   

4.
Defecation in the nematode Caenorhabditis elegans is a readily observable ultradian behavioral rhythm that occurs once every 45-50 s and is mediated in part by posterior body wall muscle contraction (pBoc). pBoc is not regulated by neural input but instead is likely controlled by rhythmic Ca(2+) oscillations in the intestinal epithelium. We developed an isolated nematode intestine preparation that allows combined physiological, genetic, and molecular characterization of oscillatory Ca(2+) signaling. Isolated intestines loaded with fluo-4 AM exhibit spontaneous rhythmic Ca(2+) oscillations with a period of approximately 50 s. Oscillations were only detected in the apical cell pole of the intestinal epithelium and occur as a posterior-to-anterior moving intercellular Ca(2+) wave. Loss-of-function mutations in the inositol-1,4,5-trisphosphate (IP(3)) receptor ITR-1 reduce pBoc and Ca(2+) oscillation frequency and intercellular Ca(2+) wave velocity. In contrast, gain-of-function mutations in the IP(3) binding and regulatory domains of ITR-1 have no effect on pBoc or Ca(2+) oscillation frequency but dramatically increase the speed of the intercellular Ca(2+) wave. Systemic RNA interference (RNAi) screening of the six C. elegans phospholipase C (PLC)-encoding genes demonstrated that pBoc and Ca(2+) oscillations require the combined function of PLC-gamma and PLC-beta homologues. Disruption of PLC-gamma and PLC-beta activity by mutation or RNAi induced arrhythmia in pBoc and intestinal Ca(2+) oscillations. The function of the two enzymes is additive. Epistasis analysis suggests that PLC-gamma functions primarily to generate IP(3) that controls ITR-1 activity. In contrast, IP(3) generated by PLC-beta appears to play little or no direct role in ITR-1 regulation. PLC-beta may function instead to control PIP(2) levels and/or G protein signaling events. Our findings provide new insights into intestinal cell Ca(2+) signaling mechanisms and establish C. elegans as a powerful model system for defining the gene networks and molecular mechanisms that underlie the generation and regulation of Ca(2+) oscillations and intercellular Ca(2+) waves in nonexcitable cells.  相似文献   

5.
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, has long-term effects on neuronal survival and differentiation; furthermore, BDNF has been reported to exert an acute potentiation of synaptic activity and are critically involved in long-term potentiation(LTP). We found that BDNF rapidly induced potentiation of synaptic activity and an increase in the intracellular Ca2+ concentration in cultured cortical neurons. Within minutes of BDNF application to cultured cortical neurons, spontaneous firing rate was dramatically increased as was the frequency and amplitude of excitatory spontaneous postsynaptic currents (EPSCs). Fura-2 recordings showed that BDNF acutely elicited an increase in intracellular calcium concentration ([Ca2+]i). This effect was partially dependent on extracellular Ca2+. In calcium-free perfusion medium a substantial calcium signal remained which disappeared after loading of cortical neurons with 5 microM U-73122. BDNF-induce Ca2+ transients were completely blocked by K252a and partially blocked by Cd2+. The results demonstrate that BDNF can enhance synaptic transmission and induce directly a rise in [Ca2+]i that require two routes: the release of Ca2+ from intracellular calcium stores and influx of extracellular Ca2+ mainly through voltage-dependent Ca2+ channels in cultured cortical neurons.  相似文献   

6.
神经营养因子对神经肌肉接头传递的调制作用   总被引:3,自引:0,他引:3  
运动单位由运动神经元及其支配的肌纤维组成。神经肌肉接头(neuromuscular junction,NMJ)传递受到严密的调节,因而能和运动单位的活动协调一致。在NMJ,神经调制物质的释放与运动单位的活动有关,并能决定突触传递的效能。脑源性神经营养因子(brain—derived neurotrophic factor,BDNF)和神经营养因子4(neurotrophin-4,NT-4)由运动神经末梢和肌纤维产生。肌肉释放营养因子受肌肉活动调节。在NMJ,BDNF和NT-4通过激活酪氨酸激酶B受体(tyrosine kinase receptor B,TrkB),能加强自发性和诱导性的突触活动。突触前Ca^2 量的迅速增加或突触胞吐过程的易化,都能增加突触囊泡的释放,从而改善NMJ的突触传递。事实上,BDNF能促进突触前细胞内Ca^2 的释放,TrkB的激活也能通过有丝分裂活化蛋白激酶,引起突触素I(synapsinI)的磷酸化,进而增加可释放的突触囊泡的数量。在NMJ,神经营养因子还能通过影响神经调节素(neuregulin)或其他神经源性调制物质的局部释放,对接头传递进行调节。本文对近年来在NMJ突触传递的调节,运动单位的NMJ特性以及神经营养因子对突触传递效能的影响等方面的研究进展做一综述。  相似文献   

7.
The metabotropic glutamate receptors (mGluR), mGluR1a and mGluR5a, are G protein-coupled receptors that couple via G(q) to the hydrolysis of phosphoinositides, the release of Ca(2+) from intracellular stores, and the activation of protein kinase C (PKC). We show here that mGluR1/5 activation results in oscillatory G protein coupling to phospholipase C thereby stimulating oscillations in both inositol 1,4,5-triphosphate formation and intracellular Ca(2+) concentrations. The mGluR1/5-stimulated Ca(2+) oscillations are translated into the synchronized repetitive redistribution of PKCbetaII between the cytosol and plasma membrane. The frequency at which mGluR1a and mGluR5a subtypes stimulate inositol 1,4,5-triphosphate, Ca(2+), and PKCbetaII oscillations is regulated by the charge of a single amino acid residue localized within their G protein-coupling domains. However, oscillatory mGluR signaling does not involve the repetitive feedback phosphorylation and desensitization of mGluR activity, since mutation of the putative PKC consensus sites within the first and second intracellular loops as well as the carboxyl-terminal tail does not prevent mGluR1a-stimulated PKCbetaII oscillations. Furthermore, oscillations in Ca(2+) continued in the presence of PKC inhibitors, which blocked PKCbetaII redistribution from the plasma membrane back into the cytosol. We conclude that oscillatory mGluR signaling represents an intrinsic receptor/G protein coupling property that does not involve PKC feedback phosphorylation.  相似文献   

8.
Fertilization-induced intracellular calcium (Ca(2+)) oscillations stimulate the onset of mammalian development, and little is known about the biochemical mechanism by which these Ca(2+) signals are transduced into the events of egg activation. This study addresses the hypothesis that transient increases in Ca(2+) similar to those at fertilization stimulate oscillatory Ca(2+)/calmodulin-dependent kinase II (CaMKII) enzyme activity, incrementally driving the events of egg activation. Since groups of fertilized eggs normally oscillate asynchronously, synchronous oscillatory Ca(2+) signaling with a frequency similar to fertilization was experimentally induced in unfertilized mouse eggs by using ionomycin and manipulating extracellular calcium. Coanalysis of intracellular Ca(2+) levels and CaMKII activity in the same population of eggs demonstrated a rapid and transient enzyme response to each increase in Ca(2+). Enzyme activity increased 370% during the first Ca(2+) rise, representing about 60% of maximal activity, and had decreased to basal levels within 5 min from the time Ca(2+) reached its peak value. Single fertilized eggs monitored for Ca(2+) had a mean increase in CaMKII activity of 185%. One and two ionomycin-induced Ca(2+) transients resulted in 39 and 49% mean cortical granule (CG) loss, respectively, while CG exocytosis and resumption of meiosis were inhibited by a CaMKII antagonist. These studies demonstrate that changes in the level of Ca(2+) and in CaMKII activity can be studied in the same cell and that CaMKII activity is exquisitely sensitive to experimentally induced oscillations of Ca(2+) in vivo. The data support the hypothesis that CaMKII activity oscillates for a period of time after normal fertilization and temporally regulates many events of egg activation.  相似文献   

9.
Networks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice. Cultures developed spontaneous synchronous activity already at 5-7 days in vitro (DIV), as revealed by imaging transient changes in Fluo-3 fluorescence. Concurrently, spontaneous glutamate-mediated and GABA(A)-mediated postsynaptic currents (sPSCs) occured at 5 DIV. For both types of neurons the frequency of glutamatergic and GABAergic sPSCs increased with DIV, whereas the charge transfer of glutamatergic sPSCs increased and the charge transfer of GABAergic sPSCs decreased with cultivation time. The ratio between GABAergic and the overall charge transfer was significantly reduced with DIV for L-INs and PNs, indicating an overall reduction in GABAergic synaptic drive with maturation of the network. In contrast, analysis of miniature PSCs (mPSCs) revealed no significant changes of charge transfer with DIV for both types of neurons, indicating that the reduction in GABAergic drive was not due to a decreased number of functional synapses. Our data suggest that the global reduction in GABAergic synaptic drive together with more synaptic input to PNs and L-INs during maturation may enhance rhythmogenesis of the network and increase the synchronization at the level of population bursts.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) signalling is critical for neuronal development and transmission. Recruitment of TrkB receptors to lipid rafts has been shown to be necessary for the activation of specific signalling pathways and modulation of neurotransmitter release by BDNF. Since TrkB receptors are known to be modulated by adenosine A2A receptor activation, we hypothesized that activation of A2A receptors could influence TrkB receptor localization among different membrane microdomains. We found that adenosine A2A receptor agonists increased the levels of TrkB receptors in the lipid raft fraction of cortical membranes and potentiated BDNF-induced augmentation of phosphorylated TrkB levels in lipid rafts. Blockade of the clathrin-mediated endocytosis with monodansyl cadaverine (100 μM) did not modify the effects of the A2A receptor agonists, but significantly impaired BDNF effects on TrkB recruitment to lipid rafts. The effect of A2A receptor activation in TrkB localization was mimicked by 5 μM forskolin, an adenylyl cyclase activator. Also, it was blocked by the PKA inhibitors Rp-cAMPs and PKI-(14-22) and by the Src-family kinase inhibitor PP2. Moreover, removal of endogenous adenosine or disruption of lipid rafts reduced BDNF stimulatory effects on glutamate release from cortical synaptosomes. Lipid raft integrity was also required for the effects of BDNF upon hippocampal long-term potentiation at CA1 synapses. Our data demonstrate, for the first time, a BDNF-independent recruitment of TrkB receptors to lipid rafts, induced by the activation of adenosine A2A receptors, with functional consequences for TrkB phosphorylation and BDNF-induced modulation of neurotransmitter release and hippocampal plasticity.  相似文献   

11.
J. Neurochem. (2012) 122, 891-899. ABSTRACT: Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity.  相似文献   

12.
Takata N  Hirase H 《PloS one》2008,3(6):e2525
Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca(2+)) concentration is important for astrocytes as Ca(2+) surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca(2+) activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca(2+) activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca(2+) dynamics by investigating two distinct EEG states ("synchronized" vs. "de-synchronized" states). We found that astrocytes in L1 had nearly twice higher Ca(2+) activity than L2/3. Furthermore, Ca(2+) fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca(2+) activity. These results suggest that spontaneous astrocytic Ca(2+) surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity.  相似文献   

13.
Maximov A  Südhof TC 《Neuron》2005,48(4):547-554
Ca(2+) triggers neurotransmitter release in at least two principal modes, synchronous and asynchronous release. Synaptotagmin 1 functions as a Ca(2+) sensor for synchronous release, but its role in asynchronous release remains unclear. We now show that in cultured cortical neurons stimulated at low frequency (or Hz), deletion of synaptotagmin 1 also alters only synchronous, not asynchronous, release during the stimulus train, but dramatically enhances "delayed asynchronous release" following the stimulus train. Thus synaptotagmin 1 functions as an autonomous Ca(2+) sensor independent of asynchronous release during isolated action potentials and action potential trains, but restricts asynchronous release induced by residual Ca(2+) after action potential trains. We propose that synaptotagmin 1 occupies release "slots" at the active zone, possibly in a Ca(2+)-independent complex with SNARE proteins that are freed when action potential-induced Ca(2+) influx activates synaptotagmin 1.  相似文献   

14.
Voltage-dependent N-type Ca(2+) channels, along with the P/Q-type, have a crucial role in controlling the release of neurotransmitters or neuromodulators at presynaptic terminals. However, their role in hippocampus-dependent learning and memory has never been examined. Here, we investigated hippocampus-dependent learning and memory and synaptic plasticity at hippocampal CA3-CA1 synapses in mice deficient for the alpha(1B) subunit of N-type Ca(2+) channels. The mutant mice exhibited impaired learning and memory in the Morris water maze and the social transmission of food preference tasks. In particular, long-term memory was impaired in the mutant mice. Interestingly, among activity-dependent long-lasting synaptic changes, theta burst- or 200-Hz-stimulation-induced long-term potentiation (LTP) was decreased in the mutant, compared with the wild-type mice. This type of LTP is known to require brain-derived neurotrophic factor (BDNF). It was found that both BDNF-induced potentiation of field excitatory postsynaptic potentials and facilitation of the frequency of miniature excitatory postsynaptic currents (mEPSCs) were reduced in the mutant. Taken together, these results demonstrate that N-type Ca(2+) channels are required for hippocampus-dependent learning and memory, and certain forms of LTP.  相似文献   

15.
Nakata H  Nakamura S 《FEBS letters》2007,581(10):2047-2054
The change in the number of post-synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamatergic receptors (AMPARs) by neuronal activity is recognized as a molecular basis of synaptic plasticity. Here, we show that Ca(2+) transients evoked by brain-derived neurotrophic factor (BDNF) induce translocation of a subunit of AMPAR, GluR1, but not NMDAR, to the post-synaptic membrane in cultured cortical pyramidal neurons. Among BDNF-induced Ca(2+) transients, that dependent on IP3R was fully required, while store-operated calcium influx through the non-selective cation channel TRPC (transient receptor potential canonical) was partially required for the GluR1 up-regulation, suggesting that spatial and temporal calcium signaling regulate translocation of GluR1 to the polarized membrane domain.  相似文献   

16.
This study was aimed at examining the effect of tamoxifen, a selective estrogen receptor modulator, on the release of endogenous glutamate in rat cerebral cortex nerve terminals (synaptosomes) and exploring the possible mechanism. Tamoxifen inhibited the release of glutamate that was evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent and insensitive to the estrogen receptor antagonist. The effect of tamoxifen on the evoked glutamate release was prevented by the chelating extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate did not have any effect on the action of tamoxifen. Tamoxifen did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in cytosolic [Ca(2+)]. Furthermore, the inhibitory effect of tamoxifen on the evoked glutamate release was abolished by the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na(+)/Ca(2+) exchanger blocker CGP37157. In addition, the protein kinase C (PKC) inhibitors GF109203X or Ro318220 prevented tamoxifen from inhibiting glutamate release. Western blotting showed that tamoxifen significantly decreased the 4-AP-induced phosphorylation of PKC and PKCα. Together, these results suggest that tamoxifen inhibits glutamate release from rat cortical synaptosomes, through the suppression of presynaptic voltage-dependent Ca(2+) entry and PKC activity.  相似文献   

17.
Metabotropic glutamate receptors (mGluRs) constitute an unique subclass of G protein-coupled receptors (GPCRs). These receptors are activated by the excitatory amino acid glutamate and play an essential role in regulating neural development and plasticity. In the present review, we overview the current understanding regarding the molecular mechanisms involved in the desensitization and endocytosis of Group 1 mGluRs as well as the relative contribution of desensitization to the spatial-temporal patterning of glutamate receptor signaling. Similar to what has been reported previously for prototypic GPCRs, mGluRs desensitization is mediated by second messenger-dependent protein kinases and GPCR kinases (GRKs). However, it remains to be determined whether mGluRs phosphorylation by GRKs and beta-arrestin binding are absolutely required for desensitization. Group 1 mGluRs endocytosis is both agonist-dependent and -independent. Agonist-dependent mGluRs internalization is mediated by a beta-arrestin- and dynamin-dependent clathrin-coated vesicle dependent endocytic pathway. The activation of Group 1 mGluRs also results in oscillatory Gq protein-coupling leading to the cyclical activation of phospholipase Cbeta thereby stimulating oscillations in both inositol 1,4,5-triphosphate formation and Ca(2+) release from intracellular stores. These glutamate receptor-stimulated Ca(2+) oscillations are translated into the synchronous activation of protein kinase C (PKC), which has led to the hypothesis that oscillatory mGluRs signaling involves the repetitive phosphorylation of mGluRs by PKC. However, recent experimental evidence suggests that oscillatory signaling is an intrinsic glutamate receptor property that is independent of feedback receptor phosphorylation by PKC. The challenge in the future will be to determine the structural determinants underlying mGluRs-mediated spatial-temporal signaling as well as to understand how complex signaling patterns can be interpreted by cells in both the developing and adult nervous systems.  相似文献   

18.
Acetylcholine-evoked secretion from the parotid gland is substantially potentiated by cAMP-raising agonists. A potential locus for the action of cAMP is the intracellular signaling pathway resulting in elevated cytosolic calcium levels ([Ca(2+)](i)). This hypothesis was tested in mouse parotid acinar cells. Forskolin dramatically potentiated the carbachol-evoked increase in [Ca(2+)](i), converted oscillatory [Ca(2+)](i) changes into a sustained [Ca(2+)](i) increase, and caused subthreshold concentrations of carbachol to increase [Ca(2+)](i) measurably. This potentiation was found to be independent of Ca(2+) entry and inositol 1,4,5-trisphosphate (InsP(3)) production, suggesting that cAMP-mediated effects on Ca(2+) release was the major underlying mechanism. Consistent with this hypothesis, dibutyryl cAMP dramatically potentiated InsP(3)-evoked Ca(2+) release from streptolysin-O-permeabilized cells. Furthermore, type II InsP(3) receptors (InsP(3)R) were shown to be directly phosphorylated by a protein kinase A (PKA)-mediated mechanism after treatment with forskolin. In contrast, no evidence was obtained to support direct PKA-mediated activation of ryanodine receptors (RyRs). However, inhibition of RyRs in intact cells, demonstrated a role for RyRs in propagating Ca(2+) oscillations and amplifying potentiated Ca(2+) release from InsP(3)Rs. These data indicate that potentiation of Ca(2+) release is primarily the result of PKA-mediated phosphorylation of InsP(3)Rs, and may largely explain the synergistic relationship between cAMP-raising agonists and acetylcholine-evoked secretion in the parotid. In addition, this report supports the emerging consensus that phosphorylation at the level of the Ca(2+) release machinery is a broadly important mechanism by which cells can regulate Ca(2+)-mediated processes.  相似文献   

19.
Voltage-gated sodium channels (VGSC) are involved in the generation of action potentials in neurons. Brevetoxins (PbTx) are potent allosteric enhancers of VGSC function and are associated with the periodic 'red tide' blooms. Using PbTx-2 as a probe, we have characterized the effects of activation of VGSC on Ca(2+) dynamics and extracellular signal-regulated kinases 1/2 (ERK1/2) signaling in neocortical neurons. Neocortical neurons exhibit synchronized spontaneous Ca(2+) oscillations, which are mediated by glutamatergic signaling. PbTx-2 (100 nm) increased the amplitude and reduced the frequency of basal Ca(2+) oscillations. This modulatory effect on Ca(2+) oscillations produced a sustained rise in ERK1/2 activation. At 300 nm, PbTx-2 disrupted oscillatory activity leading to a sustained increase in intracellular Ca(2+) ([Ca(2+)](i)) and induced a biphasic, activation followed by dephosphorylation, regulation of ERK1/2. PbTx-2-induced ERK1/2 activation was Ca(2+) dependent and was mediated by Ca(2+) entry through manifold routes. PbTx-2 treatment also increased cAMP responsive element binding protein (CREB) phosphorylation and increased gene expression of brain-derived neurotrophic factor (BDNF). These findings indicate that brevetoxins, by influencing the activation of key signaling proteins, can alter physiologic events involved in survival in neocortical neurons, as well as forms of synaptic plasticity associated with development and learning.  相似文献   

20.
Two isoforms of the ryanodine receptor subtype 3 (RYR3) have been described in smooth muscle. The RYR3 short isoform (RYR3S) negatively regulates the calcium-induced calcium release mechanism encoded by the RYR2, whereas the role of the full length isoform of RYR3 (RYR3L) was still unclear. Here, we describe RYR-dependent spontaneous Ca(2+) oscillations measured in 10% of native duodenum myocytes. We investigated the role of RYR3 isoforms in these spontaneous Ca(2+) signals. Inhibition of RYR3S expression by antisense oligonucleotides revealed that both RYR2 and RYR3L were able to propagate spontaneous Ca(2+) waves that were distinguishable by frequency analysis. When RYR3L expression was inhibited, the spontaneous Ca(2+) oscillations were never observed, indicating that RYR3S inhibited the function of RYR2. RYR2 expression inhibition led to Ca(2+) oscillations identical to those observed in control cells suggesting that RYR3S did not functionally interact with RYR3L. The presence and frequency of RYR3L-dependent Ca(2+) oscillations were dependent on sarcoplasmic reticulum Ca(2+) content as revealed by long-term changes of the extracellular Ca(2+) concentration. Our study shows that, in native duodenal myocytes, the spontaneous Ca(2+) waves are encoded by the RYR3L alone, which activity is regulated by sarcoplasmic reticulum Ca(2+) loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号