首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Lignin peroxidase (LiP) from Phanerochaete chrysosporium was shown to mineralize a variety of recalcitrant aromatic compounds and oxidize a number of polycyclic aromatic and phenolic compounds. The major problem of the wild type LiP is that it can be inactivated by excess H(2)O(2) and high concentrations of aromatic compounds. We applied a directed evolution technique coupled with a rapid colorimetric screening method to obtain mutant genes with improved H(2)O(2) stability and polychlorinated phenol degradability, and they were successfully expressed as the secretive LiPs in recombinant Saccharomyces cerevisiae. The resulting variants showed approximately 1.6-fold improved 2,4-dichlorophenol (2,4-DCP) degradation activity and stability against H(2)O(2) compared with the parent strain. The kinetic properties of the variants toward 2,4-DCP and H(2)O(2) were also increased compared with the wild type for all three mutants studied. Amino acid sequence analysis indicated that the greatest number of amino acid substitutions was located near the surface or Ca(2+) binding sites of the enzyme.  相似文献   

2.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

3.
Tet Repressor (TetR) recognizes the inducer tetracycline (tc) with high affinity. The tc analog 4-de(dimethylamino)-6-deoxy-6-demethyl-tetracycline (cmt3) is not an inducer for TetR. Induction specificity for cmt3 was generated by employing a directed evolution approach to screen appropriate TetR mutants in four successive steps. The specificity of the best TetR mutant is more than 20,000-fold increased for cmt3 over tc as judged by the ratio of their respective binding constants. Two rounds of directed evolution via DNA shuffling revealed His64 as a key residue for inducer specificity. The best TetR mutant with cmt3 specificity contains the H64K exchange, leading to a 300-fold decreased tc and a 20-fold increased cmt3 affinity. Another round of directed evolution made use of randomized oligonucleotides to mutate selected residues close to the tc-binding pocket of TetR and yielded TetR S135L with a 250-fold increased cmt3 affinity. The double mutant TetR H64K S135L was constructed and again subjected to directed evolution using randomized oligonucleotides to alter residues in the "secondary shell" of the tc-binding pocket. The resulting best mutants TetR H64K E114Q S135L, TetR A61V H64K Q109E Q116E S135L and TetR H64K T112K S135L are fully inducible by cmt3 and not by tc. Thus, their inducer specificity has been redesigned. The molecular mechanism of changed inducer recognition is discussed, based on binding constants with several tc analogs and in light of the TetR crystal structure.  相似文献   

4.
Recently, Mn(II) has been shown to induce manganese peroxidases (MnPs) and repress lignin peroxidases (LiPs) in defined liquid cultures of several white rot organisms. The present work shows that laccase is also regulated by Mn(II). We therefore used Mn(II) to regulate production of LiP, MnP, and laccase activities while determining the effects of Mn(II) on mineralization of ring-labeled synthetic lignin. At a low Mn(II) level, Phanerochaete chrysosporium and Phlebia brevispora produced relatively high titers of LiPs but only low titers of MnPs. At a high Mn(II) level, MnP titers increased 12- to 20-fold, but LiPs were not detected in crude broths. P. brevispora formed much less LiP than P. chrysosporium, but it also produced laccase activity that increased more than sevenfold at the high Mn(II) level. The rates of synthetic lignin mineralization by these organisms were similar and were almost seven times higher at low than at high Mn(II). Increased synthetic lignin mineralization therefore correlated with increased LiP, not with increased MnP or laccase activities.  相似文献   

5.
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.  相似文献   

6.
We performed a series of site-directed mutagenesis experiments of catalytic antibody, 6D9, which hydrolyzes a prodrug of chloramphenicol, based on our previous directed evolution study [Takahashi et al. (2001) Nat. Biotechnol. 19, 563-567]. Since we previously found that the variants with a mutation of Ser(L27e)Tyr afforded a one order of magnitude increase in catalytic rate, we created a site-directed mutant containing this mutation. The resulting mutant, 6D9-Ser(L27e)Tyr, had 6.5-fold higher k(cat)/k(uncat) and 9.8-fold higher k(cat)/K(m) than wild-type 6D9. We also created 6D9-Thr(L27a)Pro, since this mutation occurred frequently in the previous directed evolution, and it had 2.1-fold higher k(cat)/k(uncat) and k(cat)/K(m) than 6D9. Kinetic and computational analyses suggest that Tyr at L27e contributes to transition-state stabilization, while Pro at L27a does not interact with the transition-state structure directly, but obviously contributes to enhanced catalytic activity. Including double mutants that combined favourable substitutions, we created seven site-directed mutants. However, none of them had higher catalytic activities than some of highly improved variants obtained in the previous directed evolution. The present study gives direct evidence that not only a specific amino acid residue which obviously contributes to transition-state stabilization, but also a group of amino acid residues working in concert is important for efficient catalysis of a given transformation.  相似文献   

7.
Site directed mutagenesis study was carried out with Escherichia coli pyrroloquinoline quinone glucose dehydroge-nase (PQQGDH) by substitution of His775 with either Asn (H775N) or Asp (H775D). The mutated PQQGDHs had different substrate specificity and catalytic activity from the wild type PQQGDH. The K values of H775N for 2-deoxy-D-glucose and for D-allose increased for 10-fold. The K values for both D-mannose and D-galactose were estimated much higher than 100 mM. H775D also showed the increase in K values toward saccharides. As a result, these mutants possessed narrower substrate specificity than wild type E. coli PQQGDH. H775D showed the increase in K value for glucose versus wild type PQQGDH (25-fold), therefore H775D is suitable for the direct measurement of blood glucose. The role of His775 in E. coli. PQQGDH is also discussed.  相似文献   

8.
The reactions of the fungal enzymes Arthromyces ramosus peroxidase (ARP) and Phanerochaete chrysosporium lignin peroxidase (LiP) with hydrogen peroxide (H(2)O(2)) have been studied. Both enzymes exhibited catalase activity with hyperbolic H(2)O(2) concentration dependence (K(m) approximately 8-10 mm, k(cat) approximately 1-3 s(-1)). The catalase and peroxidase activities of LiP were inhibited within 10 min and those of ARP in 1 h. The inactivation constants were calculated using two independent methods; LiP, k(i) approximately 19 x 10(-3) s(-1); ARP, k(i) approximately 1.6 x 10(-3) s(-1). Compound III (oxyperoxidase) was detected as the majority species after the addition of H(2)O(2) to LiP or ARP, and its formation was accompanied by loss of enzyme activity. A reaction scheme is presented which rationalizes the turnover and inactivation of LiP and ARP with H(2)O(2). A similar model is applicable to horseradish peroxidase. The scheme links catalase and compound III forming catalytic pathways and inactivation at the level of the [compound I.H(2)O(2)] complex. Inactivation does not occur from compound III. All peroxidases studied to date are sensitive to inactivation by H(2)O(2), and it is suggested that the model will be generally applicable to peroxidases of the plant, fungal, and prokaryotic superfamily.  相似文献   

9.
Edema factor is a calmodulin dependent adenylyl cyclase secreted as one of the primary exotoxins by Bacillus anthracis. A histidine residue at position 351 located in its active site has been implicated in catalysis but direct evidence of its functional role is still lacking. In the present study, we introduced mutations in full-length edema factor (EF) to generate alanine (H351A), asparagine (H351N), and phenylalanine (H351F) variants. Spectral analysis of these variants displayed no gross structural deformities. Kinetic characterization showed that the adenylyl cyclase activity of H351N and H351F mutants decreased 34- and 40-fold, respectively, whereas H351A mutant completely lost activity. K(m) and K(i) values for ATP, pH activity profiles, and calmodulin activation curves of asparagine and phenylalanine mutants were not altered markedly. This kinetic data corroborated our ligand binding studies. Apparent K(d) values for calmodulin and ATP binding were found to be similar for wild-type EF and these active site variants. The effective substitution of H351 by asparagine and phenylalanine, albeit at a greatly reduced K(cat), without perturbing the ATP binding highlights the importance of this residue in transition-state stabilization. This was also evident from the positive free energy difference calculated for these mutants. However, equilibrium dialysis experiments revealed noticeable increase in ATP binding constant of H351A mutant, suggesting an additional role of H351 in precise substrate binding in the catalytic pocket. This is the first comprehensive study that describes the kinetic and ligand binding properties of H351 mutants and validates the importance of this residue in EF catalysis.  相似文献   

10.
Phosphotriesterase (PTE) from soil bacteria is known for its ability to catalyze the detoxification of organophosphate pesticides and chemical warfare agents. Most of the organophosphate chemical warfare agents are a mixture of two stereoisomers at the phosphorus center, and the S(P)-enantiomers are significantly more toxic than the R(P)-enantiomers. In previous investigations, PTE variants were created through the manipulation of the substrate binding pockets and these mutants were shown to have greater catalytic activities for the detoxification of the more toxic S(P)-enantiomers of nerve agent analogues for GB, GD, GF, VX, and VR than the less toxic R(P)-enantiomers. In this investigation, alternate strategies were employed to discover additional PTE variants with significant improvements in catalytic activities relative to that of the wild-type enzyme. Screening and selection techniques were utilized to isolate PTE variants from randomized libraries and site specific modifications. The catalytic activities of these newly identified PTE variants toward the S(P)-enantiomers of chromophoric analogues of GB, GD, GF, VX, and VR have been improved up to 15000-fold relative to that of the wild-type enzyme. The X-ray crystal structures of the best PTE variants were determined. Characterization of these mutants with the authentic G-type nerve agents has confirmed the expected improvements in catalytic activity against the most toxic enantiomers of GB, GD, and GF. The values of k(cat)/K(m) for the H257Y/L303T (YT) mutant for the hydrolysis of GB, GD, and GF were determined to be 2 × 10(6), 5 × 10(5), and 8 × 10(5) M(-1) s(-1), respectively. The YT mutant is the most proficient enzyme reported thus far for the detoxification of G-type nerve agents. These results support a combinatorial strategy of rational design and directed evolution as a powerful tool for the discovery of more efficient enzymes for the detoxification of organophosphate nerve agents.  相似文献   

11.
Cytochrome P450 2B1 has been subjected to directed evolution to investigate the role of amino acid residues outside of the active site and to engineer novel, more active P450 catalysts. A high throughput screening system was developed to measure H(2)O(2)-supported oxidation of the marker fluorogenic substrate 7-ethoxy-4-trifluoromethylcoumarin (7-EFC). Random mutagenesis by error-prone polymerase chain reaction and activity screening were optimized using the L209A mutant of P450 2B1 in an N-terminally modified construct with a C-terminal His tag (P450 2B1dH). Two rounds of mutagenesis and screening and one subcloning step yielded the P450 2B1 quadruple mutant V183L/F202L/L209A/S334P, which demonstrated a 6-fold higher k(cat) than L209A. Further random or site-directed mutagenesis did not improve the activity. When assayed in an NADPH-supported reconstituted system, V183L/L209A demonstrated lower 7-EFC oxidation than L209A. Therefore, F202L/L209A/S334P was generated, which showed a 2.5-fold higher k(cat)/K(m) for NADPH-dependent 7-EFC oxidation than L209A. F202L/L209A/S334P also showed enhanced catalytic efficiency with 7-benzyloxyresorufin, benzphetamine, and testosterone, and a 10-fold increase in stereoselectivity for testosterone 16alpha-versus 16beta-hydroxylation compared with 2B1dH. Enhanced catalytic efficiency of F202L/L209A/S334P was also retained in the full-length P450 2B1 background with 7-EFC and testosterone as substrates. Finally, the individual mutants were tested for metabolism of the anti-cancer prodrugs cyclophosphamide and ifosfamide. Several of the mutants showed increased metabolism via the therapeutically beneficial 4-hydroxylation pathway, with L209A/S334P showing 2.8-fold enhancement of k(cat)/K(m) with cyclophosphamide and V183L/L209A showing 3.5-fold enhancement with ifosfamide. Directed evolution can thus be used to enhance P450 2B1 catalytic efficiency across a panel of substrates and to identify functionally important residues distant from the active site.  相似文献   

12.
13.
A genetically engineered microorganism, Pseudomonas putida PPO301(pRO103), and the plasmidless parent strain, PPO301, were added at approximately 107 CFU/g of soil amended with 500 ppm of 2,4-dichlorophenoxyacetate (2,4-D) (500 μg/g). The degradation of 2,4-D and the accumulation of a single metabolite, identified by gas chromatography-mass spectrophotometry as 2,4-dichlorophenol (2,4-DCP), occurred only in soil inoculated with PPO301(pRO103), wherein 2,4-DCP accumulated to >70 ppm for 5 weeks and the concentration of 2,4-D was reduced to <100 ppm. Coincident with the accumulation of 2,4-DCP was a >400-fold decline in the numbers of fungal propagules and a marked reduction in the rate of CO2 evolution, whereas 2,4-D did not depress either fungal propagules or respiration of the soil microbiota. 2,4-DCP did not appear to depress the numbers of total heterotrophic, sporeforming, or chitin-utilizing bacteria. In vitro and in situ assays conducted with 2,4-DCP and fungal isolates from the soil demonstrated that 2,4-DCP was toxic to fungal propagules at concentrations below those detected in the soil.  相似文献   

14.
Using directed evolution, we have selected an adipyl acylase enzyme that can be used for a one-step bioconversion of adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) to 7-ADCA, an important compound for the synthesis of semisynthetic cephalosporins. The starting point for the directed evolution was the glutaryl acylase from Pseudomonas SY-77. The gene fragment encoding the beta-subunit was divided into five overlapping parts that were mutagenized separately using error-prone PCR. Mutants were selected in a leucine-deficient host using adipyl-leucine as the sole leucine source. In total, 24 out of 41 plate-selected mutants were found to have a significantly improved ratio of adipyl-7-ADCA versus glutaryl-7-ACA hydrolysis. Several mutations around the substrate-binding site were isolated, especially in two hot spot positions: residues Phe-375 and Asn-266. Five mutants were further characterized by determination of their Michaelis-Menten parameters. Strikingly, mutant SY-77(N266H) shows a nearly 10-fold improved catalytic efficiency (k(cat)/K(m)) on adipyl-7-ADCA, resulting from a 50% increase in k(cat) and a 6-fold decrease in K(m), without decreasing the catalytic efficiency on glutaryl-7-ACA. In contrast, the improved adipyl/glutaryl activity ratio of mutant SY-77(F375L) mainly is a consequence of a decreased catalytic efficiency toward glutaryl-7-ACA. These results are discussed in the light of a structural model of SY-77 glutaryl acylase.  相似文献   

15.
A monomeric version of triosephosphate isomerase from Trypanosoma brucei, MonoTIM, has very low activity, and the same is true for all of the additional monomeric variants so far constructed. Here, we subjected MonoTIM to directed evolution schemes to achieve an activity improvement. The construction of a suitable strain for genetic selection provided an effective way to obtain active catalysts from a diverse population of protein variants. We used this tool to identify active mutants from two different strategies of mutagenesis: random mutagenesis of the whole gene and randomization of loop 2. Both strategies converged in the isolation of mutations Ala43 to Pro and Thr44 to either Ala or Ser, when randomizing the entire gene or to Arg in the case of randomization of loop 2. The kinetic characterization of the two more active mutants showed an increase of 11-fold in k(cat) and a reduction of 4-fold in K(m) for both of them, demonstrating the sensitivity of the selection method. A small difference in growth rate is observed when both mutant genes are compared, which seems to be attributable to a difference in solubility of the expressed proteins.  相似文献   

16.
J L Popp  B Kalyanaraman  T K Kirk 《Biochemistry》1990,29(46):10475-10480
Veratryl alcohol (3,4-dimethoxybenzyl alcohol) appears to have multiple roles in lignin degradation by Phanerochaete chrysosporium. It is synthesized de novo by the fungus. It apparently induces expression of lignin peroxidase (LiP), and it protects LiP from inactivation by H2O2. In addition, veratryl alcohol has been shown to potentiate LiP oxidation of compounds that are not good LiP substrates. We have now observed the formation of Mn3+ in reaction mixtures containing LiP, Mn2+, veratryl alcohol, malonate buffer, H2O2, and O2. No Mn3+ was formed if veratryl alcohol or H2O2 was omitted. Mn3+ formation also showed an absolute requirement for oxygen, and oxygen consumption was observed in the reactions. This suggests involvement of active oxygen species. In experiments using oxalate (a metabolite of P. chrysosporium) instead of malonate, similar results were obtained. However, in this case, we detected (by ESR spin-trapping) the production of carbon dioxide anion radical (CO2.-) and perhydroxyl radical (.OOH) in reaction mixtures containing LiP, oxalate, veratryl alcohol, H2O2, and O2. Our data indicate the formation of oxalate radical, which decays to CO2 and CO2.-. The latter reacts with O2 to form O2.-, which then oxidizes Mn2+ to Mn3+. No radicals were detected in the absence of veratryl alcohol. These results indicate that LiP can indirectly oxidize Mn2+ and that veratryl alcohol is probably a radical mediator in this system.  相似文献   

17.
Knallgas bacteria such as certain Ralstonia spp. are able to obtain metabolic energy by oxidizing trace levels of H2 using O2 as the terminal electron acceptor. The [NiFe] hydrogenases produced by these organisms are unusual in their ability to oxidize H2 in the presence of O2, which is a potent inactivator of most hydrogenases through attack at the active site. To probe the origin of this unusual O2 tolerance, we conducted a study on the membrane-bound hydrogenase from Ralstonia eutropha H16 and that of the closely related organism Ralstonia metallidurans CH34, which was purified using a new heterologous overproduction system. Direct electrochemical methods were used to determine apparent inhibition constants for O2 inhibition of H2 oxidation (K I(app)O2) for each enzyme. These values were at least 2 orders of magnitude higher than those of "standard" [NiFe] hydrogenases. Amino acids close to the active site were exchanged in the membrane-bound hydrogenase of R. eutropha H16 for those from standard hydrogenases to probe the role of individual residues in conferring O2 sensitivity. Michaelis constants for H2 (K M H2) were determined, and for some mutants these were increased more than 20-fold relative to the wild type. Mutations resulting in membrane-bound hydrogenase enzymes with increased K M H2 or decreased K I(app)O2 values were associated with impaired lithoautotrophic growth in the presence of high O2 concentrations.  相似文献   

18.

Background

Cost-effective production of industrially important enzymes is a key for their successful exploitation on industrial scale. Keeping in view the extensive industrial applications of lignin peroxidase (LiP), this study was performed to purify and characterize the LiP from an indigenous strain of Trametes versicolor IBL-04. Xerogel matrix enzyme immobilization technique was applied to improve the kinetic and thermo-stability characteristics of LiP to fulfil the requirements of the modern enzyme consumer sector of biotechnology.

Results

A novel LiP was isolated from an indigenous T. versicolor IBL-04 strain. T. versicolor IBL-04 was cultured in solid state fermentation (SSF) medium of corn cobs and maximum LiP activity of 592?±?6 U/mL was recorded after five days of incubation under optimum culture conditions. The crude LiP was 3.3-fold purified with specific activity of 553 U/mg after passing through the DEAE-cellulose and Sephadex-G-100 chromatography columns. The purified LiP exhibited a relatively low molecular weight (30?kDa) homogenous single band on native and SDS-PAGE. The LiP was immobilized by entrapping in xerogel matrix of trimethoxysilane (TMOS) and proplytetramethoxysilane (PTMS) and maximum immobilization efficiency of 88.6% was achieved. The free and immobilized LiPs were characterized and the results showed that the free and immobilized LiPs had optimum pH 6 and 5 while optimum temperatures were 60°C and 80°C, respectively. Immobilization was found to enhance the activity and thermo-stability potential of LiP significantly and immobilized LiP remained stable over broad pH and temperature range as compare to free enzyme. Kinetic constants K m and V max were 70 and 56???M and 588 and 417 U/mg for the free and immobilized LiPs, respectively. Activity of this novel extra thermo-stable LiP was stimulated to variable extents by Cu2+, Mn2+ and Fe2+ whereas, Cystein, EDTA and Ag+ showed inhibitory effects.

Conclusions

The indigenously isolated white rot fungal strain T. versicolor IBL-04 showed tremendous potential for LiP synthesis in SSF of corncobs in high titters (592 U/mL) than other reported Trametes (Coriolus, Polyporus) species. The results obtained after dual phase characterization suggested xerogel matrix entrapment a promising tool for enzyme immobilization, hyper-activation and stabilization against high temperature and inactivating agents. The pH and temperature optima, extra thermo-stability features and kinetic characteristics of this novel LiP of T. versicolor IBL-04 make it a versatile enzyme for various industrial and biotechnological applications.  相似文献   

19.
Effects of 2,4-dichlorophenol on activated sludge   总被引:6,自引:0,他引:6  
The effects of 2,4-dichlorophenol (2,4-DCP) on both acclimated and unacclimated activated sludge were investigated in batch reactors. The IC(50) values on the basis of maximum specific growth rate ( micro(m)), percent chemical oxygen demand (COD) removal efficiency and sludge activity were found to be 72, 60 and 47 mg l(-1), respectively, for unacclimated culture. The percent COD removal efficiencies of unacclimated culture were affected adversely, even at low concentrations, whereas culture acclimated to 75 mg 2,4-DCP l(-1) could tolerate about 200 mg 2,4-DCP l(-1)on the basis of COD removal efficiency. Although yield coefficient values of unacclimated culture increased surprisingly to very high values with the addition of 2,4-DCP, a linear decrease with respect to 2,4-DCP concentrations was observed for acclimated culture. Although no removal was observed with unacclimated culture, almost complete removal of 2,4-DCP up to a concentration of 148.7 mg l(-1) was observed with acclimated culture. It was showed that the culture could use 2,4-DCP as sole organic carbon source, although higher removal efficiencies in the presence of a readily degradable substrate were observed. Culture acclimated to 4-chlorophenol used 2,4-DCP as sole organic carbon source better than those acclimated to 2,4-DCP.  相似文献   

20.
Furfural and 5-hydroxymethylfurfural (HMF) are inhibitors generated by lignocellulosic biomass pretreatment such as dilute acid hydrolysis that inhibit microbial growth and interfere with subsequent fermentation. It is possible to in situ detoxify these inhibitory compounds by aldehyde reductions using tolerant Saccharomyces cerevisiae. YOL151W (GRE2) is a commonly recognized up-regulated gene expressed under stress conditions that encodes reductase activities toward furfural and HMF using cofactor NADH. Applying a directed enzyme evolution approach, we altered the genetic code of GRE2 yielding two mutants with amino acid substitutions of Gln261 to Arg261 and Phe283 to Leu283; and Ile107 to Val107, Gln261 to Arg261, and Val285 to Asp285 for strain Y62-C11 and Y62-G6, respectively. Clones of these mutants showed faster growth rates and were able to establish viable cultures under 30 mM HMF challenges when compared with a wild type GRE2 clone when inoculated into synthetic medium containing this inhibitor. Compared with the wild type control, crude cell extracts of the two mutants showed 3- to 4-fold and 3- to 9-fold increased specific enzyme activity using NADH toward HMF and furfural reduction, respectively. While retaining its aldehyde reductase activities using the cofactor NADH, mutant Y62-G6 displayed significantly greater reductase activities using NADPH as the cofactor with 13- and 15-fold increase toward furfural and HMF, respectively, as measured by its partially purified protein. Using reverse engineering and site directed mutagenesis methods, we were able to confirm that the amino acid substitution of the Asp285 is responsible for the increased aldehyde reductase activities by utilizing the additional cofactor NADPH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号