首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A significant percentage of psychiatric patients who are treated with antipsychotics are treated with more than one antipsychotic drug in the clinic. Thus, it is advantageous to use a rapid and reliable assay that is suitable for determination of multiple antipsychotic drugs in plasma in a single run. A simple and sensitive HPLC-UV method was developed and validated for simultaneous quantification of olanzapine, haloperidol, chlorpromazine, ziprasidone, risperidone and its active metabolite 9-hydroxyrisperidone in rat plasma using imipramine as an internal standard (I.S.). The analytes were extracted from rat plasma using a single step liquid-liquid acid solution back extraction technique with wash procedure, which provided the very clear baseline for blank plasma extraction. The compounds were separated on an Agilent Eclipse XDB C8 (150 mm x 4.6 mm i.d., 5 microm) column using a mobile phase of acetonitrile/30 mM ammonium acetate including 0.05% triethylamine (pH 5.86 adjusted with acetic acid) with gradient elution. All of the analytes were monitored using UV detection. The method was validated and the linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries, selectivity and stability were determined. The LLOQ was 2.0 ng/ml and correlation coefficient (R(2)) values for the linear range of 2.0-500.0 ng/ml were 0.998 or greater for all the analytes. The precision and accuracy for intra-day and inter-day were better than 7.44%. The recovery was above 74.8% for all of the analytes. This validated method has been successfully used to quantify the plasma concentration of the analytes for pharmacological and toxicological studies following chronic treatment with antipsychotic drugs in the rat.  相似文献   

2.
A simple, sensitive and robust liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) method was developed and validated for quantification of chlorpromazine in rat plasma and brain tissue. Chlorpromazine was extracted from rat plasma and brain homogenate using liquid-liquid extraction. The compounds were separated on a Waters Atlantis dC-18 (30 mm x 2.1 mm i.d., 3 microm) column using a mobile phase of acetonitrile/20 mM ammonium formate (pH 4.25 adjusted with formic acid) with gradient elution. Chlorpromazine was detected in positive ion mode using multiple reaction monitoring (MRM). The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ), precision, accuracy, recoveries and stability were determined. The LLOQ was 0.2 ng/ml for plasma and 0.833 ng/g for brain tissue. The method was linear over the concentration range from 0.2 to 200.0 ng/ml for plasma and from 0.833 to 833.3 ng/g for brain tissue. The correlation coefficient (R(2)) values were more than 0.998 for both plasma and brain homogenate. The precision and accuracy for intra-day and inter-day were better than 7.54%. The relative and absolute recovery was above 84.9% and matrix effects were lower than 5.6%. This validated method has been successfully used to quantify the rat plasma and brain tissue concentration of chlorpromazine after chronic treatment.  相似文献   

3.
Adipose tissue kinetics of chlorpromazine and imipramine, two drugs which are more lipophilic than thiopental, were studied in the rat. After single i.v. doses, the time-course of drug distribution was followed in adipose and various other tissues, until their concentrations in adipose tissues declined. Under these conditions the two drugs behaved almost identically. Among the tissues analyzed, the lowest concentrations were found in adipose tissue, with the exception of plasma. At its maximum concentration after about 30 minutes, total adipose tissue contained only 3 % of the dose of administered drugs. Adipose/plasma and adipose/lung concentration ratios were 2–5 and 0.05, respectively.After maximum tolerated oral doses of imipramine for 3 weeks, similar steady state concentration ratios (plasma:adipose:brain:lung 1:3:12:96) were observed. In adipose tissue the imipramine/desmethylimipramine ratio was about 1, and the desmethylimipramine steady state levels did not increase with time. Literature data indicate that many basic lipophilic drugs are not stored in adipose tissue. This is now clearly shown for chlorpromazine and imipramine, even under extreme, subchronic conditions in the case of imipramine.  相似文献   

4.
A sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for the simultaneous identification and quantification of eight endocannabinoid (EC) or related "entourage" compounds in rat brain tissue. Analytes were extracted and purified from rat brain tissue using an ethyl acetate/hexane solvent extraction, followed by a solid phase extraction (SPE) protocol. Chromatographic separation was achieved using a gradient elution, with a mobile phase of acetonitrile, formic acid, and ammonium acetate, at pH 3.6. A Thermo Hypersil C8 HyPurity Advance column (100x2.1 mm i.d., 3 microm) was used with a flow rate of 0.3 ml/min). Anandamide (AEA), 2-arachidonyl glycerol (2-AG), 2-arachidonylglyceryl ether (noladin ether), O-arachidonyl ethanolamide (virodhamine), 2-linoleoyl glycerol (2-LG), arachidonyl glycine, oleoyl ethanolamide (OEA), and palmitoyl ethanolamide (PEA) were quantified by positive ion tandem electrospray ionization mass spectrometry. Internal standards were deuterated AEA, deuterated 2-AG, and heptadecanoyl ethanolamide (HEA). Linearity was proven over the range of 25 fmol to 250 pmol, with a limit of detection of 25 fmol on column for all analytes except 2-AG, noladin ether, and 2-LG (250 fmol). This corresponded to a limit of quantification in biological tissue of 10 pmol/g for all analytes except 2-AG (100 pmol/g). Intra- and interday precision in biological tissue was routinely approximately 20% or lower, and accuracy was between 65% and 155%. This method was used to quantitatively profile regional differences in nine discrete rat brain regions for AEA, 2-AG, 2-LG, OEA, PEA, noladin ether, virodhamine, and arachidonyl glycine.  相似文献   

5.
Lysophosphatidic acid (LPA) is a lipid mediator with multiple biological functions. A highly selective and sensitive liquid chromatography–tandem mass spectrometry (LC/MS/MS) method was developed for the determination of LPAs (16:0 LPA, 18:0 LPA, 18:1 LPA, 20:4 LPA) in rat brain cryosections. After partitioning the LPAs from other lipophilic material present in the tissue with a liquid–liquid extraction, a reversed-phase column and ion pair technique was used for separating analytes with a gradient elution. An internal standard (17:0 LPA) was included in the analysis. Detection and quantification of the LPAs were carried out with a triple quadrupole mass spectrometer using negative electrospray ionization (ESI) and multiple reaction monitoring (MRM). The artificial formation of LPAs from lysophosphatidylcholines during the sample preparation procedure and instrumentation was carefully studied during the method development. The method was validated; acceptable selectivity, accuracy, precision, recovery, and stability were obtained for concentrations within the calibration curve range of 0.02–1.0 μM for LPAs. The quantification limit of the assay was 54 fmol injected into column for each LPAs. The method was applied to comparative studies of LPA levels in rat brain cryosections after the various chemical pre-treatments of the sections.  相似文献   

6.
To evaluate the penetration of the blood-brain barrier by 9-fluoropropyl-(+)-dihydrotetrabenazine (AV-133), microdialysis probes were implanted simultaneously into rat blood and brain, and a liquid chromatography-tandem mass spectrometric method was developed and validated to monitor the AV-133 concentration in the microdialysates. The chromatographic separation was performed on an XTerra C(18) column (150 mm × 2.1 mm i.d., 5 μm particles) with gradient elution. The mass spectrometer was operated in positive mode using electrospray ionization. The analytes were measured using the multiple-reaction-monitoring mode. The calibration curves were linear over the range of 5.00-1000 ng/mL AV-133, with a coefficient of determination >0.995. The accuracies ranged from 99.5% to 105.0% and the precisions were <10% for AV-133. This method was used to determine the concentrations of AV-133 and its pharmacokinetics in the brains and blood of rats. The blood and brain concentration-time profiles for AV-133 were obtained, and the blood-brain barrier penetration was evaluated.  相似文献   

7.
Classical antipsychotic drugs, such as haloperidol, have been shown to increase the concentrations of neurotensin (NT) selectively in the nucleus accumbens and caudate nucleus of the rat. Several novel, putative antipsychotic drugs have also been found to produce increases in NT content in one or both of these brain regions. The present study sought to compare the effects of chronic treatment with three clinically efficacious atypical antipsychotic drugs, sulpiride, rimcazole and remoxipride, on regional brain NT concentrations to those of haloperidol. The concentrations of NT in five discrete brain regions were determined by a sensitive and specific radioimmunoassay. As previously reported, haloperidol increased NT concentrations in both the nucleus accumbens and caudate nucleus. Sulpiride and rimcazole produced significant increases in the concentration of NT in the caudate. NT concentrations were unaltered in any brain region by remoxipride at either of the doses tested. These data provide additional evidence for specific increases in regional brain NT concentrations produced by antipsychotic drugs.  相似文献   

8.
An original HPLC-UV method has been developed for the simultaneous determination of the atypical antipsychotic quetiapine and the geometric isomers of the second-generation antidepressant fluvoxamine. The analytes were separated on a reversed-phase C8 column (150 mm x 4.6mm i.d., 5 microm) using a mobile phase composed of acetonitrile (30%) and a 10.5mM, pH 3.5 phosphate buffer containing 0.12% triethylamine (70%). The flow rate was 1.2 mL min(-1) and the detection wavelength was 245 nm. Sample pretreatment was carried out by an original solid-phase extraction procedure using mixed-mode cation exchange (DSC-MCAX) cartridges; only 300 microL of plasma were needed for one analysis. Citalopram was used as the internal standard. The method was validated in terms of linearity, extraction yield, precision and accuracy. Good linearity was obtained in plasma over the 5.0-160.0 ng mL(-1) concentration range for each fluvoxamine isomer and over the 2.5-400.0 ng mL(-1) concentration range for quetiapine. Extraction yield values were always higher than 93%, with precision (expressed as relative standard deviation values) better than 4.0%. The method was successfully applied to human plasma samples drawn from patients undergoing polypharmacy with the two drugs. Satisfactory accuracy values were obtained, with mean recovery higher than 94%.  相似文献   

9.
A sensitive, specific and rapid HPLC-MS/MS method has been developed and validated for the simultaneous determination of cytarabine and valcytarabine (valyl prodrug of cytarabine) in rat plasma in the present study. The analytes were separated on a C18 column (50 mm x 2.1 mm, 1.7 microm) and a triple-quadrupole mass spectrometry equipped with an electrospray ionization (ESI) source was applied for detection. Cation exchange solid-phase extraction cartridge was employed to extract the analytes from rat plasma, with high recovery of cytarabine (>85%). The method was linear over the concentration ranges of 10-20,000 ng/mL for cytarabine and 25-1000 ng/mL for valcytarabine. The lower limit of quantitation (LLOQ) of cytarabine and valcytarabine was 10 and 25 ng/mL, respectively. The intra-day and inter-day relative standard deviation (RSD) were less than 15% and the relative error (RE) were all within 15%. Finally, the method was successfully applied to support the prodrug pharmacokinetic study after valcytarabine and cytarabine were orally administrated to the Sprague-Dawley rat, respectively.  相似文献   

10.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous quantification of nicotine (NIC), cotinine (COT), nornicotine (NNIC), norcotinine (NCOT), nicotine-N-β-D-glucuronide (NIC GLUC), cotinine-N-β-D-glucuronide (COT GLUC), nicotine-1'-oxide (NNO), cotinine-N-oxide (CNO), trans-3'-hydroxycotinine (3-HC), anabasine (AB) and anatabine (AT) was modified and validated for quantification of these selected analytes in rat brain tissue. This analytical method provides support for preclinical NIC pharmacokinetic and toxicological studies after controlled dosing protocols. After brain homogenization and solid-phase extraction, target analytes and corresponding deuterated internal standards were chromatographically separated on a Discovery(?) HS F5 HPLC column with gradient elution and analyzed by LC-MS/MS in positive electrospray ionization (ESI) mode with multiple reaction monitoring (MRM) data acquisition. Method linearity was assessed and calibration curves were determined over the following ranges: 0.1-7.5 ng/mg for NIC, COT GLUC and AB; and 0.025-7.5 ng/mg for COT, NNIC, NCOT, NIC GLUC, NNO, CNO, 3-HC and AT (R(2)≥0.99 for all analytes). Extraction recoveries ranged from 64% to 115%, LC-MS/MS matrix effects were ≤21%, and overall process efficiency ranged from 57% to 93% at low and high quality control concentrations. Intra- and inter-assay imprecisions and accuracy for all analytes were ≤12.9% and ≥86%, respectively. The method was successfully applied to quantification of NIC and metabolites in the brain of post-natal day 90 rats that were sacrificed 2-h after a single 0.8 mg/kg s.c. administration of (-)NIC. In these tissues, striatal concentrations were 204.8±49.4, 138.2±14.2 and 36.1±6.1 pg/mg of NIC, COT and NNIC, respectively. Concentrations of NIC, COT and NNIC in the remaining whole brain (RWhB) were 183.3±68.0, 130.0±14.1 and 46.7±10.3 pg/mg, respectively. Quantification of these same analytes in plasma was also performed by a previously validated method. NIC, COT, NNIC, NCOT, NNO and CNO were detected in plasma with concentrations comparable to those reported in previous studies. However, and in contrast to brain tissues, COT concentrations in plasma were significantly higher than were those of NIC (194.6±18.6 ng/mL versus 52.7±12.9 ng/mL). Taken together, these results demonstrate that a sensitive and selective method has been developed for the determination of NIC biomarkers in rat brain.  相似文献   

11.
To study the pharmacokinetics of Chan Su, a sensitive and selective method was developed and validated for the determination of five main bufadienolides (cinobufagin, resibufogenin, bufalin, bufotalin and arenobufagin) in rat plasma. The analytes were extracted by liquid-liquid extraction with ethyl acetate after internal standard (IS, caudatin) spiked. The separation was performed by a ZORBAX SB-C18 column (3.5 microm, 2.1 mmx100 mm) and a C18 guard column (5 microm, 4.0 mmx2.0 mm) with an isocratic mobile phase consisted of acetonitrile-water-formic acid (50:50:0.05, v/v/v) at a flow rate of 0.3 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple reaction monitoring mode (MRM) using the electrospray ionization technique in positive mode. The nominal retention times for cinobufagin, resibufogenin, bufalin, bufotalin, arenobufagin and caudatin were 3.07, 3.55, 2.30, 1.62, 1.22 and 3.43 min, respectively. All analytes showed good linearity in a wide concentration range (r>0.995) and their lower limits of quantification (LLOQ) were all 1.0 ng/mL. The method was linear for all analytes with correlation coefficients>0.995 for all analytes. The average extract recoveries of the five analytes from rat plasma were all over 85%, the precisions and accuracies determined were all within 15%. This method has been successfully applied to pharmacokinetic study of Chan Su in rats following oral administration.  相似文献   

12.
Flow back along a needle track (backflow) can be a problem during direct infusion, e.g. convection-enhanced delivery (CED), of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s) followed by CED of Evans blue albumin (EBA) tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress) before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa) and varied along the length of the needle with smaller average values within white matter (116 Pa) than gray matter (301 Pa) regions. Average pre-stress at 0.2 mm/s (351.7 Pa) was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min), measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.  相似文献   

13.
An automated, internal standard high-performance liquid chromatographic method for the simultaneous quantitation of felbamate and its three metabolites in adult and neonatal rat brain and heart tissue homogenates was developed and validated. The homogenates prepared from one part of the tissue and four parts of water were extracted with ethyl acetate, and the extract was evaporated to dryness and redissolved in mobile phase. Separation was accomplished on a Waters Resolve C18, 5 μm, 300 mm × 3.9 mm I.D. column with a mobile phase consisting of 0.01 M phosphate buffer, pH 6.8—acetonitrile—methanol (800:150:50, v/v/v). Eluting peaks were monitored with an ultraviolet detector at 210 nm. The linear range of the assay for felbamate and the metabolites was 0.20–50.00 μg/ml of homogenate or 1–250 μg/g of brain or heart tissue. The lower limit of quantitation for all four analytes was 0.20 μg/ml of homogenate or 1.00 μg/g of tissue.  相似文献   

14.
Nateglinide (NTG), an insulin secretogogue, has been studied in rats for drug-drug interaction with cilostazol (CLZ), an antiplatelet agent commonly used in diabetics. We developed a liquid chromatography tandem mass spectrometry (LC-MS/MS) based method that is capable of simultaneous monitoring plasma levels of nateglinide, cilostazol, and its active metabolite 3,4-dehydro-cilostazol (DCLZ). All analytes including the internal standard (Repaglinide) were chromatographed on reverse phase C(18) column (50 mm x 4.6mm i.d., 5 microm) using acetonitrile: 2mM ammonium acetate buffer, pH 3.4 (90:10, v/v) as mobile phase at a flow rate 0.4 ml/min in an isocratic mode. The detection of analyte was performed on LC-MS/MS system in the multiple reaction monitoring (MRM) mode. The quantitations for analytes were based on relative concentration. The method was validated over the concentration range of 20-2000 ng/ml and the lower limit of quantitation was 20 ng/ml. The recoveries from spiked control samples were >79% for all analytes and internal standard. Intra- and inter-day accuracy and precision of validated method were with in the acceptable limits of <15% at all concentration. The quantitation method was successfully applied for simultaneous estimation of NTG, CLZ and DCLZ in a pharmacokinetic drug-drug interaction study in Wistar rats.  相似文献   

15.
A sensitive and selective LC-MS/MS based bioanalytical method was developed and validated for the quantification of 3-deazaneplanocin A (DZNep), a novel epigenetic anti-tumor drug candidate, in Sprague-Dawley (SD) rat biosamples (plasma, urine, feces and tissue samples). The method comprises a phenylboronic acid (PBA)-containing solid phase extraction procedure, serving for binding and clean-up of DZNep in rat biosamples spiked with tubercidin (as internal standard). The analytes were separated on an Agilent hydrophilic interaction chromatography (HILIC) column. LC-MS/MS in positive ion mode was used to perform multiple reaction monitoring at m/z of 263/135 and 267/135 for DZNep and tubercidin, respectively. The limit of quantification (LOQ) of DZNep in rat biosamples was 20 ng/mL. The data of intra-day and inter-day accuracy were within 15% of nominal concentration while the precision (relative standard deviation) less than 10% for all biosamples. The extraction recoveries for DZNep and tubercidin were consistent and reproducible (around 80%) and the matrix effects were negligible (around 10% suppression) in all biosamples. This method was demonstrated to be applicable for pharmacokinetic studies of DZNep in SD rats.  相似文献   

16.
Abstract: Classically, drug penetration through the blood-brain barrier depends on the lipid solubility of the substance, except for some highly lipophilic drugs, like colchicine and vinblastine, both substrates of P-glycoprotein, a drug efflux pump present at the luminal surface of the brain capillary endothelial cells. Colchicine and vinblastine uptake into the brain was studied in the rat using the in situ brain perfusion technique and two inhibitors of P-glycoprotein, verapamil and SDZ PSC-833. When rats were pretreated with PSC-833 (10 mg/kg, intravenous bolus), colchicine and vinblastine uptake was enhanced 8.42- and 9.08-fold, respectively, in all the gray areas of the rat brain studied. The mean colchicine distribution volume was increased from 0.67 ± 0.41 to 5.64 ± 0.70 µl/g and vinblastine distribution volume from 2.74 ± 1.15 to 24.88 ± 4.03 µl/g. When rats were pretreated with verapamil (1 mg/kg, intravenous bolus), colchicine distribution volume was increased 3.70-fold. The increase in colchicine and vinblastine did not differ between the eight brain gray areas. PSC-833 and verapamil pretreatment had no influence on the distribution volume of either drug in the choroid plexus. Nevertheless, distribution volumes remained small, considering the highly lipophilic nature of the substances. We suggest that P-glycoprotein is either only partially inhibited (difficulty of fully saturating P-glycoprotein, especially under in vivo conditions) or not the only barrier to these two drugs.  相似文献   

17.
The alkaloids from Piper longum L. showed protective effects on Parkinson's disease models in our previous study and piperine and piperlonguminine were the two main constituents in the alkaloids. The present study aimed at developing a rapid, sensitive, and accurate UFLC-ESI-MS/MS method and validating it for the simultaneous determination of piperine and piperlonguminine in rat plasma using terfenadine as the internal standard. The analytes and internal standard (IS) were extracted from rat plasma using a simple protein precipitation by adding methanol/acetonitrile (1:1, v/v). A Phenomenex Gemini 3 u C18 column (20 mm × 2.00 mm, 3 μm) was used to separate the analytes and IS using a gradient mode system with a mobile phase consisting of water with 0.1% formic acid (mobile phase A) and acetonitrile with 0.1% formic acid (mobile phase B) at a flow rate of 0.4 mL/min and an operating column temperature of 25°C. The total analytical run time was 4 min. The detection was performed using the positive ion electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode with transitions at m/z 286.1-201.1 for piperine, m/z 274.0-201.1 for piperlonguminine, and m/z 472.4-436.4 for the IS. The calibration curves were both linear (r>0.995) over a concentration range of 1.0 to 1000 ng/mL; the lower limit of quantification (LLOQ) was 1.0 ng/mL for both piperine and piperlonguminine. The intra-day and inter-day precisions (RSD %) were <12.1%, accuracies ranged from 86.6 to 120%, and recoveries ranged from 90.4 to 108%. The analytes were proven stable in the short-term, long-term, and after three freeze-thaw cycles. The method was successfully applied to pharmacokinetic studies of piperine and piperlonguminine in rats after oral administration of alkaloids from P. longum L.  相似文献   

18.
A sensitive and specific liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) method has been developed and validated for the quantification of metacavir in rat plasma using tinidazole as an internal standard (I.S.). Following ethyl acetate extraction, the analytes were separated on a Shim-pack ODS (4.6 microm, 150 mm x 2.0 mm I.D.) column and analyzed in selected ion monitoring (SIM) mode with a positive ESI interface using the respective [M+H](+) ions, 266 for metacavir and 248 for tinidazole. The method was validated over the concentration range of 1-600 ng/mL for metacavir. Between and within-batch precisions (R.S.D.%) were all within 15% and accuracy (%) ranged from 92.2 to 105.8%. The lower limit of quantification (LLOQ) was 1 ng/mL. The extraction recovery was on average 89.8%. The validated method was used for the pharmacokinetic study of metacavir in rats.  相似文献   

19.
A simple, selective and sensitive isocratic HPLC method with triple quadrupole mass spectrometry detection has been developed and validated for simultaneous quantification of zopiclone and its metabolites in human plasma. The analytes were extracted using solid phase extraction, separated on Symmetry shield RP8 column (150 mm x 4.6 mm i.d., 3.5 microm particle size) and detected by tandem mass spectrometry with a turbo ion spray interface. Metaxalone was used as an internal standard. The method had a chromatographic run time of 4.5 min and linear calibration curves over the concentration range of 0.5-150 ng/mL for both zopiclone and N-desmethyl zopiclone and 1-150 ng/mL for zopiclone-N-oxide. The intra-batch and inter-batch accuracy and precision evaluated at lower limit of quantification and quality control levels were within 89.5-109.1% and 3.0-14.7%, respectively, for all the analytes. The recoveries calculated for the analytes and internal standard were > or = 90% from spiked plasma samples. The validated method was successfully employed for a comparative bioavailability study after oral administration of 7.5 mg zopiclone (test and reference) to 16 healthy volunteers under fasted condition.  相似文献   

20.
A combined assay for the determination of paclitaxel, docetaxel and ritonavir in human plasma is described. The drugs were extracted from 200 μL human plasma using liquid-liquid extraction with tertiar-butylmethylether, followed by high performance liquid chromatography analysis using 10 mM ammonium hydroxide pH 10:methanol (3:7, v/v) as mobile phase. Chromatographic separation was obtained using a Zorbax Extend C(18) column. Labelled analogues of the analytes are used as internal standards. For detection, positive ionization electrospray tandem mass spectrometry was used. Method development including optimisation of the mass transitions and response, mobile phase optimisation and column selection are discussed. The method was validated according to FDA guidelines and the principles of Good Laboratory Practice (GLP). The validated range was 0.5-500 ng/mL for paclitaxel and docetaxel and 2-2000 ng/mL for ritonavir. For quantification, quadratic calibration curves were used (r(2)>0.99). The total runtime of the method is 9 min and the assay combines analytes with differences in ionisation and desired concentration range. Inter-assay accuracy and precision were tested at four concentration levels and were within 10% and less than 10%, respectively, for all analytes. Carry-over was less than 6% and endogenous interferences or interferences between analytes and internal standards were less than 20% of the response at the lower limit of quantification level. The matrix factor and recovery were determined at low, mid and high concentration levels. The matrix factor was around 1 for all analytes and total recovery between 77.5 and 104%. Stability was investigated in stock solutions, human plasma, dry extracts, final extracts and during 3 freeze/thaw cycles. The described method was successfully applied in clinical studies with oral administration of docetaxel or paclitaxel in combination with ritonavir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号