首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate stimuli of insulin secretion depolarize the pancreatic B cell and the B-cell line RINm5F by inhibiting ATP-sensitive K+ channels. We examined the possibility that this effect is mediated by activation of protein kinase C. In RINm5F cells, the triose D-glyceraldehyde evoked a rapid increase of the mass of 1,2-diacylglycerol, the endogenous activator of protein kinase C. This effect is mainly due to de novo synthesis of the lipid from glycolytic intermediates, as glyceraldehyde carbon was incorporated into 1,2-diacylglycerol within 1 min of exposure to 14C-labelled glyceraldehyde. The effects of two exogenous activators of kinase C, 4-beta-12-phorbol-myristate 13-acetate (PMA) and 1,2-didecanoylglycerol (DC10) on single K+ channel currents were examined in RINm5F cell-attached membrane patches. Both PMA and DC10 depolarized the cells and decreased the open-state probability of the ATP-sensitive K+ channels. These actions were not due to changes in cellular ATP content, since PMA, like glyceraldehyde, failed to alter cellular ATP. As is the case for glyceraldehyde, PMA and DC10 raised cytosolic free Ca2+ [( Ca2+]i) and stimulated insulin secretion. Both of these effects are inhibited in the absence of external Ca2+. This, and the attenuation of the [Ca2+]i rise by verapamil, suggest that all three stimuli raise [Ca2+]i by promoting Ca2+ influx through voltage-gated channels in turn leading to insulin secretion. As the exogenous activators of protein kinase C mimic the effects of glyceraldehyde, it is proposed that the carbohydrate-mediated production of 1,2-diacylglycerol constitutes the link between metabolism and membrane depolarization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
用膜片钳技术中的细胞贴附方式和内面向外方式,首次在新生大鼠大脑皮层星形神经元胞体膜上记录到一类电压依赖性钾通道。此通道可被20mmol/L TEA,5mmol/L Ba^2+,140mmol/L Cs^+阻断,不受20mmol/L4-AP影响,其激活不依赖Ca^2+。膜外钾离子浓度对通道的特性有显著的影响,逆转电位随K^+的增大而增大,并表现出一定的饱和现象,两者的对数呈线性关系;同一驱动电位下,  相似文献   

3.
A Cl- channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 microM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than ECl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]i) was increased above 1 microM. If [Ca2+]i is increased to 800 microM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i; an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 microM [Ca2+]i, while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl- channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.  相似文献   

4.
We have undertaken a detailed study of the mechanisms of maintenance of intracellular Ca2+ homeostasis in human polymorphonuclear neutrophils (PMN) and its implications for phagocytosis and IgG Fc receptor (FcR) signaling. When PMN were incubated in Ca(2+)-free medium, cytoplasmic calcium concentration ([Ca2+]i) was markedly depressed and intracellular stores were depleted of calcium. [Ca2+]i in these depleted cells increased within 1 min when PMN were placed in medium containing Ca2+ and then decreased to a level close to the normal basal [Ca2+]i, replenishing the intracellular Ca2+ pools. LaCl3 prevented entry of Ca2+ into Ca(2+)-depleted PMN, but the calcium channel blockers nifedipine, diltiazem, and verapamil did not. Nifedipine and diltiazem but not verapamil inhibited the movement of Ca2+ from cytosol to intracellular stores. Nifedipine and diltiazem inhibited the normal increase in [Ca2+]i from aggregated IgG binding to FcR and also prevented formyl-methionyl-leucyl-phenyl-alanine (fMLP)-induced [Ca2+]i rise. Verapamil had no effect on either an fMLP- or IgG-mediated increase in [Ca2+]i. Consistent with this, nifedipine and diltiazem inhibited fMLP-stimulated phagocytosis (which is dependent on an increase in [Ca2+]i) when PMN had repleted intracellular stores. In contrast, LaCl3 inhibited fMLP-stimulated ingestion only in PMN which had intracellular store depleted. None of these compounds had any effect on phorbol dibutyrate-stimulated ingestion (which is independent of a [Ca2+]i rise). In summary, these data show that Ca2+ is in rapid equilibrium between intracellular and extracellular compartments in PMN. Exchange of cytoplasmic Ca2+ with the extracellular space is inhibited by LaCl3, while exchange of Ca2+ between the cytosol and intracellular stores is inhibited by the dihydropyridine nifedipine and the benzothiazepine diltiazem. These data suggest that these drugs, which are known to regulate some plasma membrane Ca2+ channels in excitable cells, can also regulate Ca2+ release from intracellular stores in PMN and that this regulation may have significant effects on PMN function.  相似文献   

5.
Confocal laser scanning microscopy (CLSM) and whole-cell patch-clamp were used to investigate the role of Ca2+ influx in maintaining the cytosolic Ca2+ concentration ([Ca2+]c) and the features of the Ca2+ influx pathway in germinating pollen grains of Lilium davidii D. [Ca2+]c decreased when Ca2+ influx was inhibited by EGTA or Ca2+ channel blockers. A hyperpolarization-activated Ca2+-permeable channel, which can be suppressed by trivalent cations, verapamil, nifedipine or diltiazem, was identified on the plasma membrane of pollen protoplasts with whole-cell patch-clamp recording. Calmodulin (CaM) antiserum and W7-agarose, both of which are cell-impermeable CaM antagonists, lead to a [Ca2+]c decrease, while exogenous purified CaM triggers a transient increase of [Ca2+]c and also remarkably activated the hyperpolarization-activated Ca2+ conductance on plasma membrane of pollen protoplasts in a dose-dependent manner. Both the increase of [Ca2+]c and the activation of Ca2+ conductance which were induced by exogenous CaM were inhibited by EGTA or Ca2+ channel blockers. This primary evidence showed the presence of a voltage-dependent Ca2+-permeable channel, whose activity may be regulated by extracellular CaM, in pollen cells.  相似文献   

6.
Both the activation and the transformation of human B cells by EBV were inhibited by either the Ca2+ channel blocking agent verapamil or the combination of theophylline and dibutyryl cAMP: the day 4 and day 20 peaks of [3H]TdR incorporation were abolished; the EBNA marker was not expressed by day 10; lymphoblastoid cell lines did not arise. Short term incubation of B cells with EBV or verapamil showed that the effect of verapamil was reversible and took place early in the interaction between EBV and B cells. The effect of EBV on the early metabolic events of B cell response was thus examined in the presence and in the absence of the drugs. Compared to anti-mu stimulation, supernatant of the transforming B95-8 strain as well as that of the non-transforming P3HR1 strain induced a drug sensitive increase of the free cytosolic Ca2+ concentration. This increase was associated with a protein kinase C translocation from the cytosol to a membrane bound compartment. Moreover, B95-8 supernatant induced phosphatidyl inositol metabolism by human B cells but at least four times less than that induced by anti-mu antibody. These metabolic events induced by EBV were significantly inhibited by anti-CD21 antibodies whereas anti-mu induced metabolic events were not. The infection of EBV negative Ramos cell line was prevented by verapamil or by theophylline + dibutyryl cAMP. Verapamil did not modify the density of EBV receptors but negatively interfered with the penetration of the virus into B cells. Thus B cell activation through the EBV receptor and virus penetration share a common metabolic pathway which is also used for transduction of the signal delivered through the membrane Ig.  相似文献   

7.
The regulation of the increase in intracellular calcium ([Ca2+]i) occurring in cytolytic T lymphocytes (CTLs) upon their interaction with antigen was examined. This [Ca2+]i increase and lytic function were insensitive to verapamil, a Ca channel blocker. An antigen-independent increase in [Ca2+]i was not induced by depolarization of CTLs with excess extracellular K+, suggesting that Ca2+ influx is not mediated by the ubiquitous voltage-gated Ca channel. The antigen-induced [Ca2+]i increase was inhibited by prior membrane hyperpolarization with valinomycin. Hyperpolarization occurred under normal circumstances in CTLs exposed to antigen-receptor-specific antibodies. This potential change was Ca2+-dependent and inhibited by K channel blockade. Conversely, K channel blockade augmented the antigen-specific [Ca2+]i increase while markedly decreasing the K+ efflux associated with CTL lytic function. Therefore, either membrane potential or intracellular K+ regulates the antigen-specific [Ca2+]i increase in CTLs.  相似文献   

8.
Isolated neutrophils were used to study the intracellular calcium ([Ca2+]i) dependency of Pasteurella haemolytica leukotoxin-induced production of leukotriene B4 and plasma membrane damage. Exposure of neutrophils to leukotoxin caused a rapid and concentration-dependent increase in [Ca2+]i, followed by simultaneous plasma membrane damage and production of leukotriene B4. Removal of extracellular Ca2+, replacement of Ca2+ with other divalent cations, or exposure to high concentration of verapamil, an inhibitor of voltage-dependent calcium channels, inhibited leukotoxin-induced increases in [Ca2+]i, leukotriene B4 production, and membrane damage, thus indicating that influx of extracellular Ca2+ is necessary to produce these leukotoxin-induced neutrophil responses.  相似文献   

9.
10.
S Gupta 《Cellular immunology》1987,104(2):290-295
The in vitro effect of ion channel-blocking agents verapamil (V), 4-aminopyridine (4AP), tetraethylammonium (TEA), and quinine (Q) was examined on the proliferative response of human peripheral blood T lymphocytes in the autologous mixed-lymphocyte reaction (AMLR). All the above channel blockers in a dose-dependent manner inhibited the AMLR. Tetramethylammonium (TMA), an analog of TEA that does not block K+ channel currents, did not inhibit the AMLR. 4AP at 1 mM/ml concentration inhibited the expression of IL-2 receptors, as defined by monoclonal antibody anti-Tac, on T-cell activated in the AMLR. In vitro addition of recombinant interleukin 2(rIL-2) completely corrected the inhibition of the AMLR by channel blockers. Furthermore, the concentrations of ion channel blockers required for blocking 50% response of T cells in the AMLR was much lower than that reported for 50% block of T-cell proliferation in response to phytohemagglutinin or in allogeneic mixed-lymphocyte culture (MLC). These data suggest a role of ion channels in T-cell functions and show that the AMLR provides a more sensitive system, as compared to lectin stimulation or MLC, to examine any immunosuppressive effects of ion channel-blocking agents in disease states where they are used as therapeutic modalities.  相似文献   

11.
The effect of the immunosuppressive cyclosporin A (CsA) on the cytosolic free Ca2+ concentration ([Ca2+]i) and membrane potential of human B and T lymphoblastoid cells and mouse thymocytes was studied in order to reveal some features of the early stage of drug-cell interaction. Cytosolic free Ca2+ concentration of the cells was measured by spectrofluorimetry using indo-1 and quin2 fluorescent calcium indicators. Membrane potential was monitored in a flow cytometer with oxonol dye. CsA applied at 2-20 micrograms/ml final concentrations caused a dose-dependent, rapid, transient rise of [Ca2+]i in all cell types. This effect could be blocked by chelating the extracellular Ca2+ with EGTA but was not sensitive to Ca2+ channel blockers verapamil and nifedipine or K+ channel blocker 4-aminopyridine. A possible explanation for the calcium mobilizing effect of CsA is an ionophore-like mode of action at the cell membrane level. Besides directly interfering with mitogenic signals, the elevation of [Ca2+]i could be responsible for an initial hyperpolarization observed in CsA-treated T lymphocytes. This hyperpolarization, however, was not detectable in B lymphoblastoid cells. A further difference between B and T cells was the diverse pattern of depolarization following CsA treatment. This variance in the behaviour of T and B lymphocytes and the diversity of membrane transport systems in its background could account for the different final outcome of the drug-cell interaction.  相似文献   

12.
Cross-linking of surface Ig has been shown to stimulate phosphatidylinositol hydrolysis in murine B cells, leading to increases in [Ca2+]i and activation of protein kinase C (PKC). Preliminary evidence suggests that a similar activation mechanism occurs in human B cells. We wished to examine whether anti-Ig antibody-stimulated human B cell proliferation is as dependent upon the presence of PKC as is anti-Ig-mediated murine B cell proliferation. Using highly purified, small, dense peripheral-blood B lymphocytes from healthy adult donors, we confirmed that PMA, a direct activator of PKC, is a potent mitogen for human B cells that synergizes with anti-mu antibody. Furthermore, we demonstrated that PMA treatment abolishes detectable cellular stores of immunoreactive PKC. However, after such depletion of cellular PKC, anti-mu antibody is still capable of delivering a proliferative signal to human B cells. It is unlikely that this signal occurs solely on the basis of increases in [Ca2+]i, because the calcium ionophore A23187 does not induce a proliferative response in PMA-treated B cells similar in magnitude to that seen with anti-mu. Additionally, the finding that pretreatment of B cells with PMA ablates the ability of anti-Ig antibody to mobilize intracellular and extracellular calcium also suggests that the ability of PMA to enhance anti-Ig mediated stimulation does not depend on elevations of [Ca2+]i induced by anti-Ig. Together, these observations suggest that anti-Ig signaling of human B cells may occur via other pathways in addition to the phosphatidylinositol system of calcium influx and PKC activation.  相似文献   

13.
Murine B lymphocytes cultured with F(ab')2 anti-mouse mu or delta lost (85%) the capacity to bind antigen-IgG antibody complexes as assessed by flow microfluorometry. Anti-mu-induced loss of binding of complexes was concentration, time, and temperature dependent, reversible, and not due to decreased expression of the receptor because binding of monoclonal anti-Fc gamma R II to B lymphocytes cultured with anti-mu was unaffected. Activation of PKC and elevation of [Ca2+]i obtained by culturing B lymphocytes with the combination of PMA and Ca2+ ionophore induced a similar loss of binding of Cx. Since stimulation of B lymphocytes with anti-mu also activates PKC and elevates [Ca2+]i, these changes may be involved in the anti-mu-induced alterations in the binding of complexes to Fc gamma R II. In contrast to the effects of other activators, LPS caused increased expression (threefold) of B lymphocyte Fc gamma R II as measured by the binding of both complexes and monoclonal anti-Fc gamma R II. Thus, different B lymphocyte activators have distinct effects on Fc gamma R II expression or ligand binding capacity and can thereby affect Fc gamma R II-generated regulatory signals.  相似文献   

14.
We previously demonstrated that a balance of K+ and Ca2+-activated Cl- channel activity maintained the basal tone of circular smooth muscle of opossum lower esophageal sphincter (LES). In the current studies, the contribution of major K+ channels to the LES basal tone was investigated in circular smooth muscle of opossum LES in vitro. K+ channel activity was recorded in dispersed single cells at room temperature using patch-clamp recordings. Whole-cell patch-clamp recordings displayed an outward current beginning to activate at -60 mV by step test pulses lasting 400 ms (-120 mV to +100 mV) with increments of 20 mV from holding potential of -80 mV ([K+]I = 150 mM, [K+]o = 2.5 mM). However, no inward rectification was observed. The outward current peaked within 50 ms and showed little or no inactivation. It was significantly decreased by bath application of nifedipine, tetraethylammonium (TEA), 4-aminopyridine (4-AP), and iberiotoxin (IBTN). Further combination of TEA with 4-AP, nifedipine with 4-AP, and IBTN with TEA, or vice versa, blocked more than 90% of the outward current. Ca2+-sensitive single channels were recorded at asymetrical K+ gradients in cell-attached patch-clamp configurations (100.8+/-3.2 pS, n = 8). Open probability of the single channels recorded in inside-out patch-clamp configurations were greatly decreased by bath application of IBTN (100 nM) (Vh = -14.4+/-4.8 mV in control vs. 27.3+/-0.1 mV, n = 3, P < 0.05). These data suggest that large conductance Ca2+-activated K+ and delayed rectifier K+ channels contribute to the membrane potential, and thereby regulate the basal tone of opossum LES circular smooth muscle.  相似文献   

15.
Platelet-activating factor (PAF) is an autocrine trophic/survival factor for the preimplantation embryo. PAF induced an increase in intracellular calcium concentration ([Ca2+]i) in the 2-cell embryo that had an absolute requirement for external calcium. L-type calcium channel blockers (diltiazem, verapamil, and nimodipine) significantly inhibited PAF-induced Ca2+ transients, but inhibitors of P/Q type (omega-agatoxin; omega-conotoxin MVIIC), N-type (omega-conotoxin GVIA), T-type (pimozide), and store-operated channels (SKF 96365 and econazole) did not block the transient. mRNA and protein for the alpha1-C subunit of L-type channels was expressed in the 2-cell embryo. The L-type calcium channel agonist (+/-) BAY K 8644 induced [Ca2+]i transients and, PAF and BAY K 8644 each caused mutual heterologous desensitization of each other's responses. Depolarization of the embryo (75 mM KCl) induced a [Ca2+]i transient that was inhibited by diltiazem and verapamil. Whole-cell patch-clamp measurements detected a voltage-gated channel (blocked by diltiazem, verapamil, and nifedipine) that was desensitized by prior responses of embryos to exogenous or embryo-derived PAF. Replacement of media Ca2+ with Mn2+ allowed Mn2+ influx to be observed directly; activation of a diltiazem-sensitive influx channel was an early response to PAF. The activation of a voltage-gated L-type calcium channel in the 2-cell embryo is required for normal signal transduction to an embryonic trophic factor.  相似文献   

16.
Ca(2+)-activated K+[K(Ca)] channels in resting and activated human peripheral blood T lymphocytes were characterized using simultaneous patch-clamp recording and fura-2 monitoring of cytosolic Ca2+ concentration, [Ca2+]i. Whole-cell experiments, using EGTA-buffered pipette solutions to raise [Ca2+]i to 1 microM, revealed a 25-fold increase in the number of conducting K(Ca) channels per cell, from an average of 20 in resting T cells to > 500 channels per cell in T cell blasts after mitogenic activation. The opening of K(Ca) channels in both whole-cell and inside-out patch experiments was highly sensitive to [Ca2+]i (Hill coefficient of 4, with a midpoint of approximately 300 nM). At optimal [Ca2+]i, the open probability of a K(Ca) channel was 0.3-0.5. K(Ca) channels showed little or no voltage dependence from - 100 to 0 mV. Single-channel I-V curves were linear with a unitary conductance of 11 pS in normal Ringer and exhibited modest inward rectification with a unitary conductance of approximately 35 pS in symmetrical 160 mM K+. Permeability ratios, relative to K+, determined from reversal potential measurements were: K+ (1.0) > Rb+ (0.96) > NH4+ (0.17) > Cs+ (0.07). Slope conductance ratios were: NH4+ (1.2) > K+ (1.0) > Rb+ (0.6) > Cs+ (0.10). Extracellular Cs+ or Ba2+ each induced voltage-dependent block of K(Ca) channels, with block increasing at hyperpolarizing potentials in a manner suggesting a site of block 75% across the membrane field from the outside. K(Ca) channels were blocked by tetraethylammonium (TEA) applied externally (Kd = 40 mM), but were unaffected by 10 mM TEA applied inside by pipette perfusion. K(Ca) channels were blocked by charybdotoxin (CTX) with a half-blocking dose of 3-4 nM, but were resistant to block by noxiustoxin (NTX) at 1-100 nM. Unlike K(Ca) channels in Jurkat T cells, the K(Ca) channels of normal resting or activated T cells were not blocked by apamin. We conclude that while K(Ca) and voltage-gated K+ channels in the same cells share similarities in ion permeation, Cs+ and Ba2+ block, and sensitivity to CTX, the underlying proteins differ in structural characteristics that determine channel gating and block by NTX and TEA.  相似文献   

17.
Con A刺激致T淋巴细胞胞浆游离Ca~(2+)浓度升高   总被引:1,自引:0,他引:1  
本文分别应用荧光Ca~(2+)指示剂Quin2和Indo-1研究了Con A刺激的T淋巴细胞[Ca~(2+)]i升高过程及其发生机制.结果表明Con A与T淋巴细胞作用可导致细胞[Ca~(2+)]i的迅速升高.这种增加的胞内游离Ca~(2+)不仅来自胞外Ca~(2+)的内流,也来源于胞内钙库的释放.其中Ca~(2+)内流与T细胞钙通道的开放有关.可被钙通道抑制剂戊脉胺抑制,细胞的去极化及钾通道阻断剂四乙胺均不能阻断Ca~(2+)的内流,提示Ca~(2+)内流不是通过电位操纵的钙通道实现的,也与拥通道的开闭无关.Ca~(2+)内流可能是通过Con A受体活化的受体操纵的钙通道而实现的.  相似文献   

18.
In order to assess the role of different classes of K(+) channels in recirculation of K(+) across the basolateral membrane of rabbit distal colon epithelium, the effects of various K(+) channel inhibitors were tested on the activity of single K(+) channels from the basolateral membrane, on macroscopic basolateral K(+) conductance, and on the rate of Na(+) absorption and Cl(-) secretion. In single-channel measurements using the lipid bilayer reconstitution system, high-conductance (236 pS), Ca(2+)-activated K(+) (BK(Ca)) channels were most frequently detected; the second most abundant channel was a low-conductance K(+) channel (31 pS) that exhibited channel rundown. In addition to Ba(2+) and charybdotoxin (ChTX), the BK(Ca) channels were inhibited by quinidine, verapamil and tetraethylammonium (TEA), the latter only when present on the side of the channel from which K(+) flow originates. Macroscopic basolateral K(+) conductance, determined in amphotericin-permeabilised epithelia, was also markedly reduced by quinidine and verapamil, TEA inhibited only from the lumen side, and serosal ChTX was without effect. The chromanol 293B and the sulphonylurea tolbutamide did not affect BK(Ca) channels and had no or only a small inhibitory effect on macroscopic basolateral K(+) conductance. Transepithelial Na(+) absorption was partly inhibited by Ba(2+), quinidine and verapamil, suggesting that BK(Ca) channels are involved in basolateral recirculation of K(+) during Na(+) absorption in rabbit colon. The BK(Ca) channel inhibitors TEA and ChTX did not reduce Na(+) absorption, probably because TEA does not enter intact cells and ChTX is 'knocked off' its extracellular binding site by K(+) outflow from the cell interior. Transepithelial Cl(-) secretion was inhibited completely by Ba(2+) and 293B, partly by quinidine but not by the other K(+) channel blockers, indicating that the small (<3 pS) K(V)LQT1 channels are responsible for basolateral K(+) exit during Cl(-) secretion. Hence different types of K(+) channels mediate basolateral K(+) exit during transepithelial Na(+) and Cl(-) transport.  相似文献   

19.
Store-operated Ca(2+) channels (SOC) are expressed in cultured human mesangial cells and activated by epidermal growth factor through a pathway involving protein kinase C (PKC). We used fura-2 fluorescence and patch clamp experiments to determine the role of PKC in mediating the activation of SOC after depletion of internal stores by thapsigargin. The measurements of intracellular Ca(2+) concentration ([Ca(2+)](i)) revealed that the thapsigargin-induced Ca(2+) entry pathway was abolished by calphostin C, a protein kinase C inhibitor. The PKC activator, phorbol 12-myristate 13-acetate (PMA), promoted a Ca(2+) influx that was significantly attenuated by calphostin C and La(3+) but not by diltiazem. Neither PMA nor calphostin C altered the thapsigargin-induced initial transient rise in [Ca(2+)](i). In cell-attached patch clamp experiments, the thapsigargin-induced activation of SOC was potentiated by PMA and abolished by both calphostin C and staurosporine. However, SOC was unaffected by thapsigargin when clamping [Ca(2+)](i) with 1,2-bis (o-Aminophenoxy)ethane-N,N,N',N'tetraacetic acid tetra(acetoxymethyl)ester. In the absence of thapsigargin, PMA and phorbol 12, 13-didecanoate evoked a significant increase in NP(O) of SOC, whereas calphostin C did not affect base-line channel activity. In inside-out patches, SOC activity ran down immediately upon excision but was reactivated significantly after adding the catalytic subunit of 0.1 unit/ml of PKC plus 100 microm ATP. Neither ATP alone nor ATP with heat-inactivated PKC rescued a rundown of SOC. Metavanadate, a general protein phosphatase inhibitor, also enhanced SOC activity in inside-out patches. Bath [Ca(2+)] did not significantly affect the channel activity in inside-out patch. These results indicate that the depletion of Ca(2+) stores activates SOC by PKC-mediated phosphorylation of the channel proteins or a membrane-associated complex.  相似文献   

20.
Previous studies using the patch-clamp technique demonstrated the presence of a small conductance Cl(-) channel in the apical membrane of respiratory gill cells in primary culture originating from sea bass Dicentrarchus labrax. We used the same technique here to characterize potassium channels in this model. A K(+) channel of 123 +/- 3 pS was identified in the cell-attached configuration with 140 mM KCl in the bath and in the pipette. The activity of the channel declined rapidly with time and could be restored by the application of a negative pressure to the pipette (suction) or by substitution of the bath solution with a hypotonic solution (cell swelling). In the excised patch inside-out configuration, ionic substitution demonstrated a high selectivity of this channel for K(+) over Na(+) and Ca(2+). The mechanosensitivity of this channel to membrane stretching via suction was also observed in this configuration. Pharmacological studies demonstrated that this channel was inhibited by barium (5 mM), quinidine (500 microM), and gadolinium (500 microM). Channel activity decreased when cytoplasmic pH was decreased from 7.7 to 6.8. The effect of membrane distension by suction and exposure to hypotonic solutions on K(+) channel activity is consistent with the hypothesis that stretch-activated K(+) channels could mediate an increase in K(+) conductance during cell swelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号