首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The three yolk protein genes (yp) of Drosophila melanogaster are transcribed in a sex- and tissue-limited fashion. We have searched for cis-regulatory sequences in regions flanking yp1 and yp2 to identify the elements that confer female-specific expression in the fat body. One such 127 by element has previously been identified in this region. We show here the existence of two additional regions which confer female fat body-specific expression on an Adh reporter gene and on the native yp2 gene, respectively. This suggests some redundancy in the regulation of expression of the yp genes. Computer searches for putative binding sites for the DSX protein, which regulates sex-specific expression of the yp genes, revealed several such sites in our constructs. However, the significance of these is unclear since many such sites also occur in genes which one would not expect to be regulated in a sex-specific manner (e.g. Adh, Actin 5C). We suggest that DSX acts in concert with other proteins to mediate sex- and tissue-specific expression of the yp genes.  相似文献   

2.
Summary The autonomous synthesis of yolk proteins in ovarian follicles ofDrosophila melanogaster was analyzed. Vitellogenic follicles were labelled with35S-methionine in vitro and the newly synthesized yolk proteins were separated by SDS-polyacrylamide gel electrophoresis. Possible contamination of the follicle preparations caused by adhering fat body cells could be excluded by culturing follicles in males prior to labelling in vitro. When labelled follicles were cut at the nurse cell/oocyte border the three yolk proteins (YP1, YP2, YP3) were found only in posterior fragments containing ooplasm and follicle cells, whereas two radioactive protein bands (A and B) were detected in nurse cells (anterior fragments). The yolk proteins of these five bands were characterized by peptide mapping. Band A protein, migrating a little more slowly than YP2, is closely related to both YP1 and YP2 while band B contains a yolk protein which is very similar to YP3. Hence, the nurse cells have been identified as a site of vitellogenin synthesis within the ovary ofDrosophila.Supported by the Deutsche Forschungsgemeinschaft, SFB 46  相似文献   

3.
Summary The yolk proteins stored in Drosophila, oocytes for utilisation during embryogenesis are an ideal system for studying the regulation of gene expression during development. The 3 major polypeptides found in yolk in D. melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated by the oocyte during vitellogenesis. In order to understand more about their regulation and the mechanism of uptake, studies on other species are necessary.Three yolk polypeptides have previously been identified in the D. melanogaster sibling species (D. melanogaster, D. simulans, D. mauritiana, D. erecta, D. teissieri, D. orena and D. yakuba). In D. melanogaster three genes located on the X chromosome are known to code for these yolk polypeptides. in this study genomic Southern transfers and in situ hybridisation experiments were carried out on the sibling species. Using the three cloned yolk protein genes from D. melanogaster, homologous sequences could be detected in the sibling species. It is suggested that three yolk protein genes occur in each of these species, all being located on the X chromosome, and that two of the genes are very closely linked in these same species. Yolk protein gene-homologous DNA sequences have also been identified in two more distantly related species D. funebris and D. virilis.  相似文献   

4.
Summary Yolk proteins are transported from the hemolymph into the oocytes of insects during vitellogenesis by receptor-mediated endocytosis. Since other hemolymph proteins, both native and foreign, are not accumulated in the oocyte, the process of uptake is selective for yolk proteins. Peptide domains within the yolk proteins must therefore be involved in receptor recognition. With the longterm aim of identifying these domains and to open the possibility of understanding the molecular basis of receptor-mediated endocytosis of yolk proteins, we began investigating how well this mechanism has been conserved in evolution. We studied the uptake of yolk proteins from 13 different Drosophila species and five other dipteran species, namely, Calliphora erythrocephala, Sarcophaga argyrostoma, Musca domestica, Lucilia servicata, and Protophormia terrae-novae, into the ovaries of Drosophila melanogaster and Drosophila funebris. The results from these experiments showed that in all cases the foreign yolk proteins were taken up by the host ovaries, indicating that the mechanism and peptide domains of the yolk proteins involved in recognition of the receptor have been well conserved in dipteran evolution. Offprint requests to: M. Bownes  相似文献   

5.
6.
Ludwig A  Loreto EL 《Genetica》2007,130(2):161-168
The gtwin retrotransposon was recently discovered in the Drosophila melanogaster genome and it is evolutionarily closer to gypsy endogenous retrovirus. This study has identified gtwin homologous sequences in the genome of D. simulans, D. sechellia, D. erecta and D. yakuba by performing homology searches against the public genome database of Drosophila species. The phylogenetic analyses of the gtwin env gene sequences of these species have shown some incongruities with the host species phylogeny, suggesting some horizontal transfer events for this retroelement. Moreover, we reported the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster. The results suggest that the gtwin element may be an infectious retrovirus able to invade the genome of new species, supporting the gtwin evolutionary picture shown in this work.  相似文献   

7.
Bristles on the notum of many cyclorraphous flies are arranged into species-specific stereotyped patterns. The positions of bristles correlate with differences in the spatial expression of the scute (sc) gene in those species examined so far. However, a major upstream activator of scute, Pannier (Pnr), is expressed in a conserved domain over the entire medial notum. Here we examine the expression patterns in Calliphora vicina of stripe (sr), u-shaped (ush), caupolican (caup) and wingless (wg), genes known to modify the activity of Pnr or to act downstream of Pnr in Drosophila. We find that, with minor differences, their expression patterns are conserved. This suggests that the function of a trans-regulatory network of genes is relatively unchanged in derived Diptera and that many differences are likely to be due to changes in cis-regulatory sequences of scute.  相似文献   

8.
Previous studies indicate that the tandemly repeated members of the amylase (Amy) gene family evolved in a concerted manner in the melanogaster subgroup and in some other species. In this paper, we analyzed all of the 49 active and complete Amy gene sequences in Drosophila, mostly from subgenus Sophophora. Phylogenetic analysis indicated that the two types of diverged Amy genes in the Drosophila montium subgroup and Drosophila ananassae, which are located in distant chromosomal regions from each other, originated independently in different evolutionary lineages of the melanogaster group after the split of the obscura and melanogaster groups. One of the two clusters was lost after duplication in the melanogaster subgroup. Given the time, 24.9 mya, of divergence between the obscura and the melanogaster groups (Russo et al. 1995), the two duplication events were estimated to occur at about 13.96 ± 1.93 and 12.38 ± 1.76 mya in the montium subgroup and D. ananassae, respectively. An accelerated rate of amino acid changes was not observed in either lineage after these gene duplications. However, the G+C contents at the third codon positions (GC3) decreased significantly along one of the two Amy clusters both in the montium subgroup and in D. ananassae right after gene duplication. Furthermore, one of the two types of the Amy genes with a lower GC3 content has lost a specific regulatory element within the montium subgroup species and D. ananassae. While the tandemly repeated members evolved in a concerted manner, the two types of diverged Amy genes in Drosophila experienced frequent gene duplication, gene loss, and divergent evolution following the model of a birth-and-death process.  相似文献   

9.
Summary The female-sterile mutants fs(1) 1163 of Drosophila melanogaster described by Gans et al. (1975) has been characterised as a yolk protein 1 (YP1) secretion mutant (Bownes and Hames 1978b; Bownes and Hodson 1980). We have cloned and sequenced the YP1 gene from this strain, and the strain in which the mutant was induced. One amino acid substitution was found in the predicted polypeptide sequence, an isoleucine to asparagine change at position 92. The sequence of the leader peptide was identical to previously published YP1 sequences. The possible effects of the amino acid change were investigated by computer analysis, which suggests there is no major alteration of secondary structure, but that a hydrophobic region in YP1 is lost in the mutant. This may affect higher order structure.  相似文献   

10.
Summary Previous studies have demonstrated that the expression of the -amylase gene is repressed by dietary glucose in Drosophila melanogaster. Here, we show that the -amylase gene of a distantly related species, D. virilis, is also subject to glucose repression. Moreover, the cloned amylase gene of D. virilis is shown to be glucose repressible when it is transiently expressed in D. melanogaster larvae. This cross-species, functional conservation is mediated by a 330-bp promoter region of the D. virilis amylase gene. These results indicate that the promoter elements required for glucose repression are conserved between distantly related Drosophila species. A sequence comparison between the amylase genes of D. virilis and D. melanogaster shows that the promoter sequences diverge to a much greater degree than the coding sequences. The amylase promoters of the two species do, however, share small clusters of sequence similarity, suggesting that these conserved cis-acting elements are sufficient to control the glucose-regulated expression of the amylase gene in the genus Drosophila.Offprint requests to: D.A. Hickey  相似文献   

11.
Summary The three yolk proteins (YP1, YP2 and YP3) of Drosophila melanogaster are synthesised in the fat body and ovarian follicle cells and selectively accumulated in the developing oocytes to provide a nutrient source for embryogenesis. We have described the phenotype of a temperaturesensitive female-sterile mutant, fs(1) K313, and characterised its yolk proteins. This mutation affects the secretion of YP2 and is the first mutation affecting YP2 to be described. Using genetic and molecular tests we argue that the female-sterile phenotype results, at least in part, from the abnormal secretion of YP2 perturbing the follicle cell secretory pathway in general and thus causing defects in chorion protein secretion. The gene coding for YP2 in fs (1) K313 has been cloned and sequenced. Two amino acid substitutions have been found which probably cause the abnormal secretion of YP2 and the resulting female-sterile phenotype.  相似文献   

12.
The composition of the free amino acids are compared in adults of two inbred strains of Drosophila subobscura and their hybrids, three inbred lines of Drosophila melanogaster, and in flies from a heterogeneous population of Calliphora erythrocephala. It appears that not only do the amounts of amino acid vary very little from fly to fly, but also very little between inbred lines. Furthermore, the relative amounts of the amino acids in Drosophila are similar to the relative amounts in the blowfly, Calliphora. This characteristic of invariant amounts of the free amino acids in these Diptera occurs in spite of the probably large numbers of genes affecting them.  相似文献   

13.
Cytochrome proteins perform a broad spectrum of biological functions ranging from oxidative metabolism to electron transport and are thus essential to all organisms. The b-type cytochrome proteins bind heme noncovalently, are expressed in many different forms and are localized to various cellular compartments. We report the characterization of the cytochrome b5 (Cyt-b) gene of Drosophila virilis and compare its structure to the Cyt-b gene of Drosophila melanogaster. As in D. melanogaster, the D. virilis gene is nuclear encoded and single copy. Although the intron/exon structures of these homologues differ, the Cyt-b proteins of D. melanogaster and D. virilis are approximately 75% identical and share the same size coding regions (1,242 nucleotides) and protein products (414 amino acids). The Drosophila Cyt-b proteins show sequence similarity to other b-type cytochromes, especially in the N-terminal heme-binding domain, and may be targeted to the mitochondrial membrane. The greatest levels of similarity are observed in areas of potential importance for protein structure and function. The exon sequences of the D. virilis Cyt-b gene differ by a total of 292 base changes. However, 62% of these changes are silent. The high degree of conservation between species separated by 60 million years of evolution in both the DNA and amino acid sequences suggests this nuclear cytochrome b5 locus encodes an essential product of the Drosophila system.Correspondence to: C.E. Rozek  相似文献   

14.
LINE-like retrotransposons, the so-called I elements, control the system of I-R (inducer-reactive) hybrid dysgenesis in Drosophila melanogaster. I elements are present in many Drosophila species. It has been suggested that active, complete I elements, located at different sites on the chromosomes, invaded natural populations of D. melanogaster recently (1920–1970). But old strains lacking active I elements have only defective I elements located in the chromocenter. We have cloned I elements from D. melanogaster and the melanogaster subgroup. In D. melanogaster, the nucleotide sequences of chromocentral I elements differed from those on chromosome arms by as much as 7%. All the I elements of D. mauritiana and D. sechellia are more closely related to the chromosomal I elements of D. melanogaster than to the chromocentral I elements in any species. No sequence difference was observed in the surveyed region between two chromosomal I elements isolated from D. melanogaster and one from D. simulans. These findings strongly support the idea that the defective chromocentral I elements of D. melanogaster originated before the species diverged and the chromosomal I elements were eliminated. The chromosomal I elements reinvaded natural populations of D. melanogaster recently, and were possibly introduced from D. simulans by horizontal transmission.  相似文献   

15.
Summary The Threonine-Glycine (Thr-Gly) region of the period gene (per) in Drosophila was compared in the eight species of the D. melanogaster subgroup. This region can be divided into a diverged variable-length segment which is flanked by more conserved sequences. The number of amino acids encoded in the variable-length region ranges from 40 in D. teissieri to 69 in D. mauritiana. This is similar to the range found within natural populations of D. melanogaster. It was possible to derive a Thr-Gly allele of one species from that of another by invoking hypothetical Thr-Gly intermediates. A phylogeny based on the more conserved flanking sequences was produced. The results highlighted some of the problems which are encountered when highly polymorphic genes are used to infer phylogenies of closely related species.  相似文献   

16.
Jin S  Hu GA  Qian YH  Zhang L  Zhang J  Qiu G  Zeng QT  Gui JF 《Genetica》2005,125(2-3):223-230
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5–10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.  相似文献   

17.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

18.
Here we analyze the molecular evolution of the β-esterase gene cluster in the Drosophila genus using the recently released genome sequences of 12 Drosophila species. Molecular evolution in this small cluster is noteworthy because it contains contrasting examples of the types and stages of loss of gene function. Specifically, missing orthologs, pseudogenes, and null alleles are all inferred. Phylogenetic analyses also suggest a minimum of 9 gene gain–loss events; however, the exact number and age of these events is confounded by interparalog recombination. A previous enigma, in which allozyme loci were mapped to β-esterase genes that lacked catalytically essential amino acids, was resolved through the identification of neighbouring genes that contain the canonical catalytic residues and thus presumably encode the mapped allozymes. The originally identified genes are evolving with selective constraint, suggesting that they have a “noncatalytic” function. Curiously, 3 of the 4 paralogous β-esterase genes in the D. ananassae genome sequence have single inactivating (frame-shift or nonsense) mutations. To determine whether these putatively inactivating mutations were fixed, we sequenced other D. ananassae alleles of these four loci. We did not find any of the 3 inactivating mutations of the sequenced strain in 12 other strains; however, other inactivating mutations were observed in the same 3 genes. This is reminiscent of the high frequency of null alleles observed in one of the β-esterase genes (Est7/EstP) of D. melanogaster. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
 We have investigated the conservation of regulatory elements for sex- and tissue-specific gene expression in three dipteran species, Drosophila melanogaster, Musca domestica and Calliphora erythrocephala, using the yolk protein (yp) genes. Yolk proteins of the fruitfly, medfly, housefly and blowfly are very well conserved both in their sequence and their expression in ovarian follicle cells and in fat bodies of adult females. Furthermore, yp regulation by both hormonal and nutritional factors shows similar features in all four species. To study conservation of yp regulation in dipteran insects, we tested 5′ flanking regions from one Musca yp gene and one Calliphora yp gene for enhancer functions in D. melanogaster. Two fragments of 823 and 1046 bp isolated from Musca and Calliphora yp genes, respectively, are able to direct correct expression of a reporter gene in the ovarian follicle cells of transformed Drosophila at specific stages during oogenesis. Surprisingly, these enhancers do not confer sex-specific reporter gene expression in the fat body, as expression was found in both sexes of the transformed flies. None-the-less by in vitro DNA/protein interaction assays, a 284-bp DNA region from the Musca yp enhancer was able to bind the Drosophila DOUBLESEX (DSX) protein, which in D.melanogaster confers sex-specific expression of yp. We speculate that the sex-determining pathway is not directly involved in yp regulation in Musca or Calliphora adult females, but depends instead on hormonal controls to achieve sex-specific expression of yp genes in the adult. Received: 17 April 1997 / Accepted: 12 July 1997  相似文献   

20.
The Bicoid morphogen evolved approximately 150 MYA from a Hox3 duplication and is only found in higher dipterans. A major difference between dipteran species, however, is the size of the embryo, which varies up to 5-fold. Although the expression of developmental factors scale with egg length, it remains unknown how this scaling is achieved. To test whether scaling is accounted for by the properties of Bicoid, we expressed eGFP fused to the coding region of bicoid from three dipteran species in transgenic Drosophila embryos using the Drosophila bicoid cis-regulatory and mRNA localization sequences. In such embryos, we find that Lucilia sericata and Calliphora vicina Bicoid produce gradients very similar to the endogenous Drosophila gradient and much shorter than what they would have produced in their own respective species. The common shape of the Drosophila, Lucilia and Calliphora Bicoid gradients appears to be a conserved feature of the Bicoid protein. Surprisingly, despite their similar distributions, we find that Bicoid from Lucilia and Calliphora do not rescue Drosophila bicoid mutants, suggesting that that Bicoid proteins have evolved species-specific functional amino acid differences. We also found that maternal expression and anteriorly localization of proteins other than Bcd does not necessarily give rise to a gradient; eGFP produced a uniform protein distribution. However, a shallow gradient was observed using eGFP-NLS, suggesting nuclear localization may be necessary but not sufficient for gradient formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号