首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As large nature reserves occupy only a fraction of the earth’s land surface, conservation biologists are critically examining the role of private lands, habitat fragments, and plantations for conservation. This study in a biodiversity hotspot and endemic bird area, the Western Ghats mountains of India, examined the effects of habitat structure, floristics, and adjacent habitats on bird communities in shade-coffee and cardamom plantations and tropical rainforest fragments. Habitat and birds were sampled in 13 sites: six fragments (three relatively isolated and three with canopy connectivity with adjoining shade-coffee plantations and forests), six plantations differing in canopy tree species composition (five coffee and one cardamom), and one undisturbed primary rainforest control site in the Anamalai hills. Around 3300 detections of 6000 individual birds belonging to 106 species were obtained. The coffee plantations were poorer than rainforest in rainforest bird species, particularly endemic species, but the rustic cardamom plantation with diverse, native rainforest shade trees, had bird species richness and abundance comparable to primary rainforest. Plantations and fragments that adjoined habitats providing greater tree canopy connectivity supported more rainforest and fewer open-forest bird species and individuals than sites that lacked such connectivity. These effects were mediated by strong positive effects of vegetation structure, particularly woody plant variables, cane, and bamboo, on bird community structure. Bird community composition was however positively correlated only to floristic (tree species) composition of sites. The maintenance or restoration of habitat structure and (shade) tree species composition in shade-coffee and cardamom plantations and rainforest fragments can aid in rainforest bird conservation in the regional landscape.  相似文献   

2.
The planting of non‐timber forest products (NTFPs) in the understory of tropical forests is promoted in many regions as a strategy to conserve forested lands and meet the economic needs of rural communities. While the forest canopy is left intact in most understory plantations, much of the midstory and understory vegetation is removed in order to increase light availability for cultivated species. We assessed the extent to which the removal of vegetation in understory plantations of Chamaedorea hooperiana Hodel (Arecaceae) alters understory light conditions. We also examined how any changes in light availability may be reflected by changes in the composition of canopy tree seedlings regenerating in understory plantations. We employed a blocked design consisting of four C. hooperiana plantation sites; each site was paired with an adjacent, unmanaged forest site. Hemispherical canopy photographs were taken and canopy tree seedlings were identified and measured within 12 3 × 2 m randomly placed plots in each site for a total of 96 plots (4 blocks × 2 sites × 12 plots). Plantation management did not affect canopy openness or direct light availability but understory plantations had a higher frequency of plots with greater total and diffuse light availability than unmanaged forest. Comparisons of canopy tree seedling composition between understory plantations and unmanaged forest sites were less conclusive but suggest that management practices have the potential to increase the proportion of shade‐intolerant species of tree seedlings establishing in plantations. Given the importance of advanced regeneration in gap‐phase forest dynamics, these changes may have implications for future patterns of succession in the areas of forest where NTFPs are cultivated.  相似文献   

3.
Abstract We examined the impact of severe cyclone ‘Larry’ on the vegetation structure of monoculture and mixed species timber plantations, restoration plantings and reference sites in upland rainforests on the Atherton Tableland, north Queensland, Australia. Sites were initially assessed in 2000 and resurveyed in 2006, 6–8 months after the cyclone traversed the region. In both surveys, timber plantations had a relatively open canopy, grassy understorey and few shrubs or small‐sized trees; whereas restoration plantings had a relatively closed canopy, an understorey of bare ground, leaf litter and rainforest seedlings, a high density of small‐diameter trees and a moderate representation of special life forms characteristic of rainforest. Cyclone damage varied with tree size, site type, proximity to the cyclone and stem density. First, the proportion of trees that were severely damaged by the cyclone (major branches broken, stem snapped or pushed over) increased with the diameter of trees across all site types. Second, damage to larger‐sized trees (>10 cm d.b.h., >20 cm d.b.h.) was proportionally highest in monoculture plantations, intermediate in mixed species plantations and rainforest, and lowest in restoration plantings. Third, within site types, damage levels decreased with distance from the cyclone track and with stem density. There was no evidence that topographical position influenced damage levels, at least for timber plantations. We tentatively attribute the high levels of damage experienced by timber plantations to their relatively open structure and the large size of stems in plantations. Restoration plantings generally escaped severe damage by the cyclone, but their continued development towards rainforest conditions may require a coordinated monitoring and maintenance programme to address the potential threat of weed invasion.  相似文献   

4.
Many areas of tropical rainforest have been fragmented and the habitat quality of fragments is often poor. For example, on Borneo, many forest fragments are highly degraded by repeated logging of Dipterocarpaceae trees prior to fragmentation, and we examined the viability of enrichment planting as a potential management tool to enhance the conservation value of these forest fragments. We planted seedlings of three dipterocarp species with contrasting light demands and tolerances (Parashorea malaanonan (light demander), Dryobalanops lanceolata (intermediate), Hopea nervosa (shade tolerant)) in eight forest fragment sites (3–3529 ha), and compared seedling performance with four sites in continuous forest. Eighteen months after planting, survival rates of seedlings were equally high in fragment sites (mean survival = 63 %), and in continuous forest sites (mean survival = 68 %). By contrast, seedling growth and herbivory rates were considerably higher in fragments (by 60 % for growth and 45 % for herbivory) associated with higher light environments in degraded forest fragments compared with continuous forest sites. Among the three study species, H. nervosa seedlings had the highest survival rates overall, and P. malaanonan seedlings generally grew fastest and suffered highest herbivory rates. There were no interactions between species performance and the effects of fragment site area, forest structure or soil characteristics of sites suggesting that the three species responded similarly to fragmentation effects. High survival of planted seedlings implies that enrichment planting would be a successful forest management strategy to improve forest quality, and hence conservation value, of fragments.  相似文献   

5.
Strawberry guava (Psidium cattleianum) is a shade‐tolerant shrub or small tree invader in tropical and subtropical regions and is considered among the world's top 100 worst invasive species. Studies from affected regions report deleterious effects of strawberry guava invasion on native vegetation. Here we examine the life history demographics and environmental determinants of strawberry guava invasions to inform effective weed management in affected rainforest regions. We surveyed the vegetation of 8 mature rainforest and 33 successional sites at various stages of regeneration in the Australian Wet Tropics and found that strawberry guava invasion was largely restricted to successional forests. Strawberry guava exhibited high stem and seedling densities, represented approximately 8% of all individual stems recorded and 20% of all seedlings recorded. The species also had the highest basal area among all the non‐native woody species measured. We compared environmental and community level effects between strawberry guava‐invaded and non‐invaded sites, and modelled how the species basal area and recruitment patterns respond to these effects. Invaded sites differed from non‐invaded sites in several environmental features such as aspect, distance from intact forest blocks, as well as supported higher grass and herb stem densities. Our analysis showed that invasion is currently ongoing in secondary forests, and also that strawberry guava is able to establish and persist under closed canopies. If left unchecked, strawberry guava invasion will have deleterious consequences for native regenerating forest in the Australian Wet Tropics.  相似文献   

6.
In view of the rapid rate of expansion of agriculture in tropical regions, attention has focused on the potential for privately-managed rainforest patches within agricultural land to contribute to biodiversity conservation. However, these sites generally differ in their history of forest disturbance and management compared with other forest fragments, and more information is required on the biodiversity value of these privately-managed sites, particularly in oil-palm dominated landscapes of SE Asia. Here we address this issue, using tropical leaf-litter ants in rainforest fragments surrounded by mature oil palm plantations in Sabah, Borneo as a model system. We compare the species richness and composition of ant assemblages in privately-managed forest fragments (‘high conservation value’ fragments; HCVs) with those in publically-managed fragments of forest (virgin jungle reserves; VJRs) and control sites in extensive tracts of primary forest. In this way, we test the hypothesis that privately-managed and publically-managed forest fragments differ in their species richness and composition as a result of differences in history and management and hence in habitat quality. In support of this hypothesis, we found that HCVs had much poorer habitat quality than VJRs, including lower sizes and densities of trees, less canopy cover, fewer dipterocarp trees and shallower leaf litter. Consequently, HCVs supported only half the species richness of ants in VJRs, which in turn supported 70 % of the species richness of control sites, with vegetation structure and composition explaining 77 % of the variation among forest fragments in ant species richness. HCVs were also much smaller than VJRs but there was only a weak relationship between fragment size and habitat quality, and species richness was not related to fragment size. VJRs supported 78 % of the 156 species found in extensive tracts of forest whereas HCVs supported only 22 %, which was only slightly higher than the proportion previously recorded in oil palm (19 %). These data support previous findings that publically-managed VJR fragments can make an important contribution to biodiversity conservation within agricultural landscapes. However, we suggest that for these HCVs to be effective as reservoirs of biodiversity, management is required to restore vegetation structure and habitat quality, for instance through enrichment planting with native tree species.  相似文献   

7.
While the conservation impacts of invasive plant species on tropical biodiversity is widely recognised, little is known of the potential for cultivated crops turning invasive in tropical forest regions. In the Western Ghats biodiversity hotspot, India, fragmented rainforests often adjoin coffee plantations. This study in the Anamalai hills assessed the effects of distance from edges and forest structure on the occurrence and abundance of shade-tolerant coffee (Arabica Coffea arabica and Robusta C. canephora) in four fragments (32–200 ha) using replicate line transects laid from the edges into the interiors. The coffee species cultivated in adjoining plantations was more abundant than the other coffee species inside study fragments, showing a clear decline in stem density from edge (0 m) to interior (250 m), suggesting the influence of propagule pressure of adjoining plantations, coupled with edge effects and seed dispersal by animals. Significant positive correlations of coffee density with canopy cover indicate the potential threat of coffee invasion even in closed canopy rainforests. Stem density of Coffea arabica (150–1,825 stems/ha) was higher in more disturbed fragments, whereas Coffea canephora had spread in disturbed and undisturbed sites achieving much higher densities (6.3–11,486 stems/ha). In addition, a negative relationship between C. canephora and native shrub density indicates its potential detrimental effects on native plants.  相似文献   

8.
African olive (Olea europaea ssp. cuspidata) is a small evergreen tree which has become highly invasive at a landscape scale in the western Sydney and Hunter Valley regions of New South Wales, Australia. African olive invasion results in the formation of a dense and permanent mid‐canopy in grassy woodland vegetation. We investigated the relationship between African olive and native species establishment, abundance and diversity, using field surveys and a manipulative shading experiment. There were 78% fewer native species beneath African olive canopy in the field compared to uninvaded woodland sites. The shading experiment showed that simulated dense African olive shade levels produced the lowest dry weight for the three native species studied, with simulated canopy edge light providing optimal conditions for the native shrub Bursaria spinosa and African olive. Dense African olive shade levels produced the highest mortality rate for native species; however, African olive was able to maintain an 88% survival rate under dense canopy shade. This study confirms the adaptability of African olive and its capacity to decrease native plant diversity and substantially modify native vegetation at the community level.  相似文献   

9.
Ethiopian Afromontane moist forests where coffee grows as understorey shrub are traditionally managed by the local communities for coffee production through thinning of the shade tree canopy and slashing of competing undergrowth. This management practice has a negative impact on the coffee shrubs, because the removal of shade tree saplings and seedlings reduces the succession potential of the shade tree canopy, which threatens the very existence of the shade coffee production system. We assessed the functionality of small exclosures to initiate coffee shade tree canopy restoration through natural regeneration. Our results show that small exclosures have a strong restoration potential for the coffee shade trees preferred by farmers (Albizia schimperiana, A. gummifera and Millettia ferruginea), as evidenced from their seedling abundance, survival and growth. The regeneration of late‐successional tree species of the moist Afromontane forest was not successful in the small exclosures, most probably due to the low abundance or absence of adult trees as seed sources for regeneration. Therefore, temporary establishment of small exclosures in degraded coffee forest fragments where shade trees are getting old or dying is recommended for sustainable shade coffee production.  相似文献   

10.
T. G. O'Connor 《Oecologia》1995,103(2):214-223
Acacia karroo Hayne is the most important woody invader of grassland in South Africa, and can greatly reduce the productivity of grassland. A field experiment was conducted to test the hypotheses that emergence, growth and the 1st year's survival of Acacia karroo would be enhanced by (1) defoliation of the grass sward, (2) increased irradiance, (3) increased moisture availability and (4) its germination within cattle dung pats. The study was conducted on one site above and one below the natural altitudinal treeline of this species in grassland of the eastern Cape, South Africa. Not one seedling emerged from dung pats. Neither location nor the other treatments affected the density of emerging seedlings, although only 40.4 seedlings m–2 emerged of the 200 seeds m–2 planted. Shading dramatically increased the density of surviving seedlings. In the open, only 3 and 1.5 seedlings m–2 remained respectively at the end of the growing season or the beginning of the next, compared to 23.3 and 19.5 seedlings m–2 under shading for these respective times. This was attributed to the effect of shade on moisture availability in a season which received only 54% of average rainfall. Seedling survival until the end of the growing season was enhanced (30%) by shade at both sites, but also by supplemental water (24%) and defoliation of the sward (7%) at the site above the treeline. Across sites and treatments, seedling survival was related to moisture availability, with no or poor survival for < 500 mm rainfall, indicating this species can only establish in certain rainfall years. Seedling survival over winter was not influenced by treatment, but was greater for larger seedlings. Treatments affected seedling size, in particular seedlings growing under shade and within a dense grass canopy were etiolated. A. karroo seedlings are capable of establishing and surviving within a dense grass sward for at least a year, tolerant of low irradiance and of interference, which, because most seeds do not persist for much longer than a year, suggests this species forms predominantly a seedling bank. This has implications for the invasion of grassland by woody species.  相似文献   

11.
Expansion of the nature conservation estate in northeastern New South Wales, Australia, has captured weed‐infested timber plantations amid a mosaic of high conservation value lands. We adopted a state‐and‐transition approach to test the hypothesis that restoration barriers restrict the natural regeneration of native species in Eucalyptus grandis plantations infested by Lantana camara in Bongil Bongil National Park, New South Wales. Plantation tree thinning and weed control were applied in factorial combination at three sites (totaling to 4.5 ha). Topsoil chemistry responses to these interventions were attributable to the “ash bed” effect, with temporary increases in topsoil pHW and nitrate, particularly where canopy reduction was greatest. Other soil changes were minor, indicating that thinning and burning did not risk soil degradation. Plant species richness and functional group representation in the regenerating understorey were improved by the interventions. Regeneration of native potential canopy trees, understorey trees, shrubs and woody climbers, and perennial forbs all increased with canopy retention. Grass cover dominated the regeneration where canopy cover was less than 50%. In the absence of weed control, the cover of introduced shrubs increased with reduction in canopy cover, as did the rate of understorey regeneration generally. These responses indicate that thinning and weed control can reinstate succession, leading to structurally and compositionally diverse forest. Given the abundance of native woody regeneration under retained canopy, the lantana understorey was more important in inhibiting native regeneration. The experimental approach will promote efficient use of resources across the remaining 200 ha of low conservation value plantations in this national park.  相似文献   

12.
One of the greatest threats to biodiversity and the sustainable functioning of ecosystems is the clearing of forests for agriculture. Because litter-dwelling ants are very good bioindicators of man-made disturbance, we used them to compare monospecific plantations of acacia trees, cocoa trees, rubber trees and pine trees with the surrounding Neotropical rainforest (in contrast to previous studies on forest fragments embedded in industrial monocultures). Although the global level of species turnover was weak, species richness decreased along a gradient from the forest (including a treefall gap) to the tree plantations among which the highest number of species was noted for the cocoa trees, which are known to be a good compromise between agriculture and conservation. Species composition was significantly different between natural habitats and the plantations that, in turn, were different from each other. Compared to the forest, alterations in the ant communities were (1) highest for the acacia and rubber trees, (2) intermediate for the cocoa trees, and, (3) surprisingly, far lower for the pine trees, likely due to very abundant litter. Functional traits only separated the rubber tree plantation from the other habitats due to the higher presence of exotic and leaf-cutting ants. This study shows that small monospecific stands are likely sustainable when embedded in the rainforest and that environmentally-friendly strategies can be planned accordingly.  相似文献   

13.
Question: How do tree seedlings differ in their responses to drought and fire under contrasting light conditions in a tropical seasonal forest? Location: Mae Klong Watershed Research Station, 100–900 m a.s.l, Kanchanaburi Province, western Thailand. Method: Seedlings of six trees, Dipterocarpus alatus, D. turbinatus, Shorea siamensis, Pterocarpus macrocarpus, Xylia xylocarpa var. kerrii and Sterculia macrophylla, were planted in a gap and under the closed canopy. For each light condition, we applied (1) continuous watering during the dry season (W); (2) ground fire during the dry season (F); (3) no watering/no fire (intact, I). Seedling survival and growth were followed. Results: Survival and growth rate were greater in the gap than under the closed canopy for all species, most dramatically for S. siamensis and P. macrocarpus. Dipterocarpus alatus and D. turbinatus had relatively high survival under the closed canopy, and watering during the dry season resulted in significantly higher survival rates for these two species. Watering during the dry season resulted in higher growth rates for five species. All seedlings of D. alatus and D. turbinatus failed to re‐sprout and died after fire. The survival rates during the dry season and after the fire treatment were higher for the seedlings grown in the canopy gap than in the shade for S. siamensis, P. macrocarpus, X. xylocarpa var. kerrii and S. macrophylla. The seedlings of these species in the canopy gap had higher allocation to below‐ground parts than those under the closed canopy, which may support the ability to sprout after fire. Conclusions: The light conditions during the rainy season greatly affect seedling survival and resistance to fire during the subsequent dry season. Our results suggest differentiation among species in terms of seedling adaptations to shade, drought and fire.  相似文献   

14.
The landscape (matrix) surrounding habitat fragments critically affects the biodiversity of those fragments due to biotic interchange and physical effects. However, to date, there have been only a limited number of studies on plant–animal interactions in fragmented landscapes, particularly on how tree seedling herbivory is affected by fragmentation. We have examined this question in a fog-dependent mosaic of rainforest fragments located on coastal mountaintops of semiarid Chile (30°S), where the effects of the surrounding semiarid matrix and forest patch size (0.1–22 ha) on tree seedling survival were simultaneously addressed. The rainforest is strongly dominated by the endemic evergreen tree species Aextoxicon punctatum (Olivillo, approx. 80% of basal area). To assess the magnitudes and causes of Olivillo seedling mortality, we set up a field experiment where 512 tree seedlings of known age were transplanted into four forest fragments of different sizes in four 1.5 × 3-m plots per patch; one-half of each plot was fenced off with chicken wire to exclude small mammals. The plots were monitored for 22 months. Overall, 50% of the plants died during the experiment. The exclusion of small mammals from the plots increased seedling survival by 25%, with the effect being greater in smaller patches where matrix-dwelling herbivores are more abundant. This experiment highlights the important role of the surrounding matrix in affecting the persistence of trees in forest fragments. Because herbivores from the matrix cause greater tree seedling mortality in small patches, their effects must be taken into account in forest conservation–restoration plans.  相似文献   

15.
Differential herbivory and/or differential plant resistance or tolerance in sun and shade environments may influence plant distribution along the light gradient. Embothrium coccineum is one of the few light-demanding tree species in the temperate rainforest of southern South America, and seedlings are frequently attacked by insects and snails. Herbivory may contribute to the exclusion of E. coccineum from the shade if 1) herbivory pressure is greater in the shade, which in turn can result from shade plants being less resistant or from habitat preferences of herbivores, and/or 2) consequences of damage are more detrimental in the shade, i.e., shade plants are less tolerant. We tested this in a field study with naturally established seedlings in treefall gaps (sun) and forest understory (shade) in a temperate rainforest of southern Chile. Seedlings growing in the sun sustained nearly 40% more herbivore damage and displayed half of the specific leaf area than those growing in the shade. A palatability test showed that a generalist snail consumed ten times more leaf area when fed on shade leaves compared to sun leaves, i.e., plant resistance was greater in sun-grown seedlings. Herbivore abundance (total biomass) was two-fold greater in treefall gaps compared to the forest understory. Undamaged seedlings survived better and showed a slightly higher growth rate in the sun. Whereas simulated herbivory in the shade decreased seedling survival and growth by 34% and 19%, respectively, damaged and undamaged seedlings showed similar survival and growth in the sun. Leaf tissue lost to herbivores in the shade appears to be too expensive to replace under the limiting light conditions of forest understory. Following evaluations of herbivore abundance and plant resistance and tolerance in contrasting light environments, we have shown how herbivory on a light-demanding tree species may contribute to its exclusion from shade sites. Thus, in the shaded forest understory, where the seedlings of some tree species are close to their physiological tolerance limit, herbivory could play an important role in plant establishment.  相似文献   

16.
Planting tree seedlings in small patches (islands) has been proposed as a method to facilitate forest recovery that is less expensive than planting large areas and better simulates the nucleation process of recovery. We planted seedlings of four tree species at 12 formerly agricultural sites in southern Costa Rica in two designs: plantation (entire 50 × 50 m area planted) and island (six patches of three sizes). We monitored seedling survival, height, and canopy area over 3 years. To elucidate mechanisms influencing survival and growth, we measured soil and foliar nutrients, soil compaction, and photosynthesis. Survival of all species was similar in the two planting designs. Seedling height and canopy area were greater in plantations than islands at most sites, and more seedlings in islands decreased in height due to damage incurred during plot maintenance. Survival, height, and canopy area were both site‐ and species‐specific with the two N‐fixing species (Inga edulis and Erythrina poeppigiana) greater than the other species (Terminalia amazonia and Vochysia guatemalensis). Foliar N was higher in Terminalia and Vochysia in sites where Inga growth was greater. Soil nutrients, however, explained a small amount of the large differences in growth across sites. Leaf mass per area was higher in islands, and P use efficiency was higher in plantations. Our results show advantages (good seedling survival, cheaper) and disadvantages (more seedling damage, slightly lower growth) to the island planting design. Our study highlights the importance of replicating restoration strategies at several sites to make widespread management recommendations.  相似文献   

17.
Weed control and overstory reduction are important silvicultural treatments for improving survival and growth of under‐planted oak and hickory seedlings. Mast‐producing trees in the bottomland forests of the blackland prairie and Post Oak Savannah ecoregions of Texas have declined in abundance. Oaks and hickories have been replaced by more shade‐tolerant species, including green ash (Fraxinus pennsylvanica Marshall) and sugarberry (Celtis laevigata Willd.), which do not produce significant hard mast for priority wildlife species. A split‐plot experiment design was installed on three sites at Richland Creek Wildlife Management Area in Freestone County, Texas, studying the effects of canopy coverage and competition control on survival and growth of bur oak (Quercus macrocarpa Michx.), Shumard oak (Quercus shumardii Buckl.), and pecan (Carya illinoinensis (Wagenh.) K. Koch) seedlings. Uprooting by hogs shortly after planting resulted in greater than 90% mortality of pecan on the two lower elevation sites. Year one survival of Shumard oak was significantly higher than bur oak. However, bur oak was more preferred by hogs than Shumard oak. Year one growth of bur oak was significantly greater than Shumard oak. Severe flooding during the second growing season caused complete mortality on the lower two sites. None of the species were well suited to such prolonged (3–4 months) inundation as seedlings. On the remaining site, density reduction and weed‐barrier mats improved growth and survival while herbaceous weed control with herbicides actually reduced both growth and survival.  相似文献   

18.
Tropical montane cloud forest landscapes are changing, and forest conversion to other land uses is a major driver of biodiversity loss. Land use intensification can lead to significant losses in biodiversity and carbon storage (C); however, the impacts may vary greatly depending on land use type, management practices, and environmental context. We investigated how biodiversity and C are related along a gradient of land use intensification characterized by four dominant land uses in the upper part of Antigua River watershed, Mexico. The land uses were montane cloud forest, secondary forest, and traditional and intensive shade coffee plantations. We determined tree species composition, diversity, ecosystem structure, wood density and C content in dominant tree species to assess aboveground biomass (AGB) and C storage within eight study sites across the land use intensity gradient. A total of 83 tree species was recorded. A canonical correspondence analysis indicated that land uses are separated by particular tree species assemblages. Forests had higher basal area, density, and biomass than coffee plantations, however, the traditional shade coffee plantation had values similar to secondary forest. Calculating C using the standard estimate of 50% of AGB resulted in an overestimation of stored C by 5.8 to 4.1% compared to calculations based on actual measurements. Carbon storage in AGB and biodiversity were strongly and positively related across the land use intensity gradient, although the distinction between the two different intensities of coffee plantation management was not consistently as clear as we had expected. Carbon was highest in forest, but secondary forests and traditional shade coffee plantation had similar C, while intensive coffee had the lowest C content. These results highlight the importance of considering the potential of low intensity land uses such as traditional coffee plantations to mitigate biodiversity loss and preserve ecosystem functions as part of conservation efforts.  相似文献   

19.
《新西兰生态学杂志》2011,35(3):280-286
We compared establishment of Douglas fir (Pseudotsuga menziesii) and Corsican pine (Pinus nigra) seedlings in kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium) shrubland to test the hypothesis that Douglas fir, because of its greater shade tolerance, is better able to establish in woody communities than pine species. Seed of the conifer species was sown under a range of canopy covers at six sites, the cover being low-statured vegetation in openings between stands, stand edges, and moderate and dense canopies. After three growing seasons, survival of Corsican pine seedlings was greatest in the open and declined progressively as canopy cover increased. This contrasted with Douglas fir, where survival was greatest at the canopy edge. Survival of Douglas fir seedlings significantly exceeded that of Corscican pine seedlings under dense canopy positions. Seedling numbers of both species declined significantly with increasing leaf area index of manuka, but not kanuka stands, where seedling numbers were lower. Leaf area index of manuka stands accounted for substantially greater variation in number and survival of Corsican pine than Douglas fir seedlings. It is concluded that Douglas fir is better able to establish in shaded environments in woody communities than Corsican pine; however, further monitoring is required to confirm the long-term survival of both species under the moderate and dense canopy positions in this trial.  相似文献   

20.
Habitat modification and biological invasions are key drivers of global environmental change. However, the extent and impact of exotic plant invasions in modified tropical landscapes remain poorly understood. We examined whether logging drives exotic plant invasions and whether their combined influences alter understory plant community composition in lowland rain forests in Borneo. We tested the relationship between understory communities and local‐ and landscape‐scale logging intensity, using leaf area index (LAI) and aboveground biomass (AGB) data from 192 plots across a logging‐intensity gradient from primary to repeatedly logged forests. Overall, we found relatively low levels of exotic plant invasions, despite an intensive logging history. Exotic species were more speciose, had greater cover, and more biomass in sites with more local‐scale canopy loss. Surprisingly, though, exotic species invasion was not related to either landscape‐scale canopy loss or road configuration. Moreover, logging and invasion did not seem to be acting synergistically on native plant composition, except that seedlings of the canopy‐dominant Dipterocarpaceae family were less abundant in areas with higher exotic plant biomass. Current low levels of invasion, and limited association with native understory community change, suggest there is a window of opportunity to manage invasive impacts. We caution about potential lag effects and the possibly severe negative impacts of exotic plant invasions on the long‐term quality of tropical forest, particularly where agricultural plantations function as permanent seed sources for recurrent dispersal along logging roads. We therefore urge prioritization of strategic management plans to counter the growing threat of exotic plant invasions in modified tropical landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号