首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rates of intracellular DNA synthesis at various temperatures between 39 ° and 31 °C were determined in hamster fibroblasts and HeLa cells by measuring average amounts of 3H-thymidine incorporated per cell in S phase per unit of time. The energy of activation and Q10 for intracellular DNA synthesis were calculated from the slopes of the relative rates of DNA synthesis in HeLa cells and hamster fibroblasts vs. time, plotted on Arrhenius coordinates. In both cell types the incorporation of thymidine into DNA is characterized by an energy of activation of 21 000 calories/mole and a Q10 of 2.94. The absolute rates of DNA synthesis were determined in hamster cells at various temperatures, with values ranging from 1.44 to 0.60 × 10−14 g DNA/ min/cell at 39 ° to 31 °C, respectively. The length of the S phase of the hamster cell was calculated over a 39 ° to 31 °C range, and found to be 5.0 to 11.9 h, respectively. It is concluded that the S phase length is partly determined by the rate of temperature-dependent DNA synthesis.  相似文献   

2.
Sea urchin egg fertilization studied with a fluorescent probe (ANS)   总被引:2,自引:0,他引:2  
The rates of intracellular DNA synthesis at various temperatures between 39 ° and 31 °C were determined in hamster fibroblasts and HeLa cells by measuring average amounts of 3H-thymidine incorporated per cell in S phase per unit of time. The energy of activation and Q10 for intracellular DNA synthesis were calculated from the slopes of the relative rates of DNA synthesis in HeLa cells and hamster fibroblasts vs. time, plotted on Arrhenius coordinates. In both cell types the incorporation of thymidine into DNA is characterized by an energy of activation of 21 000 calories/mole and a Q10 of 2.94. The absolute rates of DNA synthesis were determined in hamster cells at various temperatures, with values ranging from 1.44 to 0.60 × 10?14 g DNA/ min/cell at 39 ° to 31 °C, respectively. The length of the S phase of the hamster cell was calculated over a 39 ° to 31 °C range, and found to be 5.0 to 11.9 h, respectively. It is concluded that the S phase length is partly determined by the rate of temperature-dependent DNA synthesis.  相似文献   

3.
Rates of synthesis of major classes of RNA in Drosophila embryos.   总被引:6,自引:0,他引:6  
We have been successful in labeling to high specific activity (3 × 105 dpm/μg) the RNA synthesized by large numbers of Drosophila embryos. Embryos of various developmental stages were rendered permeable with octane and labeled with [3H]uridine for 1 hr. At each stage the total dpm incorporated into RNA and the specific activity of the UTP pool were measured and used to calculate the absolute rate of RNA synthesis per embryo. This rate increases during embryonic development, from 1 pmole UTP/hr at 2 hr after oviposition to 6 pmoles UTP/hr at 15 hr. The rates of synthesis of nuclear and cytoplasmic poly(A)? and poly(A)+ RNAs were determined by analyzing the fractionated RNAs from each stage by sucrose gradient sedimentation. There is a significant activation of nuclear RNA synthesis at the blastoderm stage (approximately 2 hr after oviposition). After blastoderm, the rates of synthesis of nuclear and cytoplasmic poly(A)? and poly(A)+ RNA per embryo increase continuously; the rate of synthesis of each of these classes per nucleus, however, remains fairly constant. After making corrections for turnover during the labeling period, we find that the rates of synthesis of the major classes of RNA per nucleus at the gastrula stage are: cytoplasmic poly(A)+ RNA, 0.06 fg/nucleus-min; hnRNA, 0.86 fg/nucleus-min; and ribosomal RNA, 0.46 fg/nucleus-min. These rates are compared to rates of RNA synthesis in sea urchin embryos.  相似文献   

4.
The translational system was isolated from the gills of the Antarctic scallop Adamussium colbecki (Smith) and the European scallop Aequipecten opercularis (Linnaeus) for in vitro protein synthesis capacities (g protein mg FW–1 day–1) and the translational capacities of RNA (kRNA in vitro mg protein mg RNA–1 day–1). In vitro protein synthesis capacity in the cold-adapted pectinid at 0 °C was similar to the one found in the temperate scallop at 25 °C. These findings might reflect cold compensated rates in Adamussium colbecki, partly explainable by high tissue levels of RNA. Cold-compensated in vitro protein synthesis capacities may further result from increments in the translational capacity of RNA. The thermal sensitivity of the translation machinery was slightly different in the two species, with significantly lower levels of Arrhenius activation energies Ea and Q10 in Adamussium colbecki in the temperature range 0–15 °C. Reduced protein synthesis and translational capacities were found in vitro in gills of long-term aquarium-maintained Adamussium colbecki and were accounted for by a loss of protein synthesis machinery, i.e. a reduction in RNA levels, as well as a decrease in the amount of protein synthesized per milligram of RNA (RNA translational capacity, kRNA in vitro). Such changes may involve food uptake or mirror metabolic depression strategies, like those occurring during winter. Consequences of high in vitro RNA translational capacities found in the permanently cold-adapted species are discussed in the context of seasonal food availability and growth rates at high latitudes.Abbreviations DPM disintegrations per minute - DTT dithiothreitol - Ea Arrhenius activation energy - ks fractional protein synthesis rate - kRNA in vivo translational efficiency - kRNA in vitro translational capacity - PCA perchloric acid - Phe phenylalanine - PLA phospho-L-arginine - PSU practical salinity units - RNAse ribonuclease - TCA trichloroacetic acidCommunicated by G. Heldmaier  相似文献   

5.
Although it has been well established that acclimation to low growth temperatures is strongly correlated with an increased proportion of reduced QA in all photosynthetic groups, the precise mechanism controlling the redox state of QA and its physiological significance in developing cold tolerance in photoautotrophs has not been fully elucidated. Our recent thermoluminescence (TL) measurements of the acceptor site of PSII have revealed that short‐term exposure of the cyanobacterium Synechococcus sp. PCC 7942 to cold stress, overwintering of Scots pine (Pinus sylvestris L.), and acclimation of Arabidopsis plants to low growth temperatures, all caused a substantial shift in the characteristic TM of S2QB recombination to lower temperatures. These changes were accompanied by much lower overall TL emission, restricted electron transfer between QA and QB, and in Arabidopsis by a shift of the S2QA‐related peak to higher temperatures. The shifts in recombination temperatures are indicative of a lower activation energy for the S2QB redox pair and a higher activation energy for the S2QA redox pair. This results in an increase in the free‐energy gap between P680+QA and P680+Pheo and a narrowing of the free energy gap between QA and QB electron acceptors. We propose that these effects result in an increased population of reduced QA (QA), facilitating non‐radiative P680+QA radical pair recombination within the PSII reaction centre. The proposed reaction centre quenching could be an important protective mechanism in cyanobacteria in which antenna and zeaxanthin cycle‐dependent quenching are not present. In herbaceous plants, the enhanced capacity for dissipation of excess light energy via PSII reaction centre quenching following cold acclimation may complement their capacity for increased utilization of absorbed light through CO2 assimilation and carbon metabolism. During overwintering of evergreens, when photosynthesis is inhibited, PSII reaction centre quenching may complement non‐photochemical quenching within the light‐harvesting antenna when zeaxanthin cycle‐dependent energy quenching is thermodynamically restricted by low temperatures. We suggest that PSII reaction centre quenching is a significant mechanism enabling cold‐acclimated organisms to acquire increased resistance to high light.  相似文献   

6.
The rates of uridine-5-3H incorporation into RNA and the rates of uridine uptake into the acid-soluble pool during the cell cycle of V79 Chinese hamster cells were examined. Cells cultured on Eagle''s minimal essential medium supplemented with fetal calf serum, lactalbumin hydrolysate, glutamine, and trypsin displayed rates of incorporation and uptake which increased only slightly during G1 and accelerated sharply as DNA synthesis commenced. In contrast, cells cultured on minimal essential medium supplemented only with calf serum exhibited rates of incorporation and uptake which increased linearly through both G1 and S. The transition from one pattern to the other can be induced within 24 hr and is completely reversible. The nonlinear pattern exhibited by cells grown on the supplemented fetal calf serum medium can also be overcome with high exogenous uridine concentrations. In the presence of 200 µM uridine, these cells display a linear pattern of increase in rates of uridine incorporation and uptake. It is concluded that at lower uridine concentrations the pattern of increase in the rate of uridine incorporation into RNA during the cell cycle for a given population of cells is dependent upon the rate of uridine entry into the cell, and that this pattern is not rigidly determined but can be modified by culture conditions.  相似文献   

7.
Uridine uptake and its intracellular phosphorylation during the cell cycle   总被引:2,自引:0,他引:2  
The rate of 5-3H uridine uptake into Chinese hamster V79 cells and the rate of its incorporation into RNA increase tenfold during the cell cycle. Both reactions exhibit the same apparent Km(1.7 × 10?5 M ). Chromatography of acid-soluble material from cells incubated with 5-3H uridine (0.25 μM) at different times of the cell cycle revealed that intracellular uridine was rapidly phosphorylated at all times, even though cells in late S and G2 take up roughly ten times as much uridine as cells in G1. Uridine kinase activity in synchronized cells increases about two and one-half-fold during the same time period, and in exponentially growing cells is not saturated until the external uridine concentration is raised above 200 μM. It is concluded that the change in uridine kinase activity during the cell cycle is not responsible for the tenfold increase in the rate of uridine transport, and that these two processes are independently regulated.  相似文献   

8.
PROTEIN SYNTHESIS AND RNA SYNTHESIS DURING MITOSIS IN ANIMAL CELLS   总被引:7,自引:5,他引:2       下载免费PDF全文
Protein synthesis and RNA synthesis during mitosis were studied by autoradiography on mammalian tissue culture cells. Protein synthesis was followed by incubating hamster epithelial and human amnion cells for 10 or 15 minutes with phenylalanine-C14. To study RNA synthesis the hamster cells were incubated for 10 minutes with uridine-C14. Comparisons of the synthetic capacity of the interphase and mitotic cells were then made using whole cell grain counts. The rate of RNA synthesis decreased during prophase and reached a low of 13 to 16 per cent of the average interphase rate during metaphase-anaphase. Protein synthesis in the hamster cells showed a 42 per cent increase during prophase with a subsequent return to the average interphase value during metaphase-anaphase. The human amnion cells showed no significant change at prophase but there was a 52 to 56 per cent drop in phenylalanine incorporation at metaphase-anaphase as compared to the average interphase rate. Colcemide was used on the hamster cells to study the effect of a prolonged mitotic condition on protein and RNA synthesis. Under this condition, uridine incorporation was extremely low whereas phenylalanine incorporation was still relatively high. The drastic reduction of RNA synthesis observed under mitotic conditions is believed to be due to the coiled condition of the chromosomes. The lack of a comparable reduction in protein synthesis during mitosis is interpreted as evidence for the presence in these cells of a relatively stable messenger RNA.  相似文献   

9.
Alexandrium catenella (Whedon et Kof.) Balech has exhibited seasonal recurrent blooms in the Thau lagoon (South of France) since first reported in 1995. Its appearance followed a strong decrease (90%) in phosphate (PO43?) concentrations in this environment over the 1970–1995 period. To determine if this dinoflagellate species has a competitive advantage in PO43?‐limited conditions in terms of nutrient acquisition, semicontinuous cultures were carried out to characterize phosphorus (P) uptake by A. catenella cells along a P‐limitation gradient using different dilution rates (DRs). Use of both inorganic and organic P was investigated from measurements of 33PO43? uptake and alkaline phosphatase activity (APA), respectively. P status was estimated from cellular P and carbon contents (QP and QC). Shifts in trends of QP/QC and QP per cell (QP·cell?1) along the DR gradient allowed the definition of successive P‐stress thresholds for A. catenella cells. The maximal uptake rate of 33PO43? increased strongly with the decrease in DR and the decrease in QP/QC, displaying physiological acclimations to PO43? limitation. Concerning maximal APA per cell, the observation of an all‐or‐nothing pattern along the dilution gradient suggests that synthesis of AP was induced and maximized at the cellular scale as soon as PO43? limitation set in. APA variations revealed that the synthesis of AP was repressed over a PO43? threshold between 0.4 and 1 μM. As lower PO43? concentrations are regularly observed during A. catenella blooms in Thau lagoon, a significant portion of P uptake by A. catenella cells in the field may come from organic compounds.  相似文献   

10.
Some factors affecting the respiration of some aquatic plants   总被引:3,自引:3,他引:0  
M. Owens  P. J. Maris 《Hydrobiologia》1964,23(3-4):533-543
Summary The oxygen consumption of four aquatic plants has been determined at various concentrations of dissolved oxygen and at three different temperatures.Oxygen consumption rates (mg oxygen/g dry weight per hr) at 20°C in air-saturated water were Berula erecta, 1.25; Callitriche obtusangula, 2.8; Hippuris vulgaris, 1.96; and Ranunculus pseudofluitans, 1.90.Oxygen consumption rates increased with increase in dissolved-oxygen concentration within the experimental limits of 1.2–17 p.p.m. dissolved oxygen. The relation of oxygen consumption to this range of oxygen concentrations can be described by the empirical equation R = aC b. Increase of temperature has been shown to increase the rates of oxygen consumption. Q10 values ranging from 1.32 to 3.48 have been obtained.  相似文献   

11.
K. -J. Dietz  U. Schreiber  U. Heber 《Planta》1985,166(2):219-226
The response of chlorophyll fluorescence elicited by a low-fluence-rate modulated measuring beam to actinic light and to superimposed 1-s pulses from a high-fluence-rate light source was used to measure the redox state of the primary acceptor Q A of photosystem II in leaves which were photosynthesizing under steady-state conditions. The leaves were exposed to various O2 and CO2 concentrations and to different energy fluence rates of actinic light to assess the relationship between rates of photosynthesis and the redox state of Q A. Both at low and high fluence rates, the redox state of Q A was little altered when the CO2 concentration was reduced from saturation to about 600 l·l-1 although photosynthesis was decreased particularly at high fluence rates. Upon further reduction in CO2 content the amount of reduced Q A increased appreciably even at low fluence rates where light limited CO2 reduction. Both in the presence and in the absence of CO2, a more reduced Q A was observed when the O2 concentration was below 2%. Q A was almost fully reduced when leaves were exposed to high fluence rates under nitrogen. Even at low fluence rates, Q A was more reduced in shade leaves of Asarum europaeum and Fagus sylvatica than in leaves of Helianthus annuus and Fagus sylvatica grown under high light. Also, in shade leaves the redox state of Q A changed more during a transition from air containing 350 l·l-1 CO2 to CO2-free air than in sun leaves. The results are discussed with respect to the energy status and the CO2-fixation rate of the leaves.Abbreviations and symbols L 1,2 first and second actinic light beam - Q A primary acceptor of photosystem II - q Q Q-quenching  相似文献   

12.
The temperature dependence of the partial reactions leading to turn-over of the UQH2:cyt c 2 oxidoreductase of Rhodobacter sphaeroides have been studied. The redox properties of the cytochrome components show a weak temperature dependence over the range 280–330 K, with coefficients of about 1 m V per degree; our results suggest that the other components show similar dependencies, so that no significant change in the gradient of standard free-energy between components occurs over this temperature range. The rates of the reactions of the high potential chain (the Rieske iron sulfur center, cytochromes c 1 and c 2, reaction center primary donor) show a weak temperature dependence, indicating an activation energy < 8 kJ per mole for electron transfer in this chain. The oxidation of ubiquinol at the Qz-site of the complex showed a strong temperature dependence, with an activation energy of about 32 kJ mole–1. The electron transfer from cytochrome b-566 to cytochrome b-561 was not rate determining at any temperature, and did not contribute to the energy barrier. The activation energy of 32 kJ mole–1 for quinol oxidation was the same for all states of the quinone pool (fully oxidized, partially reduced, or fully reduced before the flash). We suggest that the activation barrier is in the reaction by which ubiquinol at the catalytic site is oxidized to semiquinone. The most economical scheme for this reaction would have the semiquinone intermediate at the energy level indicated by the activation barrier. We discuss the plausibility of this simple model, and the values for rate constants, stability constant, the redox potentials of the intermediate couples, and the binding constant for the semiquinone, which are pertinent to the mechanism of the ubiquinol oxidizing site.Abbreviations (BChl)2 P870, primary donor of the photochemical reaction center - b/c 1 complex ubiquinol: cytochrome c 2 oxidoreductase - cyt b H cytochrome b-561 or higher potential cytochrome b - cyt b L cytochrome b-566, or low potential cytochrome b - cyt c 1, cyt c 2, cyt c t cytochromes c 1 and c 2, and total cytochrome c (cyt c 1 and cyt c 2) - Fe.S Rieske-type iron sulfur center, Q - QH2 ubiquinone, ubiquinol - Qz, QzH2, Qz ubiquinone, ubiquinol, and semiquinone anion of ubiquinone, bound at quinol oxidizing site - Qz-site ubiquinol oxidizing site (also called Qo-(outside) - Qo (Oxidizing) - QP (Positive proton potential) site) - Qc-site uubiquinone reductase site (also called the Qi-(inside) - QR (Reducing), or - QN (Negative proton potential) site) - UHDBT 5-(n-undecyl)-6-hydroxy-4,7-dioxobenzothiazol  相似文献   

13.
Summary Cytosolic extracts of liver, kidney, spleen, gill, red and white muscle from rainbow trout acclimated to 4 and 17°C, respectively, have been investigated in vitro with respect to their enzymic activity in stimulating the growth of nascent peptide chains (labelled polyphenylalanine) at assay temperatures from 5 to 25°C using polyuracil as messenger RNA. The elongation step of protein synthesis is characterized by aQ 10 value of about 2.4 (range 10–25°C) in all organs from both, 4 and 17°C acclimated fish.Except for the red muscle, the organs of cold acclimated trout, however, exhibit significantly higher specific elongation rates (mol phenylalanine polymerized/(g wet weight·h)) at any experimental temperature than those of warm acclimated fish. This increase of the elongation rates varies between the organs and ranges from +29% (liver) to +60% in the gill. The specific acylation rate (mol phenylalanyl-tRNA formed/(g wet weight·h)) surpasses the specific elongation rate by a factor of at least 8.5. Moreover, the specific acylation rate per mg protein is independent of acclimation temperature.It is concluded that the increased specific elongation rates in 4°C acclimated trout are not due to altered pool sizes of the precursor phenylalanyl-tRNA, but reflect an effective enhancement of enzymic elongation factor activities.In accordance with data taken from literature, this finding suggests a compensatory enhancement of in vivo protein synthesis to occur in trout during cold acclimation.Abbreviations E a apparent activation energy - EF elongation factor - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid - PHE phenylalanine - PHE-tRNA phenylalanyl transfer ribonucleic acid - POLY (U) poly-uracil - Q 10 van't Hoff's temperature coefficient - T accl acclimation temperature - T exp experimental temperature - TRITON X-100 octylphenol-polyethylene-glycolether  相似文献   

14.
Summary To establish the energetic cost of protein synthesis, isolated trout hepatocytes were used to measure protein synthesis and respiration simultaneously at a variety of temperatures. The presence of bovine serum albumin was essential for the viability of isolated hepatocytes during isolation, but, in order to measure protein synthesis rates, oxygen consumption rates and RNA-to-protein ratios, BSA had to be washed from the cells. Isolated hepatocytes were found to be capable of protein synthesis and oxygen consumption at constant rates over a wide range of oxygen tension. Cycloheximide was used to inhibit protein synthesis. Isolated hepatocytes used on average 79.7±9.5% of their total oxygen consumption on cycloheximide-sensitive protein synthesis and 2.8±2.8% on maintaining ouabain-sensitive Na+/K+-ATPase activity. The energetic cost of protein synthesis in terms of moles of adenosine triphosphate per gram of protein synthesis decreased with increasing rates of protein synthesis at higher temperatures. It is suggested that the energetic cost consists of a fixed (independent of synthesis rate) and a variable component (dependent on synthesis rate).Abbreviations BSA bovine serum albumin - dpm disintegrations per min - k s fractional rate of protein synthesis - HEPES N-2-hydroxyethylpiperazine-N-2-ethane sulphonic acid - PHE phenylalanine; PO2 oxygen tension - PCA perchloric acid  相似文献   

15.
Changing rates of DNA and RNA synthesis in Drosophila embryos   总被引:6,自引:0,他引:6  
Rates of DNA and RNA synthesis during Drosophila embryogenesis were measured by labeling octane-treated embryos with [14C]thymidine and [3H]uridine. Radioactivity incorporated per hour was converted to rates of synthesis using measurements of the pool-specific activity during the labeling periods. The rate of DNA synthesis during early embryogenesis increases to a maximum at 6 hr after oviposition and then decreases sharply. Measured rates of DNA synthesis were used to calculate that the total amount of DNA per embryo doubles every 18 min at blastoderm, every 70–80 min during gastrulation, and less than once every 7 hr at later stages. The rate of RNA accumulation per embryo increases continuously during the first 14 hr of embryogenesis. The rate of nuclear RNA synthesis per diploid amount of DNA, however, decreases fivefold between blastoderm and primary organogenesis. The cytoplasmic poly(A)+ RNA synthesized by blastoderm embryos associates rapidly with polysomes. The relatively high rate of synthesis of polysomal poly(A)+ RNA per nucleus at blastoderm allows the small number of nuclei present at blastoderm to make a significant quantitative contribution to the informational RNA active in the early embryo. At the end of blastoderm, approximately 14% of the mRNA being translated in the embryo has been synthesized after fertilization.  相似文献   

16.
Abstract: We have investigated the mechanism of inhibition of RNA synthesis by methyl mercury (MeHg) in isolated neonatal rat cerebellar cells. Each of the three component steps involved in the incorporation of exogenous [3H]uridine into cellular RNA was examined separately in whole-cell and/or subcellular preparations. Nuclear RNA polymerase activity was measured in preparations containing both free nuclei and whole cells. Incorporation of [3H]UTP into nuclear RNA was found to be unimpaired at concentrations of MeHg that inhibited whole-cell incorporation of [3H]uridine by > 75%. Cellular uptake of [3H]uridine was assayed in cerebellar cells treated with KCN to deplete ATP levels and block subsequent phosphorylation reactions of transported uridine. Uptake activity under these conditions was unaffected by MeHg. Measurement of intracellular phosphorylation of [3H]uridine indicated that inhibition of this activity closely paralleled that of RNA synthesis. Quantitation of individual uridine nucleotides by polyethyleneimine-cellulose TLC revealed reduced levels of UTP and UDP whereas levels of UMP were elevated, suggesting that impairment of phosphorylation was not the result of cellular ATP depletion but, more likely, a direct effect on phosphouridine kinase enzymes. This mechanism of MeHg-induced inhibition of RNA synthesis was confirmed by assays of uridine phosphorylation using cell-free extracts in which exogenous ATP was supplied.  相似文献   

17.
The status of embryonic RNA synthesis during facultative delayed implantation in the mouse has been examined by radiolabeling in vitro and in utero, and by assay for endogenous RNA polymerase activity. Under conditions that do not activate delayed blastocysts in utero, embryos were shown to be able to transport and incorporate [3H]uridine into RNA as early as 5 min after intralumenal instillation of label on Day 5 of delay. Assay for endogenous RNA polymerase demonstrated functioning enzyme(s) in blastocysts on Day 5 of delayed implantation. Rates of incorporation of label in vitro under nonactivating conditions indicated a reduction, from normal Day 5 blastocyst levels, of 52% on Day 2 and 36% on Day 5 of delay. Relative rates of uptake of [3H]uridine by blastocysts on Day 5 of delay were reduced by approximately 60% from rates observed in predelay embryos on Day 5 of pregnancy. Estrogen-induced activation of embryos in utero was not associated with an increased relative rate of 3H]uridine uptake or incorporation during the first 24 hr following activation on Day 5 of delay. The findings demonstrate that RNA synthesis persists in the mouse blastocyst during delayed implantation, although at a somewhat reduced level. Implications of these results relevant to the maternal regulation of embryonic growth and implantation are discussed.  相似文献   

18.
A quantitative estimate of the activation energy for grain growth has been obtained by analyzing ice recrystallization experiments from water and from solutions with small amounts (< 1.0 μg/mL) of antifreeze glycoprotein (AFGP). Rates of grain growth are measured as changes of grain diameter in time, with the supercooled holding temperature aVid glycoprotein concentration as parameters. Arrhenius plots of these rates vs (1/T) yielded slopes proportional to the activation energies for the particular species. The values of activation energy are almost independent of solution concentration or the species of AFGP. Averaged activation energy value for the AFGP-4 species is Qg = (6.61 ± 1.02) × 105 J/mole. The “less active” AFGP-8 yielded an average Qg = (5.71 ± 2.39) × 105 J/mole, quite similar to the AFGP-4 species. The activation energy for recrystallization in a pure ice-water system was estimated from two temperature points, T = ?5.4 and ?7.5°C. The best value is 2.39 × 105 J/mole, nearly twice that obtained by M. N. Martino and N. E. Zaritsky [(1989) Cryobiology, Vol. 26, p. 138] in a recrystallization experiment using salt solution, but much smaller than the values derived from the AFGP solutions. Results further show that activation entropy is at least a factor of 2 larger for the AFGP species than that of pure ice-water system under the same growth conditions. These results suggest significant roles, both energetically and entropically, for AFGP molecules in their ability to inhibit grain growth of ice. © 1994 John Wiley & Sons, Inc.  相似文献   

19.
Temperature was used as a biophysical tool to investigate the energy changes associated with conformational change during the gating of a non-inactivating voltage-gated K+ channel present in the membrane of αT3-1 cells, a gonadotroph cell line. The time course of the current activation was described by a single exponential function at three temperatures: 15, 25 and 35 °C. The Q 10 values were between 1.5 to 1.9 and in agreement with the activation energy determined from Arrhenius plots of the forward and backward rate constants associated with channel opening. The Gibb's free energy change associated with channel opening and closing at various membrane potentials estimated by two approaches yield similar values. The changes in Gibb's free energy (ΔG°) with depolarization potential is a quadratic and more prominent at 15 than at 25 or 35 °C. The results suggest that increase in temperature favours movement of voltage sensing segments, and reduces the restraint on them brought about by other parts of the channel molecule. Received: 2 September 1998 / Revised version: 27 October 1998 / Accepted: 21 January 1999  相似文献   

20.
Both chick embryo fibroblasts and mouse 3T3 cells reduce the rate at which they incorporate H3 uridine into RNA as their growth becomes inhibited at high cell density. This reduction occurs as a function of the cell population density, and with chick embryo cells (in contrast to 3T3 cells) it is not accompanied by significant medium alterations. This indicates the importance of the cell population density in the control of cellular metabolism. The decline in H3 uridine incorporation is paralleled by a decline in the rate of uptake of the isotope into the acid-soluble pool, suggesting that decreased entry of H3 uridine into the cell, rather than a decreased rate of RNA synthesis, is responsible for the reduced rate of incorporation into RNA of density-inhibited cells. This suggestion was confirmed by finding that when the restriction on uridine uptake was overcome by increasing the concentration of uridine in the medium, the density-dependent inhibition of uridine incorporation was largely reversed. We conclude that, even though the rate of H3 uridine incorporation into RNA is reduced three- to five-fold in density-inhibited cells, the rate of synthesis of pulse-labeled RNA continues at 70 to 85% of the rapidly-growing rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号