首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Primary cilia are nonmotile microtubule structures that assemble from basal bodies by a process called intraflagellar transport (IFT) and are associated with several human diseases. Here, we show that the centrosome protein pericentrin (Pcnt) colocalizes with IFT proteins to the base of primary and motile cilia. Immunogold electron microscopy demonstrates that Pcnt is on or near basal bodies at the base of cilia. Pcnt depletion by RNA interference disrupts basal body localization of IFT proteins and the cation channel polycystin-2 (PC2), and inhibits primary cilia assembly in human epithelial cells. Conversely, silencing of IFT20 mislocalizes Pcnt from basal bodies and inhibits primary cilia assembly. Pcnt is found in spermatocyte IFT fractions, and IFT proteins are found in isolated centrosome fractions. Pcnt antibodies coimmunoprecipitate IFT proteins and PC2 from several cell lines and tissues. We conclude that Pcnt, IFTs, and PC2 form a complex in vertebrate cells that is required for assembly of primary cilia and possibly motile cilia and flagella.  相似文献   

2.
3.
Background information. Primordial germ cells in developing male and female gonads are responsive to somatic cell cues that direct their sex‐specific differentiation into functional gametes. The first divergence of the male and female pathways is a change in cell cycle state observed from 12.5 dpc (days post coitum) in mice. At this time XY and XX germ cells cease mitotic division and enter G1/G0 arrest and meiosis prophase I respectively. Aberrant cell cycle regulation at this time can lead to disrupted ovarian development, germ cell apoptosis, reduced fertility and/or the formation of germ cell tumours. Results. In order to unravel the mechanisms utilized by germ cells to achieve and maintain the correct cell cycle states, we analysed the expression of a large number of cell cycle genes in purified germ cells across the crucial time of sex differentiation. Our results revealed common signalling for both XX and XY germ cell survival involving calcium signalling. A robust mechanism for apoptosis and checkpoint control was observed in XY germ cells, characterized by p53 and Atm (ataxia telangiectasia mutated) expression. Additionally, a member of the retinoblastoma family and p21 were identified, linking these factors to XY germ cell G1/G0 arrest. Lastly, in XX germ cells we observed a down‐regulation of genes involved in both G1‐ and G2‐phases of the cell cycle consistent with their entry into meiosis. Conclusion. The present study has provided a detailed analysis of cell cycle gene expression during fetal germ cell development and identified candidate factors warranting further investigation in order to understand cases of aberrant cell cycle control in these specialized cells.  相似文献   

4.
The present study was undertaken to determine whether endometrial cancer cell line HEC-1-A differ from nontransformed cells, in that the cAMP and protein kinase C pathways may enhance IGF-I effects in mitogenesis by acting at the G1 phase of the cell cycle instead of G0. Immunofluorescence staining of HEC-1-A cells using the proliferating cell nuclear antigen (PCNA) monoclonal antibody and flow cytometric analysis determined that HEC-1-A cells do not enter the G0 phase of the cell cycle when incubated in a serum-free medium. Approximately 51% of the cells were in G1, 12% were in S and 37% in G2 phase of the cell cycle prior to treatment. Forskolin and phorbol-12-myristate 13-acetate (PMA) were used to stimulate cAMP production and protein kinase C activity, respectively. IGF-I, forskolin and PMA each increased (P <0.01) [3H]-thymidine incorporation in a dose and time dependent manner. The interaction of forskolin and PMA with IGF-I was then determined. Cells preincubated with forskolin or PMA followed by incubation with IFG-I incorporated significantly more (P <0.01) [3H]-thymidine into DNA than controls or any treatment alone. It is concluded that forskolin and, to a lesser extent, PMA exert their effect at the G1 phase of the cycle to enhance IGF-I effects in cell proliferation.  相似文献   

5.
Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G1 phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-cCdc20 complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G1 phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G1 phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G1 phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-cCdc20 and APC-cCdh1 ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.  相似文献   

6.
P. W. Barlow 《Planta》1976,131(3):235-243
Summary Ethylene at a concentration of 100 l l–1 causes a slight increase in the duration of the mitotic cycle in the primary root meristems of both Pisum sativum L. and Zea mays L. This is due to a lengthening of the G 1 phase; other phases of the cycle are unaffected. Autoradiography and microdensitometry show that the rate of 3H-thymidine incorporation into nuclei of Pisum is maximal when about half the DNA has been replicated, and that ethylene has no effect upon this rate. Ethylene causes a reduction of the number of dividing cells in the root meristem, particularly in Pisum.Abbreviations Duration of the S phase, the G 1 phase, the G 2 phase of the mitotic cell cycle, respectively - T C Duration of the complete mitotic cell cycle - QC Quiescent centre - LI, MI Labelling index, Mitotic index (i.e. fraction of the population labelled or in mitosis, respectively) - PF Proliferative fraction (i.e. fraction of the population making progress towards mitosis) - [3H]dT tritiated thymidine  相似文献   

7.
The phase of expression of genes CycB, CycE, and chb were determined in the cell cycle of neuropblasts of D. melanogaster 3rd instar larvae using the previously described radioautographic method and software. CycB was expressed at G 2 phase and upon transition from G 2 phase to M phase, while CycE was expressed at the end of G 1 phase and upon transition from G 1 phase to S phase. The phase of expression of the centrosome-associated protein chb was determined more precisely in G 2 phase. The mean life span of reporter -galactosidase in neuroblasts was 4 h. The existence of more than one peak of expression of the gene in question in the cell cycle is discussed.  相似文献   

8.
9.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G1/G0 growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1α,25-dihydroxyvitamin D3 and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G1/G0 growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

10.
Although the research on the localization of trachea stem cells has made a rapid progress, the mechanism of proliferation and differentiation of trachea stem cells remains unclear. The objective of this study is to observe and analyze the recovery process of mice tracheal epithelium injured by 5-FU, and to investigate the mechanism involved in the regulation of tracheal stem cells proliferation and differentiation through morphological, immunofluorescence, and microarray analysis. After treatment with 5-FU, the mature cells were dead and desquamated. Only a few G0 phase cells remained on the basement membrane. When supplied with normal culture media, the cells eventually became flat, cubic, and restored as pseudostratified epithelium. These G0 phase cells were ABCG2 positive. It suggested that these cells could differentiate into cilia cells or Clara cells, and had the multi-differentiation ability of stem cells. We examinated the expression profile of genes involved in the stem cell differentiation in normal tracheal epithelial cells and the regenerated epithelial cells at 24 and 48 h after injured by 5-FU using gene microarray. After 24 h treatment, 8 genes were up-regulated and 31 genes were down-regulated. After 48 h treatment, 5 genes were up-regulated and 42 genes were down-regulated. The differential gene expressions in gene microarray analysis focused on cell cycle regulation, intercellular junction, fibroblast growth factors, bone morphogenetic protein, Notch and Wnt-signaling pathways, which suggested that the differential gene expressions might be closely associated with the proliferation and differentiation of tracheal stem cells.  相似文献   

11.
Summary Mouse fibroblasts, subline L-929 F were synchronized by mitotic detachment. The synchronized cell cultures were irradiated with 200 kVp X-rays at different time after mitosis, and age reponse functions and dose effect curves were determined using the colony test. The cell age in the mitotic cycle was obtained from a computer analysis of flow cytometric DNA histograms. Both intrinsic radiosensitivity 1/D 0 and extrapolation numbern were found to vary during the cell cycle. TheD 0 has a maximum value of 176 ± 1 rad in the middle ofG 1 phase and a minimum of 71 ± 1 rad at theS/G 2 transition, while the extrapolation number is rather constant from the beginning ofG 1 phase (1.9 ± 0.1) to the middle ofS phase (2.3 ± 0.1) and reaches a steep maximum of 9.3 ± 1.1 atS/G 2 transition. The values ofn in the various phases of cell cycle are compared with the respective values of the recovery factor determined after fractionated irradiation. - Cell survival after a single dose of 616 rad has minima for irradiation atG 1/S transition and in earlyG 2 phase; the survival in earlyG 2 being about 40 times smaller than in earlyG 1 phase. Implications for a cell cycle specific therapy are discussed.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg  相似文献   

12.
The proliferation kinetics of cells of the line NHIK 1922 grown in vitro and as solid tumours in the athymic mutant nude mouse has been studied. In vitro, growth curves were determined for exponentially growing populations and for populations synchronized by mitotic selection. The phase durations for these populations were determined by flow cytofluorometric measurements of DNA-histograms and pulsed incorporation of [3H]TdR respectively. The generation time and the phase durations for synchronized populations were found to be about equal to those for exponentially growing populations. The duration of the phases G1, S and G2+ M was found to be 8·5–9·5, 11·0–12·0 and 6·0–6·5 hr respectively, i.e. the generation time was 26·5–27·0 hr. The proliferation kinetics in vivo were studied by flow cytofluorometry and by the technique of percentage labelled mitoses. The median duration of S-phase and (G2+ M)-phase in vivo was found to be approximately the same as that observed in vitro, while the median duration of G1-phase was found to be approximately 5 hr longer in vivo than under the present in vitro growth conditions. The growth fraction in vivo was estimated to be approximately 50%. The non-proliferative compartment of the tumour cells was found to consist mainly of cells with the DNA-content of cells in G1-phase. It is concluded that the reduced rate of proliferation of NHIK 1922 cells in vivo is correlated with alterations in the duration of G1-phase and, hence, the proportion of cells in G1-phase.  相似文献   

13.
R. Pi∼non 《Chromosoma》1978,67(3):263-274
Folded chromosomes from stationary phase or ammonia-starved yeast (Saccharomyces cerevisiae) cells can be isolated as compact structures, distinct and separable by sedimentation from the folded chromosomes of pre-replicative (G1) and post-replicative (G2) nuclei. Such cells are in a dormant or non-cycling (G0) stage. The folded genome from such cells is referred to as theg 0 form and has a sedimentation velocity of about 1700S. Sedimentation analysis of mixed G0 and G1 and G2 lysates indicates that theg 0 structure is not an artifactual breakdown product of theg 1 org 2 structures. A comparison of the proteins fromg 0 versusg 1 andg 2 structures by gel electrophoresis has revealed differences in about 10–11 non-histone and perhaps 2 histone proteins. Entry into the G0 stage, and emergence into G1 after G0 arrest, are accompanied by an ordered transition fromg 2 tog 1 tog 0, and fromg 0 tog 1 tog 2 forms, respectively. Hence, entry into G0 and re-emergence from G0 can be considered as differentiative processes, not normally part of the cell cycle, and accompanied by specific changes in the tertiary organization of the genome.  相似文献   

14.
Summary Cellular DNA, milk protein content, and protein secretion by bovine mammary explants were compared to cultures of confluent and growing primary bovine mammary secretory cells over 4 d. Explants were obtained at slaughter from eight Holstein cows (120 ± 35 d lactation). Primary cells were grown to confluence, cryopreserved, thawed, and cultured through five passages. Explants and cells were cocultured with liver and adipose tissue in the presence of somatotropin, insulinlike growth factor-I, and somatotropin + insulinlike growth factor-I. Cellular DNA and milk proteins were assayed using fluorescent probes and flow cytometry. Media proteins were assayed by densitometer scanning of electrophoresis gel bands. DNA content of explant, confluent, and growing primary cells increased similarly through the 96 h incubation. DNA content in G0G1 phase was increased by: (a) insulinlike growth factor-I in explant cells; (b) somatotropin, insulinlike growth factor-I, and their combination in confluent primary cells; and (c) the combination of somatotropin and insulinlike growth factor in growing primary cells. Approximately 65% of explant and confluent primary cells were in the G0G1 or differentiated phase compared to 47% for the growing primary cells. Whey protein content and secretion were similar among cell types. Explant cells contained and secreted more β-casein than primary cells but secretion trends for β-casein and k-casein were similar after 48 h for both cell types. Results suggest that primary cell cultures are comparable to explant cultures when used to study mechanisms of DNA and milk protein synthesis and secretion.  相似文献   

15.
Anti-integrin-linked kinase (ILK) therapies result in aberrant mitosis including altered mitotic spindle organization, centrosome declustering and mitotic arrest. In contrast to cells that expressed the retinoblastoma tumor suppressor protein Rb, we have shown that in retinoblastoma cell lines that do not express Rb, anti-ILK therapies induced aberrant mitosis that led to the accumulation of temporarily viable multinucleated cells. The present work was undertaken to: 1) determine the ultimate fate of cells that had survived anti-ILK therapies and 2) determine whether or not Rb expression altered the outcome of these cells. Our data indicate that ILK, a chemotherapy drug target is expressed in both well-differentiated, Rb-negative and relatively undifferentiated, Rb-positive retinoblastoma tissue. We show that small molecule targeting of ILK in Rb-positive and Rb-deficient cancer cells results in increased centrosomal declustering, aberrant mitotic spindle formation and multinucleation. However, anti-ILK therapies in vitro have different outcomes in retinoblastoma and glioblastoma cell lines that depend on Rb expression. TUNEL labeling and propidium iodide FACS analysis indicate that Rb-positive cells exposed to anti-ILK therapies are more susceptible to apoptosis and senescence than their Rb-deficient counterparts wherein aberrant mitosis induced by anti-ILK therapies exhibit mitotic arrest instead. These studies are the first to show a role for ILK in chemotherapy-induced senescence in Rb-positive cancer lines. Taken together these results indicate that the oncosuppressive outcomes for anti-ILK therapies in vitro, depend on the expression of the tumor suppressor Rb, a known G1 checkpoint and senescence regulator.  相似文献   

16.
STATIONARY PHASE OF CULTURED MAMMALIAN CELLS (L5178Y)   总被引:1,自引:0,他引:1       下载免费PDF全文
The stationary phase of the mammalian cells L5178Y in culture can be divided into two stages: (a) an early phase characterized by the decline of mitotic index, followed by a stabilization of the cell number, and (b) a late stage, occurring several hours after the flattening of the growth curve, during which dead or dying cells appear in the cultures. The estimates of rates of cell progress showed that the rates from G1 to S and from G2 to M were affected in the early stationary phase. The main cause of cessation of increase in cell number in the early stationary phase is resulted from the decline in mitotic index, which is caused by prolongation of the G2 period. The importance of the G2 stage in regulating the cell growth is discussed in relation to other known situations in the literature.  相似文献   

17.
Caffeine potentiates the lethal effects of ultraviolet and ionising radiation on wild-type Schizosaccharomyces pombe cells. In previous studies this was attributed to the inhibition by caffeine of a novel DNA repair pathway in S. pombe that was absent in the budding yeast Saccharomyces cerevisiae. Studies with radiation-sensitive S. pombe mutants suggested that this caffeine-sensitive pathway could repair ultraviolet radiation damage in the absence of nucleotide excision repair. The alternative pathway was thought to be recombinational and to operate in the G2 phase of the cell cycle. However, in this study we show that cells held in G1 of the cell cycle can remove ultraviolet-induced lesions in the absence of nucleotide excision repair. We also show that recombination-defective mutants, and those now known to define the alternative repair pathway, still exhibit the caffeine effect. Our observations suggest that the basis of the caffeine effect is not due to direct inhibition of recombinational repair. The mutants originally thought to be involved in a caffeine-sensitive recombinational repair process are now known to be defective in arresting the cell cycle in S and/or G2 following DNA damage or incomplete replication. The gene products may also have an additional role in a DNA repair or damage tolerance pathway. The effect of caffeine could, therefore, be due to interference with DNA damage checkpoints, or inhibition of the DNA damage repair/tolerance pathway. Using a combination of flow cytometric analysis, mitotic index analysis and fluorescence microscopy we show that caffeine interferes with intra-S phase and G2 DNA damage checkpoints, overcoming cell cycle delays associated with damaged DNA. In contrast, caffeine has no effect on the DNA replication S phase checkpoint in reponse to inhibition of DNA synthesis by hydroxyurea. Received: 16 June 1998 / Accepted: 13 July 1998  相似文献   

18.
Abstract. This study reports on the proliferating cell nuclear antigen (PCNA) and Ki-67 cell cycle related expression and distribution pattern analysed in the same cells. MCF-7 cells were synchronized by mitotic detachment and triple stained for DNA, PCNA and Ki-67. The major cell type was identified on each time sample as a function of the PCNA/Ki-67 pattern, and both antigens as well as DNA were quantified. During G1 phase, the expression of PCNA greatly increased whereas Ki-67 content decreased. During S phase, nuclear Ki-67 content continuously increased especially in the second half of this phase, mainly due to the accumulation of the antigen in the nucleoli. During G2 phase, the antigen significantly passed into the nucleoplasm, its content continued to increase and reached its maximum in mitotic cells. Nuclear PCNA content mostly increased in the first part of S phase and sharply declined in mitotic cells as the antigen shifted to the cytoplasm. Cells showing PCNA positive Ki-67 negative labelling were observed in all time samples from the beginning of the experiment. Their nuclear size, DNA content (of G1 cells), PCNA content (equivalent to the content of some late G, cells) and time occurrence (their percentage increased after the last late G1 cells had disappeared) tend to indicate that these cells have left the cycle by the end of G1 phase to enter a quiescent state. Cells coming out of mitosis split into two groups according to their Ki-67/PCNA content. The biggest fraction was PCNA negative and Ki-67 positive while the smallest showed positive staining for both antibodies. Cells of this second cohort slowly lost their 1–67 while their PCNA content increased as they moved through G1. Concurrently, most of the cells of the first cohort (here called Q2 and Q3 cell types) lost their Ki-67 without increasing their PCNA content; then they joined cells of the second cohort by increasing their PCNA content at the end of G, phase. Some cells of this first cohort can also increase their PCNA and thus reach cells of the first cohort before the end of G1 phase. The existence of these two main cell cohorts suggests that cells after mitosis differ in some way that make them progress dlfferently through G1. Some cells seem to go through early G1 (G1a and late G1 (Glb) while others may come out of mitosis committed to go through the following cycle by directly entering late G1 compartment.  相似文献   

19.
Macroautophagy/autophagy protects against cellular stress. Renal sublethal injury-triggered tubular epithelial cell cycle arrest at G2/M is associated with interstitial fibrosis. However, the role of autophagy in renal fibrosis is elusive. Here, we hypothesized that autophagy activity in tubular epithelial cells is pivotal for inhibition of cell cycle G2/M arrest and subsequent fibrogenic response. In both renal epithelial cells stimulated by angiotensin II (AGT II) and the murine kidney after unilateral ureteral obstruction (UUO), we observed that occurrence of autophagy preceded increased production of COL1 (collagen, type I). Pharmacological enhancement of autophagy by rapamycin suppressed COL1 accumulation and renal fibrosis. In contrast, genetic ablation of autophagy by proximal tubular epithelial cell-specific deletion of Atg5, with reduction of the LC3-II protein level and degradation of SQSTM1/p62, showed marked cell cycle arrest at the G2/M phase, robust COL1 deposition, and severe interstitial fibrosis in a UUO model, as compared with wild-type mice. In vitro, AGT II exposure triggered autophagy preferentially in the G1/S phase, and increased COL1 expression in the G2/M phase in renal epithelial cells. Stimulation of Atg5-deficient primary proximal tubular cells with AGT II also resulted in elevated G2/M arrest and COL1 production. Pharmacological or genetic inhibition of autophagy increased AGT II-mediated G2/M arrest. Enhanced expression of ATG5, but not the autophagy-deficient ATG5 mutant K130R, rescued the G2/M arrest, suggesting the regulation of cell cycle progression by ATG5 is autophagy dependent. In conclusion, Atg5-mediated autophagy in proximal epithelial cells is a critical host-defense mechanism that prevents renal fibrosis by blocking G2/M arrest.  相似文献   

20.
The proliferation of normal non-tumourigenic mouse fibroblasts is stringently controlled by regulatory mechanisms located in the postmitotic stage of G1 (which we have designated G1 pm). Upon exposure to growth factor depletion or a lowered de novo protein synthesis, the normal cells leave the cell cycle from G1 pm and enter G0. The G1 pm phase is characterized by a remarkably constant length (the duration of which is 3 h in Swiss 3T3 cells), whereas the intercellular variability of intermitotic time is mainly ascribable to late G1 or pre S phase (G1 ps) (Zetterberg & Larsson (1985) Proc. Natl. Acad. Sci. USA 82 , 5365). As shown in the present study two tumour-transformed derivatives of mouse fibroblasts, i.e. BPA31 and SVA31, did not respond at all, or only responded partially, respectively, to serum depletion and inhibition of protein synthesis. If the tumour cells instead were subjected to 25-hydroxycholesterol (an inhibitor of 3-hydroxy-3 methyglutaryl coenzyme A reductase activity), their growth was blocked as measured by growth curves and [3H]-thymidine uptake. Time-lapse analysis revealed that the cells were blocked specifically in early G1 (3-4h after mitosis), and DNA cytometry confirmed that the arrested cells contained a G1 amount of DNA. Closer kinetic analysis revealed that the duration of the postmitotic phase containing cells responsive to 25-hydroxycholesterol was constant. These data suggest that transformed 3T3 cells also contain a ‘G1 pm program’, which has to be completed before commitment to mitosis. By repeating the experiments on a large number of tumour-transformed cells, including human carcinoma cells and glioma cells, it was demonstrated that all of them possessed a G1 pm-like stage. Our conclusion is that G1 pm is a general phenomenon in mammalian cells, independent of whether the cells are normal or neoplastic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号