首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Along the Moroccan coasts, the systematic status of Mytilus populations have been for a long time uncertain and confused, due to the use of unreliable morphometric criteria. In the present study, allozyme markers reveal the exclusive existence of M. galloprovincialis on Mediterranean and Atlantic coasts. Nei’s genetic distances are low and reflect a high gene flow between Atlantic and Mediterranean populations. However, a significant multilocus discontinuity revealed by F-statistics separate southern Atlantic populations from Mediterranean and north Atlantic ones and could be explained by a gene flow breaking because of a larval dispersal decrease, due to a sea surface current direction change from Cap Ghir towards the Canaries archipelago, and probably by differential selection effects in these two geographic areas.  相似文献   

2.
The population structure of the edible Atlanto-Mediterranean sea urchin Paracentrotus lividus is described by analysing sequence variation in a fragment of the mitochondrial gene cytochrome c oxidase subunit I in 127 individuals from 12 localities across south-west Europe. The study revealed high levels of genetic diversity but low levels of genetic structure, suggesting a large degree of gene flow between populations and panmixis within each, the Mediterranean and Atlantic basins. However, we found significant genetic differentiation between the two basins probably due to restricted gene flow across the geographical boundary imposed by the area of the Strait of Gibraltar. Populations of P. lividus appeared to have experienced a recent demographic expansion in the late Pleistocene. We provide new evidence on the population structure of this commercial species, predicting a healthy stock of this sea urchin on the Mediterranean and Atlantic coasts.  相似文献   

3.
We used mitochondrial DNA (mtDNA) restriction analysis to study genetic variation in 98 striped dolphins (Stenella coeruleoalba) stranded on coasts from different European countries and from animals caught by fisheries. A total of 63 different restriction sites was mapped after digestion of mtDNA with 15 restriction endonucleases that yielded a total of 27 haplotypes. No haplotype was shared between Mediterranean and Atlantic areas. All the analyses indicate the existence of two different populations with a very limited gene flow across the Strait of Gibraltar.  相似文献   

4.
Previous studies on the common ragworm Hediste diversicolor (Polychaeta: Nereididae) revealed a marked genetic fragmentation across its distribution and the occurrence of sibling taxa in the Baltic Sea. These results suggested that the phylogeographic patterns of H. diversicolor could reflect interactions between cryptic differentiation and multiple colonization events. This study aims to describe the large-scale genetic structuring of H. diversicolor and to trace the phylogeographic origins of the genetic types described in the Baltic Sea. Samples of H. diversicolor (2 <  n  < 28) were collected at 16 locations across the NE Atlantic coasts of Europe and Morocco and in the Mediterranean, Black and Caspian Seas and sequenced at two mitochondrial gene fragments (COI and cyt b , 345 and 290 bp, respectively). Bayesian analyses revealed deep phylogeographic splits yielding three main clades corresponding to populations (i) from the NE Atlantic coasts (from Germany to Morocco) and from part of the Western Mediterranean, (ii) from the Mediterranean Sea, and (iii) from the Black and Caspian Seas. These clades are further divided in well-supported subclades including populations from different regions of NE Atlantic and Mediterranean (i.e. Portugal/Morocco, Western Mediterranean, Adriatic Sea). The Baltic Sea comprises three sympatric lineages sharing a common evolutionary history with populations from NE Atlantic, Western Mediterranean and Black/Caspian Seas, respectively. Hence, the current patterns of genetic structuring of H. diversicolor appear as the result of allopatric isolation, multiple colonization events and possible adaptation to local environmental conditions.  相似文献   

5.
The Atlantic Ocean-Mediterranean Sea junction has been proposed as an important phylogeographical area on the basis of concordance in genetic patterns observed at allozyme, mtDNA and microsatellite DNA markers in several marine species. This study presents microsatellite DNA data for a mobile invertebrate species in this area, the cuttlefish Sepia officinalis, allowing comparison of this relatively new class of DNA marker with previous allozyme results, and examination of the relative effects on gene flow of the Strait of Gibraltar and the Almería-Oran oceanographic front. Genetic variation at seven microsatellite loci screened in six samples from NE Atlantic and Mediterranean coasts of the Iberian Peninsula was high (mean Na = 9.6, mean H(e) = 0.725). Microsatellites detected highly significant subpopulation structuring (F(ST)= 0.061; R(ST) = 0.104), consistent with an isolation-by-distance model of low levels of gene flow. Distinct and significant clinal changes in allele frequencies between Atlantic and Mediterranean samples found at five out of seven loci, however indicate these results might be also consistent with an alternative model of secondary contact and introgression between previously isolated and divergent populations, as previously proposed for other marine species from the Atlantic-Mediterranean area. A pronounced 'step' change between SW Mediterranean samples associated with the Almería-Oran front suggests this oceanographic feature may represent a contemporary barrier to gene flow.  相似文献   

6.
Roman J  Palumbi SR 《Molecular ecology》2004,13(10):2891-2898
The European green crab, Carcinus maenas, has a native distribution that extends from Norway to Mauritania. It has attracted attention because of its recent invasions of Australia, Tasmania, South Africa, Japan and both coasts of North America. To examine the population structure of this global invader in its native range, we analysed a 502-base-pair fragment of the mitochondrial cytochrome c oxidase I (COI) gene from 217 crabs collected in the North Atlantic and 13 specimens from the Mediterranean. A clear genetic break (11% sequence divergence) occurs between the Mediterranean and Atlantic, supporting the species-level status of these two forms. Populations in the Faeroe Islands and Iceland were genetically distinct from continental populations (F(ST) = 0.264-0.678), with Iceland represented by a single lineage also found in the Faeroes. This break is consistent with a deep-water barrier to dispersal in green crabs. Although there are relatively high levels of gene flow along the Atlantic coast of Europe, slight population structure was found between the central North Sea and populations to the south. Analysis of variance, multidimensional scaling, and the distribution of private haplotypes support this break, located between Bremerhaven, Germany, and Hoek van Holland. Similar biogeographical and genetic associations for other species, such as benthic algae and freshwater eels, suggest that the marine fauna of Europe may be generally subdivided into the areas of Mediterranean, western Europe and northern Europe.  相似文献   

7.
Population genetic structures of the mackerel (Scomber scombrus) and chub mackerel (Scomber japonicus) were studied in the Mediterranean Sea. Fragments of 272 bp (S. scomber) and 387 bp (S. japonicus) of the 5'-end of the mitochondrial control region were sequenced from spawning individuals collected off the coasts of Greece, Italy, Spain, and Portugal. High levels of mitochondrial control region haplotypic diversity (> 0.98) were found for both Scomber species. Nucleotide diversity was higher in the mackerel (0.022) than in the chub mackerel (0.017). Global F(ST) values were also higher and significant in the mackerel (0.024, P < 0.0001) as opposed to the chub mackerel (0.003, P > 0.05). Molecular variance analyses showed differential genetic structuring for these two closely related species. There is extensive gene flow between Mediterranean Sea and Atlantic Ocean populations of chub mackerel, which are organized into a larger panmictic unit. In contrast, Mediterranean Sea populations of mackerel show some degree of genetic differentiation and are structured along an east-west axis. The analysed eastern Mediterranean Sea mackerel populations (Greece, Italy) are clearly separated from that of the western Mediterranean Sea (Barcelona), which forms a panmictic unit with eastern Atlantic Ocean populations. The genetic structures of both species showed asymmetric migration patterns and indicated population expansion.  相似文献   

8.
The variability of cranial features of Atlantic and Mediterranean samples of Stenella coeruleoalba was examined using a three‐dimensional geometric morphometric approach. Data were collected on 79 skulls from the upper and middle Mediterranean Sea, the Atlantic French coasts, and Scotland. Three‐dimensional x, y, and z coordinates of 27 landmarks were recorded on each left half skull using a Microscribe 3‐D digitizer. All configurations were rotated, centered, and scaled, and residuals from the mean configuration were analyzed through multivariate analyses of variance. Mahalanobis distances among populations were used to evaluate phenetic relationships. Consensus configurations were compared to visualize shape differences among samples. Analyses revealed significant differences among populations, a clear distinction of the Scottish coasts dolphins from the other samples, and a closer relationship of the dolphins from the French coasts to the Mediterranean populations than to the Scottish one. Shape differences are mainly concentrated in the rostral and in the occipital regions of the skull. Phylogenetic and adaptive factors were invoked as possible causes of the variation patterns.  相似文献   

9.
The gastropod Hexaplex trunculus is widely distributed in a relatively large range of habitats, but has no dispersal stage. We investigated its genetic structure across its distribution range, from Mediterranean Sea to adjacent Atlantic coasts, by sequencing mitochondrial DNA portions of the NADH dehydrogenase gene ND2 (420 pb) and the internal transcribed spacer ITS2 (450 pb). Our results suggested a significant genetic variability of ND2 (π = 0.009 and Hd = 0.629) and low variability of the ITS2 sequences. A strong phylogeographic break, separated the Aegean populations from those of Western/Eastern Mediterranean and the Atlantic ones, was founded. The tow lineages may have been separated by vicariance events due to the Peloponnese break that separates the Aegean populations from other populations and was maintained until now by the quasi-circular anticyclonic front associated to the straits of Cretan Arc of the Peloponnesian Peninsula. Tunisian coasts appear particularly diverse since the two divergent lineages co-occured. These results may have management consequences since H. trunculus is a high commercial value harvested species.  相似文献   

10.
The clam Ruditapes decussatus is commercially important in southwestern Europe, suffering from population decline and hybridization with exotic Manila clam (R. philippinarum). Previous studies with intronic markers showed a genetic subdivision of the species in three races (Atlantic, West Mediterranean, and Adriatic‐Aegean). However, detailed population genetic studies to help management of the main production areas in the southwest of Europe are missing. We have analyzed eight Atlantic and two Mediterranean populations from the Spanish coasts using 14 microsatellites and six intronic markers. Microsatellites confirmed the Atlantic and West Mediterranean races detected with introns and showed that genetic variability was higher in Mediterranean than in Atlantic populations. Both marker types showed that genetic differentiation of Atlantic populations was low and indicated that populations could be managed at the regional level in the case of Cantabrian and Gulf of Cadiz areas, but not in the case of Rias Baixas and the Mediterranean. This study shows the interest of including different types of markers in studies of genetic population structure of marine organisms.  相似文献   

11.
Population structuring in species inhabiting marine environments such as the Northeast Atlantic Ocean (NEA) and Mediterranean Sea (MS) has usually been explained based on past and present physical barriers to gene flow and isolation by distance (IBD). Here, we examined the relative importance of these factors on population structuring of the common cuttlefish Sepia officinalis by using methods of phylogenetic inference and hypothesis testing coupled with coalescent and classical population genetic parameter estimation. Individuals from 10 Atlantic and 15 Mediterranean sites were sequenced for 659 bp of the mitochondrial COI gene (259 sequences). IBD seems to be the main factor driving present and past genetic structuring of Sepia populations across the NEA-MS, both at large and small geographical scales. Such an evolutionary process agrees well with some of the biological features characterizing this cuttlefish species (short migrations, nektobenthic habit, benthic eggs hatching directly to benthic juveniles). Despite the many barriers to migration/gene flow suggested in the NEA-MS region, genetic population fragmentation due to past isolation of water masses (Pleistocene; 0.56 million years ago) and/or present-day oceanographic currents was only detected between the Aegean-Ionian and western Mediterranean Seas. Restricted gene flow associated with the Almería-Oran hydrographic front was also suggested between southern and eastern Spanish populations. Distinct population boundaries could not be clearly determined, except for the Aegean-Ionian stock. Two Atlantic and five Mediterranean samples showed evidence of current decline in genetic diversity, which may indicate over-exploitation of Sepia in both marine regions.  相似文献   

12.
The marine environment seems, at first sight, to be a homogeneous medium lacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected.We aim to elucidate the role of oceanographical factors in generating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution of marine biodiversity but also for management and conservation of marine life. For this proposal, we investigate the genetic structure and connectivity between continental and insular populations of white seabream in North East Atlantic (NEA) and Mediterranean Sea (MS) as well as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers.Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream (adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation.Mediterranean islands show similar genetic diversity to the neighbouring continental samples and non-significant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.  相似文献   

13.
Since the 1970s, the nassariid gastropod Cyclope neritea has been extending its range north along the French Atlantic coasts from the Iberian Peninsula. This may be due to natural spread because of the recent warming of the northeastern Atlantic. However, human-mediated introductions related to shellfish culture may also be a probable explanation for this sudden range expansion. To examine these two hypotheses, we carried out a comprehensive study based on mitochondrial gene sequences (cytochrome oxidase I) of the five recently colonized French bays as well as 14 populations located in the recognized native range of the species. From a total of 594 individuals, we observed 29 haplotypes to split into three divergent clades. In the native range, we observed a low molecular diversity, strong genetic structure and agreement between geography and gene genealogies. Along the French coasts, we observed the opposite: high genetic diversity and low genetic structure. Our results show that recurrent human-mediated introductions from several geographical areas in the native range may be a source for the French Atlantic populations. However, despite the low dispersal ability of C. neritea, the isolation-by-distance pattern in France suggested that this gastropod may have been present (although unnoticed) on the French Atlantic coasts before the 1970s. As C. neritea shows characteristics of a cryptogenic species, the classification of Atlantic populations as either native or introduced is not straightforward. Cryptogenic species should be studied further to determine the status of new populations close to their recognized native range.  相似文献   

14.
Yellow-legged gulls Larus michahellis from the Atlantic Iberian coast exhibit some phenotypic similarities with the herring gull L. argentatus from Western Europe. To assess this phenomenon and its possible origin, we compared Mediterranean yellow-legged gulls, Atlantic Iberian yellow-legged gulls and herring gulls for several phenotypic traits (morphology, plumage), and used genetic data to determine the evolutionary history of the Atlantic Iberian yellow-legged gulls. Data from mitochondrial cytochrome b gene and microsatellite loci clearly indicate that Atlantic Iberian gulls are closely related to Mediterranean yellow-legged gulls, and do not show stronger signs of introgression with herring gulls relative to other populations of yellow-legged gulls. Atlantic Iberian yellow-legged gulls are more similar to herring gulls in body size and shape than to other yellow-legged gulls populations, but not in mantle colour and wing-tip pattern. Body size and other phenotypic and life history similarities with the herring gull ( L. argentatus argenteus ) such as voice, winter plumage and breeding phenology, previously described in several studies, might thus be interpreted as convergent characters. Within the yellow-legged gull, the high F st-values obtained from four nuclear microsatellite loci indicate substantial population structure and reduced levels of gene flow between gull populations in Mediterranean France and Atlantic Iberia. Differences among these populations in breeding phenology and migration patterns, likely resulting from different local selection pressures, might contribute to this low level of gene flow.  相似文献   

15.
Aim A central question in evolutionary ecology is the nature of environmental barriers that can limit gene flow and induce population genetic divergence, a first step towards speciation. Here we study the geographical barrier constituted by the transition zone between the Atlantic Ocean and the Mediterranean Sea, using as our model Cymodocea nodosa, a seagrass distributed throughout the Mediterranean and in the Atlantic, from central Portugal to Mauritania. We also test predictions about the genetic footprints of Pleistocene glaciations. Location The Atlantic–Mediterranean transition region and adjacent areas in the Atlantic (Mauritania to south‐west Portugal) and the Mediterranean. Methods We used eight microsatellite markers to compare 20 seagrass meadows in the Atlantic and 27 meadows in the Mediterranean, focusing on the transition between these basins. Results Populations from these two regions form coherent groups containing several unique, high‐frequency alleles for the Atlantic and for the Mediterranean, with some admixture west of the Almeria–Oran Front (Portugal, south‐west Spain and Morocco). These are populations where only one or a few genotypes were found, for all but Cadiz, but remarkably still show the footprint of a contact zone. This extremely low genotypic richness at the Atlantic northern edge contrasts with the high values (low clonality) at the Atlantic southern edge and in most of the Mediterranean. The most divergent populations are those at the higher temperature range limits: the southernmost Atlantic populations and the easternmost Mediterranean, both potential footprints of vicariance. Main conclusions A biogeographical transition region occurs close to the Almeria–Oran front. A secondary contact zone in Atlantic Iberia and Morocco results from two distinct dispersal sources: the Mediterranean and southernmost Atlantic populations, possibly during warmer interglacial or post‐glacial periods. The presence of high‐frequency diagnostic alleles in present‐day disjunct populations from the southernmost Atlantic region indicates that their separation from all remaining populations is ancient, and suggests an old, stable rear edge.  相似文献   

16.
On the Atlantic Moroccan coast, two species of pleuronectiform fish coexist, wedge sole ( Citharus linguatula ) a temperate species, and spotted flounder ( Dicohgoglossa cuneata ) a tropical one. These two species are the definitive host for Bothriocephalus andresi and Acanthocephaloïdes propinquus , respectively. A negative binomial fits the dispersion of B. andresi in the population of C. linguatula . The fish become parasitized between their first and third year, while still immature, with the highest abundances in the third year. After the fish become ichthyopagous, the level of infection drops drastically. We postulate that copepods are the sole source of infection. The presence of B. andresi in both Atlantic and Mediterranean populations of C. linguatula shows that the parasite follows the host during its migration along the Mediterranean coasts.
The prevalence of A. propinquus remains above 50% as a consequence of the large numbers of amphipods included in the diet of D. cuneata , regardless of the age of the fish or the season. The amphipods, Phtisica marina and Pariambus typicus are an important food and represent potential intermediate hosts for A. propinquus . The population dynamics of A. propinquus on the Atlantic Moroccan coasts are similar to those observed in parasite populations of Gobius niger in the Gulf of Lion (French Mediterranean). The observation of B. andresi and A. propinquus in both Moroccan Atlantic and Mediterranean fishes highlights the problem of the evolution of these parasite populations during the colonization of the Mediterranean by the hosts.  相似文献   

17.
In this study, the population structure of the Lusitanian sea star Asterina gibbosa was assessed using amplified fragment length polymorphism (AFLP). One hundred and twenty-two AFLP loci were analysed in 159 individuals from eight populations from across the species' range and revealed high levels of genetic diversity, with all individuals but two harbouring a unique banding pattern. As reported for other marine invertebrates, we found high levels of genetic differentiation between the Atlantic and Mediterranean basins, suggesting that the Strait of Gibraltar represents a major barrier to dispersal for this sea star. Our assignment studies suggest that, in the Atlantic, a measurable degree of gene flow occurs between populations, which could result in the isolation-by-distance pattern of differentiation observed in this basin. In contrast, no evidence of contemporary gene flow was found in the Mediterranean, suggesting contrasting patterns of dispersal of Asterina gibbosa in the Atlantic and Mediterranean basins.  相似文献   

18.
Samples were collected from 407 fin whales, Balaenoptera physalus , at four North Atlantic and one Mediterranean Sea summer feeding area as well as the Sea of Cortez in the Pacific Ocean. For each sample, the sex, the sequence of the first 288 nucleotides of the mitochondrial (mt) control region and the genotype at six microsatellite loci were determined. A significant degree of divergence was detected at all nuclear and mt loci between North Atlantic/Mediterranean Sea and the Sea of Cortez. However, the divergence time estimated from the mt sequences was substantially lower than the time elapsed since the rise of the Panama Isthmus, suggesting occasional gene flow between the North Pacific and North Atlantic ocean after the separation of the two oceans. Within the North Atlantic and Mediterranean Sea, significant levels of heterogeneity were observed in the mtDNA between the Mediterranean Sea, the eastern (Spain) and the western (the Gulf of Maine and the Gulf of St Lawrence) North Atlantic. Samples collected off West Greenland and Iceland could not be unequivocally assigned to either of the two areas. The homogeneity tests performed using the nuclear data revealed significant levels of divergence only between the Mediterranean Sea and the Gulf of St Lawrence or West Greenland. In conclusion, our results suggest the existence of several recently diverged populations in the North Atlantic and Mediterranean Sea, possibly with some limited gene flow between adjacent populations, a population structure which is consistent with earlier population models proposed by Kellogg, Ingebrigtsen, and Sergeant.  相似文献   

19.
Lithophyllum byssoides is a common coralline alga in the intertidal zone of Mediterranean coasts, where it produces biogenic concretions housing a high algal and invertebrate biodiversity. This species is an ecosystem engineer and is considered a target for conservation efforts, but designing effective conservation strategies currently is impossible due to lack of information about its population structure. The morphological and molecular variation of L. byssoides was investigated using morphoanatomy and DNA sequences (psbA and cox2,3) obtained from populations at 15 localities on the Italian and Croatian coasts. Lithophyllum byssoides exhibited a high number of haplotypes (31 psbA haplotypes and 24 cox2,3 haplotypes) in the central Mediterranean. The psbA and cox2,3 phylogenies were congruent and showed seven lineages. For most of these clades, the distribution was limited to one or a few localities, but one of them (clade 7) was widespread across the central Mediterranean, spanning the main biogeographic boundaries recognized in this area. The central Mediterranean populations formed a lineage separate from Atlantic samples; psbA pair‐wise divergences suggested that recognition of Atlantic and Mediterranean L. byssoides as different species may be appropriate. The central Mediterranean haplotype patterns of L. byssoides were interpreted as resulting from past climatic events in the hydrogeological history of the Mediterranean Sea. The high haplotype diversity and the restricted spatial distribution of the seven lineages suggest that individual populations should be managed as independent units.  相似文献   

20.
Juvenile loggerhead sea turtles (Caretta caretta) from Atlantic nesting populations migrate into the western Mediterranean, where they share feeding grounds with turtles originating in the Mediterranean. In this scenario, male-mediated gene flow may lead to the homogenization of these distant populations. To test this hypothesis, we genotyped 7 microsatellites from 56 Atlantic individuals sampled from feeding grounds in the western Mediterranean and then compared the observed allele frequencies with published data of 112 individuals from Mediterranean nesting beaches. Mediterranean populations were found to be genetically differentiated from the Atlantic stock reaching the western Mediterranean (F(st) = 0.029, P < 0.001); therefore, the possible mating events between Atlantic and Mediterranean individuals are not sufficient to homogenize these 2 areas. The differentiation observed between these 2 areas demonstrates that microsatellites are sufficiently powerful for mixed stock analysis and that individual assignment (IA) tests can be performed in combination with mitochondrial DNA (mtDNA) analysis. In a set of 197 individuals sampled in western Mediterranean feeding grounds, 87% were robustly assigned to Atlantic or Mediterranean groups with the combined marker, as compared with only 52% with mtDNA alone. These findings provide a new approach for tracking the movements of these oceanic migrants and have strong implications for the conservation of the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号