共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Summary The innervation of the dog's parotid has been studied by cholinesterase staining and catecholamine fluorescence. In normal glands cholinergic and adrenergic nerves are plentiful around acini, muscular blood vessels, and to a lesser extent striated ducts. The main ducts, although surrounded by many cholinesterase-positive nerves, are associated with few adrenergic nerves. Severance of the classical parasympathetic post-ganglionic nerve to the gland, the auriculo-temporal, caused a moderate loss of cholinesterase-positive nerves. When this procedure was combined with section of the nerves on the internal maxillary artery there was a greater loss. Fewest cholinesterase-positive nerves remained when, in addition to these two procedures, the facial nerve was cut. These findings support the concept that all three sets of nerves contain some post-ganglionic parasympathetic fibres for the dog's parotid. The source of the remaining nerves is unknown. Preganglionic parasympathetic denervation by section of the tympanic branch of the glossopharyngeal nerve did not reduce the number of cholinesterase-positive nerves. None of these parasympathetic denervations caused reduction of adrenergic nerves, indicating that they do not travel to the gland with the parasympathetic nerves. After superior cervical ganglionectomy a few scattered fluorescent nerves remained in the gland; their origin is unknown. 相似文献
3.
Hahn H. L.; Wilson A. G.; Graf P. D.; Fischer S. P.; Nadel J. A. 《Journal of applied physiology》1978,44(2):144-149
4.
5.
6.
Albert D. G. De Roos Everardus J. J. Van Zoelen Alexander P. R. Theuvenet 《Journal of cellular physiology》1997,170(2):166-173
The effects of the phosphoinositide-mobilizing agonist bradykinin (BK) on membrane potential and intracellular calcium in monolayers of normal rat kidney (NRK) fibroblasts were investigated. BK induced a rapid transient depolarization in these cells, which was mimicked by other phosphoinositide-mobilizing factors such as prostaglandin F2α (PGF2α), lysophosphatidic acid (LPA), platelet-derived growth factor (PDGF-BB), and serum. Depolarization by BK was independent of extracellular Ca2+ or Na+. It was shown using extracellular Cl− substitutions that the depolarization was caused by an increased Cl− conductance. Depolarization was inhibited by 5-nitro-2-3-phenylpropyl(amino)benzoic acid (NPPB), niflumic acid, and flufenamic acid, inhibitors of calcium-dependent chloride channels. The depolarization provoked by BK could be mimicked by raising intracellular calcium with ionomycin or thapsigargin and could be blocked with geneticin, a blocker of phospholipase C. When intracellular calcium was buffered by loading the cells with 1,2-bis(2-aminophenoxy)ethane-NNN′N′-tetra-acetic acid (BAPTA), depolarization was prevented. We conclude that in NRK fibroblasts extracellular stimuli that increase intracellular calcium, depolarize the cells via the activation of a calcium-dependent chloride conductance. In addition to an increase in intracellular calcium, depolarization may be an important effector pathway in response to extracellular stimuli in fibroblasts. It is hypothesized that, in electrically coupled cells such as NRK fibroblasts, intercellular transmission of these depolarizations may represent a mechanism to coordinate uniform multicellular responses to Ca2+-mobilizing agonists. J. Cell. Physiol. 170:166–173, 1997. © 1997 Wiley-Liss, Inc. 相似文献
7.
8.
9.
PM-induced cardiac oxidative stress and dysfunction are mediated by autonomic stimulation 总被引:1,自引:0,他引:1
Rhoden CR Wellenius GA Ghelfi E Lawrence J González-Flecha B 《Biochimica et biophysica acta》2005,1725(3):305-313
Epidemiological studies show that increases in particulate air pollution (PM) are associated with increases in cardiopulmonary morbidity and mortality. However, the mechanism(s) underlying the cardiac effects of PM remain unknown. We used pharmacological strategies to determine whether oxidants are implicated in PM-dependent cardiac dysfunction and whether PM-induced increase in autonomic stimulation on the heart mediates cardiac oxidative stress and toxicity. Adult Sprague-Dawley rats were exposed to either intratracheal instillation of urban air particles (UAP 750 microg) or to inhalation of concentrated ambient particles (CAPs mass concentration 700+/-180 microg/m3) for 5 h. Oxidative stress and cardiac function were evaluated 30 min after UAP instillation or immediately after exposure to CAPs. Instillation of UAP led to significant increases in heart oxidants measured as organ chemiluminescence (UAP: 38+/-5 cps/cm2, sham: 10+/-1 cps/cm2) or thiobarbituric acid reactive substances (TBARS, UAP: 76+/-10, Sham 30+/-6 pmol/mg protein). Heart rate increased immediately after exposure (UAP: 390+/-20 bpm, sham: 350+/-10 bpm) and returned to basal levels over the next 30 min. Heart rate variability (SDNN) was unchanged immediately after exposure, but significantly increased during the recovery phase (UAP: 3.4+/-0.2, Sham: 2.4+/-0.3). To determine the role of ROS in the development of cardiac malfunction, rats were treated with 50 mg/kg N-acetylcysteine (NAC) 1 h prior to UAP instillation or CAPs inhalation. NAC prevented changes in heart rate and SDNN in UAP-exposed rats (340+/-8 and 2.9+/-0.3, respectively). To investigate the role of the autonomic nervous system in PM-induced oxidative stress, rats were given 5 mg/kg atenolol (beta-1 receptor antagonist), 0.30 mg/kg glycopyrrolate (muscarinic receptor antagonist) or saline immediately before exposure to CAPs aerosols. Both atenolol and glycopyrrolate effectively prevented CAPs-induced cardiac oxidative stress (CL(ATEN): 11+/-1 cps/cm2, CL(GLYCO): 10+/-1 cps/cm2, TBARS(ATEN): 40+/-6 pmol/mg protein, TBARS(GLYCO): 38+/-6 pmol/mg protein). These data indicate that PM exposure increases cardiac oxidants via autonomic signals and the resulting oxidative stress is associated with significant functional alterations in the heart. 相似文献
10.
Total or selective branch vagotomy attenuates the reduction of cumulative food intake by cholecystokinin (CCK)-8 and CCK-33 respectively. However, the role of the sympathetic innervation of the gut and the role of the vagus nerve in feeding responses, which include meal size (MS) and intermeal interval (IMI), evoked by CCK-8 and CCK-33 have not been evaluated. Here, we tested the effects of total subdiaphragmatic vagotomy (VGX) and celiaco-mesenteric ganglionectomy (CMGX) on the previous feeding responses by CCK-8 and CCK-33 (0, 1, 3, and 5 nmol/kg given intraperitoneally). We found (1) that both peptides reduced meal size and CCK-8 (5 nmol) and CCK-33 (1 and 3 nmol) prolonged IMI, (2) that VGX attenuated the reduction of MS but failed to attenuate the prolongation of IMI by both peptides and (3) that CMGX attenuated the reduction of meal size by CCK-8 and the prolongation of IMI by both peptides. Therefore, the feeding responses evoked by CCK-8 require intact vagus and splanchnic nerves: the reduction of MS by CCK-33 requires an intact vagus nerve, and the prolongation of IMI requires the splanchnic nerve. These findings demonstrate the differential peripheral neuronal mediation of the feeding responses evoked by CCK-8 and CCK-33. 相似文献
11.
Summary The fine structure of the preterminal nerve fibers of the rabbit myometrial smooth muscle was studied using potassium permanganate fixation or glutaraldehyde fixation with postosmification. The preterminal fibers were mostly formed by 2–10 axons enveloped by Schwann cells. Two kinds of axons and axon terminals were found. (1) Adrenergic axons, which contained many small, granular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å) which represented ca. 2% of the total count of the vesicles. (2) Nonadrenergic axons, which contained small agranular vesicles (diameter 300–600 Å) and large granular vesicles (diameter 700–1200 Å). Both types of axons formed preterminal varicosities along their course. The real terminal varicosities, representing the anatomical end of the axons, were usually larger than the preterminal ones and showed close contact to the plasma membranes of the smooth muscle cells. Both adrenergic and nonadrenergic terminals were found close to the smooth muscle cells, but a gap of at least 2000 Å was always present between the two cell membranes. The axons and preterminal varicosities of both types of nerves were in intimate contact with each other within the preterminal nerve fiber. Axo-axonal interactions between the two types of axons are possible in the rabbit myometrium. The relative proportion of the nonadrenergic axons from the total was about one fourth. 相似文献
12.
13.
14.
Coupling of bradykinin receptors to phospholipase C in cultured fibroblasts is mediated by a G-protein 总被引:7,自引:0,他引:7
In cultured foreskin fibroblasts, bradykinin stimulates inositol phosphate generation, arachidonic acid release, and Na+/H+ exchange, with doses of 1-3 nM yielding half-maximal stimulation. Binding of 3H-bradykinin to these cells demonstrates a single receptor site with a Kd of 2.0 nM and a Bmax of 91 fmoles/mg protein. Bradykinin analogs of the B2 type inhibit this binding. GTP synergizes with bradykinin to stimulate phosphatidylinositol turnover in permeabilized fibroblasts and GTP-gamma-S decreases the Bmax of bradykinin binding to fibroblast membranes, indicating that a G-protein couples the receptor to phospholipase C. Pretreatment of fibroblasts with either cholera or pertussis toxin enhances bradykinin stimulation of inositol phosphate accumulation. 相似文献
15.
16.
Yamano T Tanida M Niijima A Maeda K Okumura N Fukushima Y Nagai K 《Life sciences》2006,79(20):1963-1967
Oral administration of Lactobacillus casei reportedly reduces blood glucose concentrations in a non-insulin-dependent diabetic KK-Ay mouse model. In order to determine if other lactobacillus strains affect glucose metabolism, we evaluated the effect of the probiotic strain Lactobacillus johnsonii La1 (LJLa1) strain on glucose metabolism in rats. Oral administration of LJLa1 via drinking water for 2 weeks inhibited the hyperglycemia induced by intracranial injection of 2-deoxy-D-glucose (2DG). We found that the hyperglucagonemic response induced by 2DG was also suppressed by LJLa1. Oral administration of LJLa1 for 2 weeks also reduced the elevation of blood glucose and glucagon levels after an oral glucose load in streptozotocin-diabetic rats. In addition, we recently observed that intraduodenal injection of LJLa1 reduced renal sympathetic nerve activity and enhanced gastric vagal nerve activity, suggesting that LJLa1 might affect glucose metabolism by changing autonomic nerve activity. Therefore, we evaluated the effect of intraduodenal administration of LJLa1 on adrenal sympathetic nerve activity (ASNA) in urethane-anesthetized rats, since the autonomic nervous system, including the adrenal sympathetic nerve, may be implicated in the control of the blood glucose levels. Indeed, we found that ASNA was suppressed by intraduodenal administration of LJLa1, suggesting that LJLa1 might improve glucose tolerance by reducing glucagon secretion via alteration of autonomic nerve activities. 相似文献
17.
Bae SW Kim HS Cha YN Park YS Jo SA Jo I 《Biochemical and biophysical research communications》2003,306(4):981-987
Bradykinin (BK) acutely increases endothelial nitric oxide (NO) production by activating endothelial NO synthase (eNOS), and this increase is in part correlated with enhanced phosphorylation/dephosphorylation of eNOS by several protein kinases and phosphatases. However, the signaling mechanisms producing this increase are still controversial. In an attempt to delineate the acute effect of BK on endothelial NO production, confluent bovine aortic endothelial cells were incubated with BK, and NO production was measured by NO-specific chemiluminescence. Significant increase in NO levels was detected as early as 1 min after BK treatment, with concomitant increase in the phosphorylation of Ser(1179) (bovine sequence) site of eNOS (eNOS-Ser(1179)). This acute effect of BK on both increases was blocked only by treatment of protein kinase A inhibitor H-89, but not by the inhibitors of calmodulin-dependent kinase II and protein kinase B, suggesting that the rapid increase in NO production by BK is mediated by the PKA-dependent phosphorylation of eNOS-Ser(1179). 相似文献
18.
C Butler W M Watson-Wright M Wilkinson D E Johnstone J A Armour 《Canadian journal of physiology and pharmacology》1988,66(3):175-184
Electrical stimulation of an acutely decentralized stellate or middle cervical ganglion or cardiopulmonary nerve augments cardiac chronotropism or inotropism; as the stimulation continues there is a gradual reduction of this augmentation following the peak response, i.e., an inhibition of augmentation. The amount of this inhibition was found to be dependent upon the region of the heart investigated and the neural structure stimulated. The cardiac parameters which were augmented the most displayed the greatest inhibition. Maximum augmentation or inhibition occurred, in most instances, when 5-20 Hz stimuli were used. Inhibition of augmentation was overcome when the stimulation frequency was subsequently increased or following the administration of nicotine or tyramine, indicating that the inhibition was not primarily due to the lack of availability of noradrenaline in the nerve terminals of the efferent postganglionic sympathetic neurons. Furthermore, as infusions of isoproterenol or noradrenaline during the period of inhibition could still augment cardiac responses, whereas during the early peak responses they did not, the inhibition of augmentation does not appear to be due primarily to down regulation of cardiac myocyte beta-adrenergic receptors. The inhibition was modified by hexamethonium but not by phentolamine or atropine. Inhibition occurred when all ipsilateral cardiopulmonary nerves connected with acutely decentralized middle cervical and stellate ganglia were stimulated, whereas significant inhibition did not occur when these nerves were stimulated after they had been disconnected from the ipsilateral decentralized ganglia. Taken together these data indicate that the inhibition of cardiac augmentation which occurs during relatively long-term stimulation of intrathoracic sympathetic neural elements is due in large part to nicotinic cholinergic synaptic mechanisms that lie primarily in the major thoracic autonomic ganglia. They also indicate that long-term stimulation in intrathoracic sympathetic neural elements with frequencies as low as 2 Hz may augment the heart as much as higher stimulation frequencies, depending upon the structure stimulated and the cardiovascular parameter monitored. 相似文献
19.
In the present investigation partial degeneration of adrenergic and cholinergic nerves of the heart of guinea pigs following methotrexate treatment has been reported. No appreciable change was observed in the autonomic nerve fibres after 3 days of treatment. However, after prolonged treatment some nerve fibres showed signs of degeneration and a few adrenergic and cholinergic nerve fibres had disappeared. 相似文献