首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

2.
The conversion of the alpha-helical, protease sensitive and noninfectious form of the prion protein (PrP(C)) into an insoluble, protease resistant, predominantly beta-sheeted and infectious form (PrP(Sc)) is the fundamental event in prion formation. In the present work, two soluble and stable intermediate structural states are newly identified for recombinant Syrian hamster PrP(90-231) (recPrP), a dimeric alpha-helical state and a tetra- or oligomeric, beta-sheet rich state. In 0.2% SDS at room temperature, recPrP is soluble and exhibits alpha-helical and random coil secondary structure as determined by circular dichroism. Reduction of the SDS concentration to 0.06% leads first to a small increase in alpha-helical content, whereas further dilution to 0.02% results in the aquisition of beta-sheet structure. The reversible transition curve is sigmoidal within a narrow range of SDS concentrations (0.04 to 0.02%). Size exclusion chromatography and chemical crosslinking revealed that the alpha-helical form is dimeric, while the beta-sheet rich form is tetra- or oligomeric. Both the alpha-helical and beta-sheet rich intermediates are soluble and stable. Thus, they should be accessible to further structural and mechanistic studies. At 0.01% SDS, the oligomeric intermediates aggregated into large, insoluble structures as observed by fluorescence correlation spectroscopy. Our results are discussed with respect to the mechanism of PrP(Sc) formation and the propagation of prions.  相似文献   

3.
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.  相似文献   

4.
In transmissible spongiform encephalopathies, the cellular prion protein (PrP(C)) undergoes a conformational change from a prevailing alpha-helical structure to a beta-sheet-rich, protease-resistant isoform, termed PrP(Sc). PrP(C) has two characteristics: a high affinity for Cu(2+) and a strong pH-dependent conformation. Lines of evidence indicate that PrP(Sc) conformation is dependent on copper and that acidic conditions facilitate the conversion of PrP(C) --> PrP(Sc). In each species, PrP(Sc) exists in multiple conformations, which are associated with different prion strains. In sporadic Creutzfeldt-Jakob disease (sCJD), different biochemical types of PrP(Sc) have been identified according to the size of the protease-resistant fragments, patterns of glycosylation, and the metal-ion occupancy. Based on the site of cleavage produced by proteinase K, we investigated the conformational stability of PrP(Sc) under acidic, neutral, and basic conditions in 42 sCJD subjects. Our study shows that only one type of sCJD PrP(Sc), associated with the classical form, shows a pH-dependent conformation, whereas two other biochemical PrP(Sc) types, detected in distinct sCJD phenotypes, are unaffected by pH variations. This novel approach demonstrates the presence of three types of PrP(Sc) in sCJD.  相似文献   

5.
J Tatzelt  S B Prusiner    W J Welch 《The EMBO journal》1996,15(23):6363-6373
The fundamental event in prion diseases involves a conformational change in one or more of the alpha-helices of the cellular prion protein (PrP(C)) as they are converted into beta-sheets during the formation of the pathogenic isoform (PrP(Sc)). Here, we show that exposure of scrapie-infected mouse neuroblastoma (ScN2a) cells to reagents known to stabilize proteins in their native conformation reduced the rate and extent of PrP(Sc) formation. Such reagents include the cellular osmolytes glycerol and trimethylamine N-oxide (TMAO) and the organic solvent dimethylsulfoxide (DMSO), which we refer to as 'chemical chaperones' because of their influence on protein folding. Although the chemical chaperones did not appear to affect the existing population of PrP(Sc) molecules in ScN2a cells, they did interfere with the formation of PrP(Sc) from newly synthesized PrP(C). We suggest that the chemical chaperones act to stabilize the alpha-helical conformation of PrP(C) and thereby prevent the protein from undergoing a conformational change to produce PrP(Sc). These observations provide further support for the idea that prions arise due to a change in protein conformation and reveal potential strategies for preventing PrP(Sc) formation.  相似文献   

6.
The principal infectious and pathogenic agent in all prion disorders is a beta-sheet-rich isoform of the cellular prion protein (PrP(C)) termed PrP-scrapie (PrP(Sc)). Once initiated, PrP(Sc) is self-replicating and toxic to neuronal cells, but the underlying mechanisms remain unclear. In this report, we demonstrate that PrP(C) binds iron and transforms to a PrP(Sc)-like form (*PrP(Sc)) when human neuroblastoma cells are exposed to an inorganic source of redox iron. The *PrP(Sc) thus generated is itself redox active, and it induces the transformation of additional PrP(C), simulating *PrP(Sc) propagation in the absence of brain-derived PrP(Sc). Moreover, limited depletion of iron from prion disease-affected human and mouse brain homogenates and scrapie-infected mouse neuroblastoma cells results in 4- to 10-fold reduction in proteinase K (PK)-resistant PrP(Sc), implicating redox iron in the generation, propagation, and stability of PK-resistant PrP(Sc). Furthermore, we demonstrate increased redox-active ferrous iron levels in prion disease-affected brains, suggesting that accumulation of PrP(Sc) is modulated by the combined effect of imbalance in brain iron homeostasis and the redox-active nature of PrP(Sc). These data provide information on the mechanism of replication and toxicity by PrP(Sc), and they evoke predictable and therapeutically amenable ways of modulating PrP(Sc) load.  相似文献   

7.
The infectivity associated with prion disease sets it apart from a large group of late-onset neurodegenerative disorders that shares the characteristics of protein aggregation and neurodegeneration. The unconventional infectious agent, PrP(Sc), is an aberrantly folded form of the normal prion protein (PrP(C)) and the PrP(C)-to-PrP(Sc) conversion is a critical pathogenic step in prion disease. Using the Protein Misfolding Cyclic Amplification technique, we converted folded bacterially expressed recombinant PrP into a proteinase K-resistant and aggregated conformation (rPrP-res) in the presence of anionic lipid and RNA molecules. Moreover, high prion infectivity was demonstrated by intracerebral inoculation of rPrP-res into wild-type mice, which caused prion disease with a short incubation period. The establishment of the in vitro recombinant PrP conversion assay makes it feasible for us to explore the molecular basis behind the intriguing properties associated with prion infectivity.  相似文献   

8.
The infectious prion protein, PrP(Sc), a predominantly beta-sheet aggregate, is derived from PrP(C), the largely alpha-helical cellular isoform of PrP. Conformational conversion of PrP(C) into PrP(Sc) has been suggested to involve a chaperone-like factor. Here we report that the bacterial chaperonin GroEL, a close homolog of eukaryotic Hsp60, can catalyze the aggregation of chemically denatured and of folded, recombinant PrP in a model reaction in vitro. Aggregates form upon ATP-dependent release of PrP from chaperonin and have certain properties of PrP(Sc), including a high beta-sheet content, the ability to bind the dye Congo red, detergent-insolubility and increased protease-resistance. A conserved sequence segment of PrP (residues 90-121), critical for PrP(Sc) generation in vivo, is also required for chaperonin-mediated aggregate formation in vitro. Initial binding of refolded, alpha-helical PrP to chaperonin is mediated by the unstructured N-terminal segment of PrP (residues 23-121) and is followed by a rearrangement of the globular PrP core-domain. These results show that chaperonins of the Hsp60 class can, in principle, mediate PrP aggregation de novo, i.e. independently of a pre-existent PrP(Sc) template.  相似文献   

9.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

10.
Conversion of the cellular alpha-helical prion protein (PrP(C)) into a disease-associated isoform (PrP(Sc)) is central to the pathogenesis of prion diseases. Molecules targeting either normal or disease-associated isoforms may be of therapeutic interest, and the antibodies binding PrP(C) have been shown to inhibit prion accumulation in vitro. Here we investigate whether antibodies that additionally target disease-associated isoforms such as PrP(Sc) inhibit prion replication in ovine PrP-inducible scrapie-infected Rov cells. We conclude from these experiments that antibodies exclusively binding PrP(C) were relatively inefficient inhibitors of ScRov cell PrP(Sc) accumulation compared with antibodies that additionally targeted disease-associated PrP isoforms. Although the mechanism by which these monoclonal antibodies inhibit prion replication is unclear, some of the data suggest that antibodies might actively increase PrP(Sc) turnover. Thus antibodies that bind to both normal and disease-associated isoforms represent very promising anti-prion agents.  相似文献   

11.
Transmissible spongiform encephalitis (TSE) is a lethal illness with no known treatment. Conversion of the cellular prion protein (PrP(C)) into the infectious isoform (PrP(Sc)) is believed to be the central event in the development of this disease. Recombinant PrP (rPrP) protein folded into the amyloid conformation was shown to cause the transmissible form of prion disease in transgenic mice and can be used as a surrogate model for PrP(Sc). Here, we introduced a semiautomated assay of in vitro conversion of rPrP protein to the amyloid conformation. We have examined the effect of known inhibitors of prion propagation on this conversion and found good correlation between their activity in this assay and that in other in vitro assays. We thus propose that the conversion of rPrP to the amyloid isoform can serve as a high-throughput screen for possible inhibitors of PrP(Sc) formation and potential anti-TSE drugs.  相似文献   

12.
Transmissible spongiform encepahalopathies (TSEs) are fatal diseases that damage the central nervous system. TSEs are unique in that they may be inherited, infectious or spontaneous. The central pathogenic agent is thought to be a conformationally distinct form (PrP(Sc;)) of the endogenous prion protein(PrP(c)), which is high in beta-sheet content and is resistant to proteases; infectivity is thought to involve formation of PrP(Sc) via imprinting of abnormal conformation on the normal form of the protein (PrP(c)) by seeds of PrP(Sc). A number of compounds found to inhibit the conversion of PrP(c) to PrP(Sc) have been proposed as therapeutics to halt TSEs.  相似文献   

13.
According to the "protein-only" hypothesis, the critical step in the pathogenesis of prion diseases is the conformational transition between the normal (PrP(C)) and pathological (PrP(Sc)) isoforms of prion protein. To gain insight into the mechanism of this transition, we have characterized the biophysical properties of the recombinant protein corresponding to residues 90-231 of the human prion protein (huPrP90-231). Incubation of the protein under acidic conditions (pH 3.6-5) in the presence of 1 M guanidine-HCl resulted in a time-dependent transition from an alpha-helical conformation to a beta-sheet structure and oligomerization of huPrP90-231 into large molecular weight aggregates. No stable monomeric beta-sheet-rich folding intermediate of the protein could be detected in the present experiments. Kinetic analysis of the data indicates that the formation of beta-sheet structure and protein oligomerization likely occur concomitantly. The beta-sheet-rich oligomers were characterized by a markedly increased resistance to proteinase K digestion and a fibrillar morphology (i.e., they had the essential physicochemical properties of PrP(Sc)). Contrary to previous suggestions, the conversion of the recombinant prion protein into a PrP(Sc)-like form could be accomplished under nonreducing conditions, without the need to disrupt the disulfide bond. Experiments in urea indicate that, in addition to acidic pH, another critical factor controlling the transition of huPrP90-231 to an oligomeric beta-sheet structure is the presence of salt.  相似文献   

14.
Prion diseases such as Creutzfeldt-Jakob disease (CJD) in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals are associated with the accumulation in affected brains of a conformational isomer (PrP(Sc)) of host-derived prion protein (PrP(C)). According to the protein-only hypothesis, PrP(Sc) is the principal or sole component of transmissible prions. The conformational change known to be central to prion propagation, from a predominantly alpha-helical fold to one predominantly comprising beta structure, can now be reproduced in vitro, and the ability of beta-PrP to form fibrillar aggregates provides a plausible molecular mechanism for prion propagation. The existence of multiple prion strains has been difficult to explain in terms of a protein-only infectious agent but recent studies of human prion diseases suggest that strain-specific phenotypes can be encoded by different PrP conformations and glycosylation patterns. The experimental confirmation that a novel form of human prion disease, variant CJD, is caused by the same prion strain as cattle BSE, has highlighted the pressing need to understand the molecular basis of prion propagation and the transmission barriers that limit their passage between mammalian species. These and other advances in the fundamental biology of prion propagation are leading to strategies for the development of rational therapeutics.  相似文献   

15.
Kuwata K  Li H  Yamada H  Legname G  Prusiner SB  Akasaka K  James TL 《Biochemistry》2002,41(41):12277-12283
A crucial step for transformation of the normal cellular isoform of the prion protein (PrP(C)) to the infectious prion protein (PrP(Sc)) is thought to entail a previously uncharacterized intermediate conformer, PrP*, which interacts with a template PrP(Sc) molecule in the conversion process. By carrying out (15)N-(1)H two-dimensional NMR measurements under variable pressure on Syrian hamster prion protein rPrP(90-231), we found a metastable conformer of PrP(C) coexisting at a population of approximately 1% at pH 5.2 and 30 degrees C, in which helices B and C are preferentially disordered. While the identity is still unproven, this observed metastable conformer is most logically PrP* or a closely related precursor. The structural characteristics of this metastable conformer are consistent with available immunological and pathological information about the prion protein.  相似文献   

16.
In the presence of a low concentration of denaturants or detergents, acidic pH triggers a conformational transition of alpha-helices into beta-sheets in recombinant prion protein (PrP), likely mimicking some aspects of the transformation of host-encoded normal cellular PrP (PrP(C)) into its pathogenic isoform (PrP(Sc)). Here we observed the effects of acidic pH and guanidine hydrochloride (GdnHCl) on the physicochemical and structural properties of PrP(C) derived from normal human brain and determined the ability of the acid/GdnHCl-treated PrP to form a proteinase K (PK)-resistant species in the absence and presence of PrP(Sc) template. After treatment with 1.5 m GdnHCl at pH 3.5, PrP(C) from normal brain homogenates was converted into a detergent-insoluble form similar to PrP(Sc). Unlike PrP(Sc), however, the treated brain PrP(C) was protease-sensitive and retained epitope accessibility to monoclonal antibodies 3F4 and 6H4. Brain PrP(C) treated with acidic pH/GdnHCl acquired partial PK resistance upon further treatment with low concentrations of sodium dodecyl sulfate (SDS). Formation of this PrP(Sc)-like isoform was greatly enhanced by incubation with trace quantities of PrP(Sc) from Creutzfeldt-Jakob disease brain. Acid/GdnHCl-treated brain PrP may constitute a "recruitable intermediate" in PrP(Sc) formation. Further structural rearrangement seems essential for this species to acquire PK resistance, which can be promoted by the presence of a PrP(Sc) template.  相似文献   

17.
Khorvash M  Lamour G  Gsponer J 《Biochemistry》2011,50(47):10192-10194
Cellular prion protein (PrP(C)) has the ability to trigger transmissible lethal diseases after in vivo maturation into a toxic amyloidogenic misfolded form (PrP(Sc)). Here, we use hydrogen exchange protection factors in restrained molecular dynamics simulations to characterize long-time scale fluctuations in human PrP(C). We find that the regions of residues 138-141 and 183-192 form new β-strands in several exchange-competent structures. Moreover, these structural changes are associated with the disruption of native contacts that when tethered prevent fibril formation. Our findings illustrate the structural plasticity of PrP(C) and are valuable for understanding the conversion of PrP(C) to PrP(Sc).  相似文献   

18.
The normal cellular prion protein (PrP(C)) is a glycoprotein with two highly conserved potential N-linked glycosylation sites. All prion diseases, whether inherited, infectious or sporadic, are believed to share the same pathogenic mechanism that is based on the conversion of the normal cellular prion protein (PrP(C)) to the pathogenic scrapie prion protein (PrP(Sc)). However, the clinical and histopathological presentations of prion diseases are heterogeneous, depending not only on the strains of PrP(Sc) but also on the mechanism of diseases, such as age-related sporadic vs. infectious prion diseases. Accumulated evidence suggests that N-linked glycans on PrP(C) are important in disease phenotype. A better understanding of the nature of the N-linked glycans on PrP(C) during the normal aging process may provide new insights into the roles that N-linked glycans play in the pathogenesis of prion diseases. By using a panel of 19 lectins in an antibody-lectin enzyme-linked immunosorbent assay (ELISA), we found that the lectin binding profiles of PrP(C) alter significantly during aging. There is an increasing prevalence of complex oligosaccharides on the aging PrP(C), which are features of PrP(Sc). Taken together, this study suggests a link between the glycosylation patterns on PrP(C) during aging and PrP(Sc).  相似文献   

19.
A hallmark in prion diseases is the conformational transition of the cellular prion protein (PrP(C)) into a pathogenic conformation, designated scrapie prion protein (PrP(Sc)), which is the essential constituent of infectious prions. Here, we show that epigallocatechin gallate (EGCG) and gallocatechin gallate, the main polyphenols in green tea, induce the transition of mature PrP(C) into a detergent-insoluble conformation distinct from PrP(Sc). The PrP conformer induced by EGCG was rapidly internalized from the plasma membrane and degraded in lysosomal compartments. Isothermal titration calorimetry studies revealed that EGCG directly interacts with PrP leading to the destabilizing of the native conformation and the formation of random coil structures. This activity was dependent on the gallate side chain and the three hydroxyl groups of the trihydroxyphenyl side chain. In scrapie-infected cells EGCG treatment was beneficial; formation of PrP(Sc) ceased. However, in uninfected cells EGCG interfered with the stress-protective activity of PrP(C). As a consequence, EGCG-treated cells showed enhanced vulnerability to stress conditions. Our study emphasizes the important role of PrP(C) to protect cells from stress and indicate efficient intracellular pathways to degrade non-native conformations of PrP(C).  相似文献   

20.
The conversion of the alpha-helical, cellular isoform of the prion protein (PrP C ) to the insoluble, beta-sheet-rich, infectious, disease-causing isoform (PrP Sc ) is the fundamental event in the prion diseases. The C-terminal fragment of PrP Sc (PrP 27-30) is formed by limited proteolysis and retains infectivity. Unlike full-length PrP Sc , PrP 27-30 polymerizes into rod-shaped structures with the ultra-structural and tinctorial properties of amyloid. To study the folding of PrP, both with respect to the formation of PrP Sc from PrP C and the assembly of rods from PrP 27-30, we solubilized Syrian hamster (sol SHa) PrP 27-30 in low concentrations (0.2%) of sodium dodecyl sulfate (SDS) under conditions previously used to study the structural transitions of this protein. Sol SHaPrP 27-30 adopted a beta-sheet-rich structure at SDS concentrations between 0.02% and 0.04% and remained soluble. Here we report that NaCl stabilizes SHaPrP 27-30 in a soluble, beta-sheet-rich state that allows fibril assembly to proceed over several weeks. Under these conditions, fibril formation occurred not only with sol PrP 27-30, but also with native SHaPrP C . Addition of sphingolipids seems to increase fibril growth. When recombinant (rec) SHaPrP(90-231) was exposed to low concentrations of SDS, similar to those used to polymerize sol SHaPrP 27-30 in the presence of 250 mM NaCl, fibril formation occurred regularly. When fibrils formed from PrP 27-30 or PrP C were bioassayed in transgenic mice overexpressing full-length SHaPrP, no infectivity was obtained, whereas amyloid fibrils formed of rec mouse PrP(89-230) were infectious. At present, it cannot be determined whether the lack of infectivity is caused by a difference in the structure of the fibrils or in the bioassay conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号