共查询到20条相似文献,搜索用时 15 毫秒
1.
Calmodulin-dependent multiprotein kinase and protein kinase C phosphorylate and inactivate both intact, microsomal HMG-CoA reductase, and the purified 53 kDa catalytic fragment. Isolation of the single phosphopeptide produced by combined cleavage with cyanogen bromide and Lys-C proteinase reveals that this is due to phosphorylation of a single serine residue near the C-terminus, corresponding to serine-872 in the human enzyme. This is identical with the single serine phosphorylated by the AMP-activated protein kinase. The nature of the protein kinase responsible for phosphorylation of this site in vivo is discussed. 相似文献
2.
Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. 总被引:8,自引:0,他引:8 下载免费PDF全文
The intact, 100 kd microsomal enzyme and the 53 kd catalytic fragment of rat HMG-CoA reductase are both phosphorylated and inactivated by the AMP-activated protein kinase. Using the catalytic fragment, we have purified and sequenced peptides containing the single site of phosphorylation. Comparison with the amino acid sequence predicted from the cDNAs encoding other mammalian HMG-CoA reductases identifies this site as a serine residue close to the C-terminus (Ser872 in the human enzyme). Phosphopeptide mapping of native, 100 kd microsomal HMG-CoA reductase confirms that this C-terminal serine is the only major site phosphorylated in the intact enzyme by the AMP-activated protein kinase. The catalytic fragment of HMG-CoA reductase was also isolated from rat liver in the presence of protein phosphatase inhibitors under conditions where the enzyme is largely in the inactive form. HPLC, mass spectrometry and sequencing of the peptide containing Ser872 demonstrated that this site is highly phosphorylated in intact liver under these conditions. We have also identified by amino acid sequencing the N-terminus of the catalytic fragment, which corresponds to residue 423 of the human enzyme. 相似文献
3.
Phosphorylation of HMG-CoA reductase induced by mevalonate accelerates its rate of degradation in isolated rat hepatocytes 总被引:4,自引:0,他引:4
Incubation of rat hepatocytes with 10 mM mevalonate produces a decrease in HMG-CoA reductase activity and in the rate of synthesis of both monomeric and dimeric HMG-CoA reductase, and an increase in the rate of degradation of the monomeric form without significant change in that of the dimeric form. Since mevalonate promotes a short-term phosphorylation of the monomeric form without affecting the dimeric form, it is suggested that the mechanism of degradation of reductase is controlled by its phosphorylation state. 相似文献
4.
Xiujuan Zhang Yongfeng Song Mei Feng Xinli Zhou Yingli Lu Ling Gao Chunxiao Yu Xiuyun Jiang Jiajun Zhao 《Journal of lipid research》2015,56(5):963-971
Cholesterol homeostasis is strictly regulated through the modulation of HMG-CoA reductase (HMGCR), the rate-limiting enzyme of cholesterol synthesis. Phosphorylation of HMGCR inactivates it and dephosphorylation activates it. AMP-activated protein kinase (AMPK) is the major kinase phosphorylating the enzyme. Our previous study found that thyroid-stimulating hormone (TSH) increased the hepatocytic HMGCR expression, but it was still unclear whether TSH affected hepatic HMGCR phosphorylation associated with AMPK. We used bovine TSH (bTSH) to treat the primary mouse hepatocytes and HepG2 cells with or without constitutively active (CA)-AMPK plasmid or protein kinase A inhibitor (H89), and set up the TSH receptor (Tshr)-KO mouse models. The p-HMGCR, p-AMPK, and related molecular expression were tested. The ratios of p-HMGCR/HMGCR and p-AMPK/AMPK decreased in the hepatocytes in a dose-dependent manner following bTSH stimulation. The changes above were inversed when the cells were treated with CA-AMPK plasmid or H89. In Tshr-KO mice, the ratios of liver p-HMGCR/HMGCR and p-AMPK/AMPK were increased relative to the littermate wild-type mice. Consistently, the phosphorylation of acetyl-CoA carboxylase, a downstream target molecule of AMPK, increased. All results suggested that TSH could regulate the phosphorylation of HMGCR via AMPK, which established a potential mechanism for hypercholesterolemia involved in a direct action of the TSH in the liver. 相似文献
5.
Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A 总被引:7,自引:0,他引:7
Winder W. W.; Wilson H. A.; Hardie D. G.; Rasmussen B. B.; Hutber C. A.; Call G. B.; Clayton R. D.; Conley L. M.; Yoon S.; Zhou B. 《Journal of applied physiology》1997,82(1):219-225
Winder, W. W., H. A. Wilson, D. G. Hardie, B. B. Rasmussen,C. A. Hutber, G. B. Call, R. D. Clayton, L. M. Conley, S. Yoon, and B. Zhou. Phosphorylation of rat muscle acetyl-CoA carboxylase byAMP-activated protein kinase and protein kinase A. J. Appl. Physiol. 82(1): 219-225, 1997This studywas designed to compare functional effects of phosphorylation of muscleacetyl-CoA carboxylase (ACC) by adenosine 3,5-cyclicmonophosphate-dependent protein kinase (PKA) and by AMP-activatedprotein kinase (AMPK). Muscle ACC (272 kDa) was phosphorylated and thensubjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresisfollowed by autoradiography. Functional effects of phosphorylation weredetermined by measuring ACC activity at different concentrations ofeach of the substrates and of citrate, an activator of the enzyme. Themaximal velocity(Vmax) and theMichaelis constants(Km) for ATP,acetyl-CoA, and bicarbonate were unaffected by phosphorylation by PKA.Phosphorylation by AMPK increased theKm for ATP andacetyl-CoA. Sequential phosphorylation by PKA and AMPK, first withoutlabel and second with label, appeared to reduce the extent of label incorporation, regardless of the order. The activation constant (Ka) forcitrate activation was increased to the same extent by AMPKphosphorylation, regardless of previous or subsequent phosphorylation by PKA. Thus muscle ACC can be phosphorylated by PKA but with noapparent functional effects on the enzyme. AMPK appears to be the moreimportant regulator of muscle ACC. 相似文献
6.
Hep-G2 cells and primary rat hepatocytes differ in their response to inhibitors of HMG-CoA reductase
M K Shaw R S Newton D R Sliskovic B D Roth E Ferguson B R Krause 《Biochemical and biophysical research communications》1990,170(2):726-734
CI-981, a novel synthetic inhibitor of HMG-CoA reductase, was previously reported to be highly liver-selective using an ex vivo approach. In order to determine liver-selectivity at the cellular level, CI-981 was evaluated in cell culture and compared to lovastatin, pravastatin, fluvastatin and BMY-21950. Using human cell lines, none of the compounds tested showed liver-selectivity, i.e. strong inhibition of cholesterol synthesis in Hep-G2 cells (liver model) but weak inhibition in human fibroblasts (peripheral cell model). In contrast, all drugs tested produced equal and potent inhibition of sterol synthesis in primary cultures of rat hepatocytes, and CI-981, pravastatin and BMY-21950 were more than 100-fold more potent in rat hepatocytes compared to human fibroblasts. Since all compounds were also equally potent at inhibiting sterol synthesis in a rat subcellular system and in vivo, the data suggest that the use of Hep-G2 cells may not be the cell system of choice in which to study inhibition of hepatic cholesterogenesis or to demonstrate liver selectivity of inhibitors of HMG-CoA reductase. 相似文献
7.
Epidermal-growth-factor stimulation of gluconeogenesis in isolated rat hepatocytes involves the inactivation of pyruvate kinase. 下载免费PDF全文
Preincubation of rat hepatocytes with EGF (epidermal growth factor) caused a stimulation of gluconeogenesis from alanine. The effect was maximal after preincubation of 20 min, and a half-maximal effect of EGF was obtained at 10 nM. EGF also stimulated gluconeogenesis from lactate and asparagine, but not from glutamine or from proline. Preincubation of hepatocytes with EGF caused a stable inactivation of pyruvate kinase, which may account, at least in part, for the observed effects of EGF on gluconeogenesis. 相似文献
8.
Certain amino acids, like glutamine and leucine, induce an anabolic response in liver. They activate p70 ribosomal protein S6 kinase (p70S6K) and acetyl-CoA carboxylase (ACC) involved in protein and fatty acids synthesis, respectively. In contrast, the AMP-activated protein kinase (AMPK), which senses the energy state of the cell and becomes activated under metabolic stress, inactivates by phosphorylation key enzymes in biosynthetic pathways thereby conserving ATP. In this paper, we studied the effect of AMPK activation and of protein phosphatase inhibitors, on the amino-acid-induced activation of p70S6K and ACC in hepatocytes in suspension. AMPK was activated under anoxic conditions or by incubation with 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAr) or oligomycin, an inhibitor of mitochondrial oxidative phosphorylation. Incubation of hepatocytes with amino acids activated p70S6K via multiple phosphorylation. It also activated ACC by a phosphatase-dependent mechanism but did not modify AMPK activation. Conversely, the amino-acid-induced activation of both ACC and p70S6K was blocked or reversed when AMPK was activated. This AMPK activation increased Ser79 phosphorylation in ACC but decreased Thr389 phosphorylation in p70S6K. Protein phosphatase inhibitors prevented p70S6K activation when added prior to the incubation with amino acids, whereas they enhanced p70S6K activation when added after the preincubation with amino acids. It is concluded that (a) AMPK blocks amino-acid-induced activation of ACC and p70S6K, directly by phosphorylating Ser79 in ACC, and indirectly by inhibiting p70S6K phosphorylation, and (b) both activation and inhibition of protein phosphatases are involved in the activation of p70S6K by amino acids. p70S6K adds to an increasing list of targets of AMPK in agreement with the inhibition of energy-consuming biosynthetic pathways. 相似文献
9.
Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation by iodoacetamide 总被引:1,自引:0,他引:1
The localization of reactive cysteines and characterization of the HMG-CoA binding domain of rat liver HMG-CoA reductase were studied using iodoacetamide (IAAD) and short-chain acyl-CoA thioesters. Freeze-thaw-solubilized HMG-CoA reductase is irreversibly inactivated by IAAD with a second order rate constant of 0.78 M-1 sec-1 at 37 degrees C and pH 7.2. This IAAD inactivation is slowed down by pretreatment of the enzyme with disulfides, indicating that inactivation of HMG-CoA reductase occurs mainly through alkylation of specific cysteine residues in the protein. The substrate HMG-CoA, but not NADP(H), effectively protects the reductase from IAAD inactivation. When both HMG-CoA and NADP(H) are present, the reductase is inactivated by IAAD at a rate much faster than the inactivation in the presence of HMG-CoA alone. Of the two moieties of the HMG-CoA thioester, the CoA moiety confers protection from IAAD inactivation whereas HMG is totally ineffective. A series of CoA-thioesters of mono- and dicarboxylic acids of various size were tested for their effect on the activity of HMG-CoA reductase. The CoA analog, desulfo-CoA (des-CoA), and all CoA-thioesters of monocarboxylic acids of up to 6 carbons in length exhibit mixed-type inhibition of reductase activity. The competitive inhibition constants (Ki) for these compounds vary between 1 and 2 mM, whereas the noncompetitive component (K'i) is relatively constant (540 +/- 20 microM). As the acyl chain length increases beyond 6 carbons, the thioesters of monocarboxylic acids become more potent and acquire the characteristics of pure noncompetitive inhibitors. In contrast, the monothioesters of dicarboxylic acids are pure competitive inhibitors with Ki values which are similar to the Ki values of the corresponding thioesters of monocarboxylates. HMG does not affect reductase activity in concentrations of up to 2 mM, yet it greatly enhances the inhibition of the enzyme by des-CoA. Specifically, HMG affects only the Ki value of des-CoA by decreasing it from 1030 microM to 280 microM. The results indicate that reactive cysteine(s) are localized in the catalytic site of HMG-CoA reductase. Within the active site, these cysteines are closely associated with and probably participate in the binding of the CoA moiety of the substrate HMG-CoA. The results are also consistent with the existence of a noncatalytic hydrophobic site in HMG-CoA reductase. 相似文献
10.
The relationship between AMP-activated protein kinase activity and AMP concentration in the isolated perfused rat heart. 总被引:5,自引:0,他引:5
The objective of this study was to define the relationship among AMP-activated protein kinase (AMPK) activity, AMP concentration ([AMP]), and [ATP] in perfused rat hearts. Bromo-octanoate, an inhibitor of beta-oxidation, and amino-oxyacetate, an inhibitor of the malate-aspartate shuttle, were used to modify substrate flux and thus increase cytosolic [AMP]. Cytosolic [AMP] was calculated using metabolites measured by (31)P NMR spectroscopy. Rat hearts were perfused with Krebs-Henseleit solution containing glucose and either no inhibitor, the inhibitors, or the inhibitors plus butyrate, a substrate that bypasses the metabolic blocks. In this way, [AMP] changed from 0.2 to 27.9 microm, and [ATP] varied between 11.7 and 6.8 mm. AMPK activity ranged from 7 to 60 pmol.min(-1).microg of protein(-1). The half-maximal AMPK activation (A(0.5)) was 1.8 +/- 0.3 microm AMP. Measurements in vitro have reported similar AMPK A(0.5) at 0.2 mm ATP, but found that A(0.5) increased 10-20-fold at 4 mm ATP. The low A(0.5) of this study despite a high [ATP] suggests that in vivo the ATP antagonism of AMPK activation is reduced, and/or other factors besides AMP activate AMPK in the heart. 相似文献
11.
The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase 总被引:10,自引:0,他引:10
In addition to acetyl-CoA carboxylase and HMG-CoA reductase, the AMP-activated protein kinase phosphorylates glycogen synthase, phosphorylase kinase, hormone-sensitive lipase and casein. A number of other substrates for the cyclic AMP-dependent protein kinase, e.g., L-pyruvate kinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, are not phosphorylated at significant rates. Examination of the sites phosphorylated on acetyl-CoA carboxylase, hormone-sensitive lipase, glycogen synthase and phosphorylase kinase suggests a consensus recognition sequence in which the serine residue phosphorylated by the AMP-activated protein kinase has a hydrophobic residue on the N-terminal side (i.e., at -1) and at least one arginine residue at -2, -3 or -4. Substrates for cyclic AMP-dependent protein kinase which lack the hydrophobic residue at -1 are not substrates for the AMP-activated protein kinase. 相似文献
12.
13.
Hormonal control of fructose 2,6-bisphosphate concentration in isolated rat hepatocytes. 总被引:2,自引:10,他引:2 下载免费PDF全文
The ability of glucagon and of adrenaline to affect the concentration of fructose 2,6-bisphosphate in isolated hepatocytes was re-investigated because of important discrepancies existing in the literature. We were unable to detect a significant difference in the sensitivity of the hepatocytes with regard to the effect of glucagon to initiate the interconversion of phosphorylase, pyruvate kinase, 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase, and also to cause the disappearance of fructose 2,6-bisphosphate. In contrast, we have observed differences in the time-course of these various changes, since the interconversions of phosphorylase and of pyruvate kinase were at least twice as fast as those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. When measured in a cell-free system in the presence of MgATP, the cyclic AMP-dependent interconversion of pyruvate kinase was 5-10-fold more rapid than those of 6-phosphofructo-2-kinase and of fructose 2,6-bisphosphatase. These data indicate that 6-phosphofructo-2-kinase and fructose 2,6-bisphosphatase are relatively poor substrates for cyclic AMP-dependent protein kinase; they also support the hypothesis that the two catalytic activities belong to a single protein. Adrenaline had only a slight effect on the several parameters under investigation, except for the activation of phosphorylase. In the absence of Ca2+ ions from the incubation medium, however, adrenaline had an effect similar to that of glucagon. 相似文献
14.
Carbon tetrachloride-induced inhibition of protein kinase C in isolated rat hepatocytes 总被引:1,自引:0,他引:1
G Poli E Albano M U Dianzani E Melloni S Pontremoli U M Marinari M A Pronzato D Cottalasso 《Biochemical and biophysical research communications》1988,153(2):591-597
Isolated rat hepatocytes exposed to CCl4 showed a dramatic decrease in [32P] incorporation into proteins which was evident as early as 5 min after the haloalkane addition. DEAE cellulose separation of protein kinases present in both particulated and cytosolic fractions of hepatocytes revealed that only the calcium and phospholipids dependent protein kinase C was affected by the treatment with CCl4, while kinases not requiring these factors for their activity were unmodified. Several 4-hydroxyunsaturated aldehydes known to be produced during CCl4-stimulated lipid peroxidation were found to inhibit protein kinase C at micromolar concentrations, suggesting the possibility that peroxidative events might be responsible for the impairment of protein kinase C during CCl4 intoxication. 相似文献
15.
Phosphorylation of the 27-kDa gap junction protein by protein kinase C in vitro and in rat hepatocytes 总被引:3,自引:0,他引:3
We previously demonstrated that the 27-kDa major component protein in rat liver gap junctions was phosphorylated by protein kinase C in vitro (Takeda, A. et al. (1987) FEBS Lett. 210, 169-172). In this study, we examined this further and examined the phosphorylation of the 27-kDa gap junction protein in rat hepatocytes by metabolically labeling cells with [32P]orthophosphate and using a monoclonal antibody to immunoprecipitate the protein. The in vitro phosphorylation was inhibited by monoclonal antibodies recognizing the carboxyl- (C-)terminal domain of the 27-kDa protein. Protease digestion analysis revealed that phosphorylation occurred at the C-terminal domain. In rat hepatocytes, the phorbol esters, 12-O-tetradecanoylphorbol-13-acetate and phorbol-12,13-dibutyrate, stimulated the 27-kDa protein phosphorylation, whereas 4 alpha-phorbol-12,13-didecanoate did not. 1-Oleoyl-2-acetyl-sn-glycerol also stimulated the 27-kDa protein phosphorylation. In addition, norepinephrine stimulated the phosphorylation and pretreatment of hepatocytes with staurosporine, a potent inhibitor of protein kinase C, inhibited this stimulatory effect of norepinephrine. Both in vitro and in hepatocytes, analysis of chemical cleavage of the 27-kDa phosphoprotein revealed that phosphorylation occurred mainly at a 10-kDa fragment which the antibodies recognized. These results indicate that protein kinase C phosphorylates the 27-kDa gap junction protein, not only in vitro but also in hepatocytes, at the C-terminal domain of the protein. 相似文献
16.
CA Shugrue M Alexandre AD de Villalvilla TR Kolodecik LH Young FS Gorelick EC Thrower 《American journal of physiology. Gastrointestinal and liver physiology》2012,303(6):G723-G732
The premature activation of digestive enzyme zymogens in the pancreatic acinar cell is an important initiating event in acute pancreatitis. We have previously demonstrated that vacuolar ATPase (vATPase) activity is required for zymogen activation. Adenosine monophosphate-activated protein kinase (AMPK) regulates vATPase function in kidney and epididymal clear cells. To determine whether AMPK could affect pancreatitis responses, its effects were first examined in a cellular model of pancreatitis, cerulein-hyperstimulated (100 nM) pancreatic acini. This treatment caused a prominent increase in trypsin and chymotrypsin activities. Pretreatment with AICAR or metformin (AMPK activators) or compound C (an AMPK inhibitor) reduced or increased cerulein-induced zymogen activation, respectively. The association of the vATPase E subunit with membranes, a marker of its activation, tended to be inversely related to AMPK activity (assessed by AICAR and compound C treatments). Cerulein treatment did not change AMPK (α and β) levels but did lead to an increase in its activation (phosphorylation of Thr172) and induced the time-dependent translocation of the enzyme to a Triton-insoluble compartment. Basal in vivo studies showed that AMPK was widely distributed between membrane and soluble fractions generated by differential centrifugation. After cerulein hyperstimulation, AMPK levels selectively decreased in fractions containing the highest levels of active zymogens. These studies suggest that AMPK activity has a protective role in the pancreatic acinar cell that inhibits zymogen activation in the basal state, and this AMPK effect is reduced during pancreatitis. Therapies that prevent the selective reduction of AMPK in compartments that support zymogen activation could reduce injury during pancreatitis. 相似文献
17.
The phosphorylation of glucose was measured by the formation of [3H]H2O from [2-3H]glucose in suspensions of freshly isolated rat hepatocytes. Fructose (0.2 mM) stimulated 2-4-fold the rate of phosphorylation of 5 mM glucose although not of 40 mM glucose, thus increasing the apparent affinity of the glucose phosphorylating system. A half-maximal stimulatory effect was observed at about 50 microM fructose. Stimulation was maximal 5 min after addition of the ketose and was stable for at least 40 min, during which period 60% of the fructose was consumed. The effect of fructose was reversible upon removal of the ketose. Sorbitol and tagatose were as potent as fructose in stimulating the phosphorylation of 5 mM glucose. D-Glyceraldehyde also had a stimulatory effect but at tenfold higher concentrations. In contrast, dihydroxyacetone had no significant effect and glycerol inhibited the detritiation of glucose. Oleate did not affect the phosphorylation of glucose, even in the presence of fructose, although it stimulated the formation of ketone bodies severalfold, indicating that it was converted to its acyl-CoA derivative. These results allow the conclusion that fructose stimulates glucokinase in the intact hepatocyte. They also suggest that this effect is mediated through the formation of fructose 1-phosphate, which presumably interacts with a competitive inhibitor of glucokinase other than long-chain acyl-CoAs. 相似文献
18.
Phosphorylation of bovine hormone-sensitive lipase by the AMP-activated protein kinase. A possible antilipolytic mechanism 总被引:15,自引:0,他引:15
A J Garton D G Campbell D Carling D G Hardie R J Colbran S J Yeaman 《European journal of biochemistry》1989,179(1):249-254
Hormone-sensitive lipase is phosphorylated at a single site (site 2) in vitro by the AMP-activated protein kinase, without any direct effect on the activity of the enzyme. The amino acid sequence around this site has been determined. Ca2+/calmodulin-dependent protein kinase II also phosphorylates hormone-sensitive lipase predominantly at this site, whilst cyclic-GMP-dependent protein kinase phosphorylates exclusively the regulatory site (site 1) which is also phosphorylated by cyclic-AMP-dependent protein kinase. Phosphorylation of site 2 has been found to inhibit subsequent phosphorylation and activation of hormone-sensitive lipase by the cyclic-AMP-dependent and cyclic-GMP-dependent protein kinases, indicating that site-2 phosphorylation may have an antilipolytic role in vivo. 相似文献
19.
Harada H Becknell B Wilm M Mann M Huang LJ Taylor SS Scott JD Korsmeyer SJ 《Molecular cell》1999,3(4):413-422
Signaling pathways between cell surface receptors and the BCL-2 family of proteins regulate cell death. Survival factors induce the phosphorylation and inactivation of BAD, a proapoptotic member. Purification of BAD kinase(s) identified membrane-based cAMP-dependent protein kinase (PKA) as a BAD Ser-112 (S112) site-specific kinase. PKA-specific inhibitors blocked the IL-3-induced phosphorylation on S112 of endogenous BAD as well as mitochondria-based BAD S112 kinase activity. A blocking peptide that disrupts type II PKA holoenzyme association with A-kinase-anchoring proteins (AKAPs) also inhibited BAD phosphorylation and eliminated the BAD S112 kinase activity at mitochondria. Thus, the anchoring of PKA to mitochondria represents a focused subcellular kinase/substrate interaction that inactivates BAD at its target organelle in response to a survival factor. 相似文献
20.
Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo 总被引:19,自引:0,他引:19
Saha AK Avilucea PR Ye JM Assifi MM Kraegen EW Ruderman NB 《Biochemical and biophysical research communications》2004,314(2):580-585
Thiazolidinediones have been shown to activate AMP-activated protein kinase activity in cultured cells. Whether they have a similar effect in vivo and if so whether it is physiologically relevant is not known. To assess these questions, we examined the effects of pioglitazone, administered orally to intact rats, on AMPK phosphorylation (AMPK-P) (a measure of its activation) and acetyl CoA carboxylase (ACC) activity and malonyl CoA concentration in rat liver and adipose tissue. In the first study, measurements were made in the Dahl-salt-sensitive rat (Dahl-S), a strain of Sprague-Dawley rat with endogenous hypertriglyceridemia and high levels of malonyl CoA that are restored to control values by pioglitazone. Treatment with pioglitazone (20mg/kg bw/day for 3 weeks) did not significantly increase either P-AMPK or P-ACC (which varies inversely with ACC activity) in control rats. However, in the Dahl-S rats values for AMPK-P and ACC-P were 50% lower than in control rats and were doubled by pioglitazone treatment. In a second study, the effects of two weeks treatment with pioglitazone (3mg/kg bw/day administered orally) were evaluated in Wistar rats. Under basal conditions (no manipulation of the animals), pioglitazone increased AMPK phosphorylation by twofold and decreased ACC activity and the concentration of malonyl CoA by 50% in liver. Following a euglycemic-hyperinsulinemic clamp (6h), 50% decreases in AMPK and ACC phosphorylation (indicating an increase in its activity) and comparable increases in malonyl CoA concentration were observed in liver and adipose tissue. In both tissues, pre-treatment with pioglitazone prevented these changes. Where studied (in Wistar rats under basal conditions) treatment with pioglitazone decreased the concentration of ATP by 1/3 and increased the concentration of ADP and AMP in liver. The results indicate that treatment with pioglitazone can increase AMPK activity in rat liver and adipose tissue in a variety of circumstances. They also suggest that this activation of AMPK may be mediated by a change in cellular energy state. Whether these effects of pioglitazone contribute to its insulin-sensitizing and other actions in vivo remains to be determined. 相似文献