首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
The 26S proteasome complex plays a major role in the non-lysosomal degradation of intracellular proteins. Purified 26S proteasomes give a pattern of more than 40 spots on 2D-PAGE gels. The positions of subunits have been identified by mass spectrometry of tryptic peptides and by immunoblotting with subunit-specific antipeptide antibodies. Two-dimensional polyacrylamide gel electrophoresis of proteasomes immunoprecipitated from [32P]phosphate-labelled human embryo lung L-132 cells revealed the presence of at least three major phosphorylated polypeptides among the regulatory subunits as well as the C8 and C9 components of the core 20S proteasome. Comparison with the positions of the regulatory polypeptides revealed a minor phosphorylated form to be S7 (MSS1). Antibodies against S4, S6 (TBP7) and S12 (MOV34) all cross-reacted at the position of major phosphorylated polypeptides suggesting that several of the ATPase subunits may be phosphorylated. The phosphorylation of S4 was confirmed by double immunoprecipitation experiments in which 26S proteasomes were immunoprecipitated as above and dissociated and then S4 was immunoprecipitated with subunit-specific antibodies. Antibodies against the non-ATPase subunit S10, which has been suggested by others to be phosphorylated, did not coincide with the position of a phosphorylated polypeptide. Some differences were observed in the 2D-PAGE pattern of proteasomes immunoprecipitated from cultured cells compared to purified rat liver 26S proteasomes suggesting possible differences in subunit compositions of 26S proteasomes.  相似文献   

5.
It is known that two types of high-molecular-mass protease complexes are present in the cytosol of mammalian cells; a 20S latent multicatalytic proteinase named the proteasome, and a large proteolytic complex with an apparent sedimentation coefficient of 26S that catalyzes ATP-dependent breakdown of proteins conjugated with ubiquitin. In this work, we first demonstrated that a low concentration of SDS was required for activation of the latent proteasome, whereas the 26S complex degraded substrates for proteasomes in the absence of SDS. Moreover, the 26S complex was greatly stabilized in the presence of 2 mM ATP and 20% glycerol. Based on these characteristics, we next devised a novel procedure for purification of the 26S proteolytic complexes from human kidney. In this procedure, the proteolytic complexes were precipitated from cytoplasmic extracts by ultracentrifugation for 5 h at 105000 x g, and the large 26S complexes were clearly separated from the 20S proteasomes by molecular-sieve chromatography on a Biogel A-1.5 m column. The 26S enzyme was then purified to apparent homogeneity by successive chromatographies on hydroxyapatite and Q Sepharose, then by glycerol density-gradient centrifugation. Electrophoretic and immunochemical analyses showed that the purified human 26S complex consisted of multiple subunits of proteasomes with molecular masses of 21-31 kDa and 13-15 protein components ranging in molecular mass over 35-110 kDa, which were directly associated with the proteasome. The purified 26S proteolytic complex degraded 125I-labeled lysozyme-ubiquitin conjugates in an ATP-dependent manner. The 26S enzyme also showed high ATPase activity, which was copurified with the complex. Vanadate and hemin strongly inhibited not only ATP cleavage, but also ATP-dependent breakdown of ubiquitinligated proteins, suggesting that the 26S complex hydrolyzes ATP and ubiquitinated proteins by closely linked mechanisms. These findings indicate that the 26S complex consists of a proteasome with proteolytic function and multiple other components including an ATPase that regulates energy-dependent, ubiquitin-mediated protein degradation.  相似文献   

6.
Ubiquitin (Ub)-mediated proteasome-dependent proteolysis is critical in regulating multiple biological processes including apoptosis. We show that the unstructured BH3-only protein, NOXA, is degraded by an Ub-independent mechanism requiring 19S regulatory particle (RP) subunits of the 26S proteasome, highlighting the possibility that other unstructured proteins reported to be degraded by 20S proteasomes in vitro may be bona fide 26S proteasome substrates in vivo. A lysine-less NOXA (NOXA-LL) mutant, which is not ubiquitinated, is degraded at a similar rate to wild-type NOXA. Myeloid cell leukemia 1, but not other anti-apoptotic BCL-2 family proteins, stabilizes NOXA by interaction with the NOXA BH3 domain. Depletion of 19S RP subunits, but not alternate proteasome activator REG subunits, increases NOXA half-life in vivo. A NOXA-LL mutant, which is not ubiquitinated, also requires an intact 26S proteasome for degradation. Depletion of the 19S non-ATPase subunit, PSMD1 induces NOXA-dependent apoptosis. Thus, disruption of 26S proteasome function by various mechanisms triggers the rapid accumulation of NOXA and subsequent cell death strongly implicating NOXA as a sensor of 26S proteasome integrity.  相似文献   

7.
The proteasome is the main proteolytic enzyme that functions in the ubiquitin-proteasome system. The 26S proteasome has multi-subunit protease complexes consisting of 20S subunits composed of four seven-numbered rings with two outer rings containing α subunits and two central rings composed of β subunits, and 19S caps of 6 ATPase and 11 non-ATPase subunits; however, it is unclear how these subunits are regulated and the 26S proteasomes assembled. To verify whether each subunit’s mRNA expression is associated with the mRNA expression of other proteasome subunits, we carried out expression analysis of 34 proteasome subunits mRNA on peripheral blood from 75 subjects. The expression of proteasome subunits mRNA was comparable in each individual of the studied population and the mRNA expression has been investigated in each 20S or 19S proteasome. Our results suggest that each type of subunit is regulated by respectively common factors, and that the 20S and 19S proteasomes are regulated by different systems.  相似文献   

8.
9.
In experimental alcoholic liver disease, protein degradation by the ATP-ubiquitin-proteasome pathway is inhibited. Failure of the proteasome to eliminate cytoplasmic proteins leads to the accumulation of oxidized and otherwise modified proteins. One possible explanation for the inhibition of the proteasome is hyperphosphorylation of proteasome subunits. To examine this possibility, the 26S proteasomes from the liver of rats fed ethanol and a pair-fed control were studied by isolating the proteasomes in a purified fraction. The effect of ethanol on the phosphorylation of proteasomal subunits was compared with the hyperphosphorylation of the proteasomes caused by okadaic acid given to rats in vivo. Ethanol ingestion caused an inhibition of the chymotrypsin-like activity of the purified proteasome. The 2D electrophoresis and Western blot analysis of the purified 20S and 26S proteasomes from the ethanol-fed rats indicated that hyperphosphorylation of proteasomal subunits had occured. The proteasomal alpha type subunits C9/alpha3 and C8/alpha7 were hyperphosphorylated compared to the controls. Chymotrypsin-like activity was also inhibited by okadaic acid treatment similar to ethanol feeding. The 26S proteasome fraction examined by isoelectric focusing gel revealed many hyperphosphorylated bands in the proteasomes from the okadaic acid treated and the ethanol fed rat livers compared with the controls. In conclusion hyperphosphorylation of the proteasome subunits occurs in the ethanol treated proteasomal subunits which could be one mechanism of the inhibition of the 26S proteasome caused by ethanol feeding.  相似文献   

10.
Mammalian 26S proteasomes remain intact during protein degradation   总被引:1,自引:0,他引:1  
It has been suggested that degradation of polyubiquitylated proteins is coupled to dissociation of 26S proteasomes. In contrast, using several independent types of experiments, we find that mammalian proteasomes can degrade polyubiquitylated proteins without disassembling. Thus, immobilized, (35)S-labeled 26S proteasomes degraded polyubiquitylated Sic1 and c-IAP1 without releasing any subunits. In addition, it is predicted that if 26S proteasomes dissociate into 20S proteasomes and regulatory complexes during a degradation cycle, the reassembly rate would be limiting at low proteasome concentrations. However, the rate with which each proteasome degraded polyubiquitylated Sic1 was independent of the proteasome concentration. Likewise, substrate-dependent dissociation of 26S proteasomes could not be detected by nondenaturing electrophoresis. Lastly, epoxomicin-inhibited 20S proteasomes can trap released regulatory complexes, forming inactive 26S proteasomes, but addition of epoxomicin-inhibited 20S proteasomes had no effect on the degradation of either polyubiquitylated Sic1 or UbcH10 by 26S proteasomes or of endogenous substrates in cell extracts.  相似文献   

11.
The effect of uremia on renal cortex cytoplasmic proteasomes was examined by comparing proteasomes isolated from 5/6th nephrectomy rats 3-months post-surgery and age-matched control rats with normal renal function. ATP-dependent proteasome activity was reduced 50% in chronic renal failure rats (CRF) 3-months post-surgery compared to age-matched control rats. Trypsin-like (T-like) proteasome activity was decreased 90% compared to 70% for caspase-like activity (PGPHase) and 30% for chymotrypsin-like activity (C-like). ATP-independent proteasome activity was decreased 60% in CRF rats 3-months post-surgery. ATP-independent renal cortex proteasome T-like activity in CRF rats was 4% of age-matched control rats. C-like and PGPHase activities were 60% and 50% of age-matched controls, respectively. Uremia was associated with decreased 26S proteasome beta subunits. CRF rat 26S proteasomes had decreased levels of beta1, beta3, alpha4, and alpha7 abundances. Compared to age-matched control rats with normal renal function, CRF rats had a 25% increase in ubiquitinated cytoplasmic proteins. Decreased renal cytoplasmic proteasome activity may play a role in renal tubule hypertrophy common to renal diseases associated with decreased functioning nephrons.  相似文献   

12.
Murata S 《IUBMB life》2006,58(5-6):344-348
Protein degradation is essential for maintenance of cellular homeostasis. The majority of proteins are selectively degraded in eukaryotic cells by the ubiquitin-proteasome system. The 26S proteasome selects target proteins that are covalently modified with polyubiquitin chains. The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. The catalytic activities are carried out by the core 20S proteasome. The eukaryotic 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7. Recent studies have revealed the mechanism responsible for the assembly of such a complex structure. This article recounts the observations that disclosed the biogenesis of 20S proteasomes and discusses the difference in the mechanism of assembly between archael, yeast, and mammalian 20S proteasomes.  相似文献   

13.
In eukaryotic cells the population of proteasomes is heterogeneous. Here we have shown that proteasomes from nuclei and cytoplasm of rat liver cells differ in their subunit patterns. The subunit pattern of alpha-RNP differs from that of proteasomes, however, alpha-RNP particles contain the number of 26S proteasome subunits. Moreover, the proteasomes contain subunits of alpha-RNP. We have shown for the first time that nuclear proteasomes and alpha-RNP are hyperphosphorylated on threonine residues. Differences in phosphorylation state of subunits of nuclear and cytoplasmic proteasomes and alpha-RNP on threonine and tyrosine residues have been revealed. A suggestion is put forward that hyperphosphorylation of subunits may determine nuclear localization of these complexes in rat liver cells. The results obtained suggest that a highly specialized system of protein kinases and phosphatases may be involved in the regulation of phosphorylation state of different populations of proteasomes and alpha-RNP in rat liver cells.  相似文献   

14.
The intracellular localization of the 26S proteasome in the different ovarian cell types of Drosophila melanogaster was studied by means of immunofluorescence staining and laser scanning microscopy, with the use of antibodies specific for regulatory complex subunits or the catalytic core of the 26S proteasome. During the previtellogenic phase of oogenesis (stages 1-6), strong cytoplasmic staining was observed in the nurse cells and follicular epithelial cells, but the proteasome was not detected in the nuclei of these cell types. The subcellular distribution of the 26S proteasome was completely different in the oocyte. Besides a constant, very faint cytoplasmic staining, there was a gradual nuclear accumulation of proteasomes during the previtellogenic phase of oogenesis. A characteristic subcellular redistribution of the 26S proteasome occurred in the ovarian cells during the vitellogenic phase of oogenesis. There was a gradual decline in the concentration of the 26S proteasome in the nucleus of the oocyte, and in the stage 10 oocyte the proteasome could barely be detected in the nucleus. This was accompanied by a massive nuclear accumulation of proteasomes in the follicular epithelial cells. These results demonstrate that the subcellular distribution of the 26S proteasome in higher eukaryotes is strictly tissue- and developmental stage-specific.  相似文献   

15.
Regulation of proteasome complexes by gamma-interferon and phosphorylation   总被引:7,自引:0,他引:7  
Rivett AJ  Bose S  Brooks P  Broadfoot KI 《Biochimie》2001,83(3-4):363-366
Proteasomes play a major role in non-lysosomal proteolysis and also in the processing of proteins for presentation by the MHC class I pathway. In animal cells they exist in several distinct molecular forms which contribute to the different functions. 26S proteasomes contain the core 20S proteasome together with two 19S regulatory complexes. Alternatively, PA28 complexes can bind to the ends of the 20S proteasome to form PA28-proteasome complexes and PA28-proteasome-19S hybrid complexes have also been described. Immunoproteasome subunits occur in 26S proteasomes as well as in PA28-proteasome complexes. We have found differences in the subcellular distribution of the different forms of proteasomes. The gamma-interferon inducible PA28 alpha and beta subunits are predominantly located in the cytoplasm, while 19S regulatory complexes (present at significant levels only in 26S complexes) are present in the nucleus as well as in the cytoplasm. Immunoproteasomes are greatly enriched at the endoplasmic reticulum (ER) where they may facilitate the generation of peptides for transport into the lumen of the ER. We have also investigated the effects of gamma-interferon on the levels and subcellular distribution of inducible subunits and regulator subunits. In each case gamma-interferon was found to increase the level but not to alter the distribution. Several subunits of proteasomes are phosphorylated including alpha subunits C8 (alpha7) and C9 (alpha3), and ATPase subunit S4 (rpt2). Our studies have shown that gamma-interferon treatment decreases the level of phosphorylation of proteasomes. We have investigated the role of phosphorylation of C8 by casein kinase II by site directed mutagenesis. The results demonstrate that phosphorylation at either one of the two sites is essential for the association of 19S regulatory complexes and that the ability to undergo phosphorylation at both sites gives the most efficient incorporation of C8 into the 26S proteasome.  相似文献   

16.
The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex   总被引:1,自引:0,他引:1  
26S proteasomes consist of cylindrical 20S proteasomes with 19S regulatory complexes attached to the ends. Treatment with high concentrations of salt causes the regulatory complexes to separate into two sub-complexes, the base, which is in contact with the 20S proteasome, and the lid, which is the distal part of the 19S complex. Here, we describe two assembly intermediates of the human regulatory complex. One is a dimer of the two ATPase subunits, Rpt3 and Rpt6. The other is a complex of nascent Rpn2, Rpn10, Rpn11, Rpn13, and Txnl1, attached to preexisting 20S proteasomes. This early assembly complex does not yet contain Rpn1 or any of the ATPase subunits of the base. Thus, assembly of 19S regulatory complexes takes place on preexisting 20S proteasomes, and part of the lid is assembled before the base.  相似文献   

17.
Selective proteolysis in plants is largely mediated by the ubiquitin (Ub)/proteasome system in which substrates, marked by the covalent attachment of Ub, are degraded by the 26 S proteasome. The 26 S proteasome is composed of two subparticles, the 20 S core protease (CP) that compartmentalizes the protease active sites and the 19 S regulatory particle that recognizes and translocates appropriate substrates into the CP lumen for breakdown. Here, we describe an affinity method to rapidly purify epitope-tagged 26 S proteasomes intact from Arabidopsis thaliana. In-depth mass spectrometric analyses of preparations generated from young seedlings confirmed that the 2.5-MDa CP-regulatory particle complex is actually a heterogeneous set of particles assembled with paralogous pairs for most subunits. A number of these subunits are modified post-translationally by proteolytic processing, acetylation, and/or ubiquitylation. Several proteasome-associated proteins were also identified that likely assist in complex assembly and regulation. In addition, we detected a particle consisting of the CP capped by the single subunit PA200 activator that may be involved in Ub-independent protein breakdown. Taken together, it appears that a diverse and highly dynamic population of proteasomes is assembled in plants, which may expand the target specificity and functions of intracellular proteolysis.  相似文献   

18.
Belactosin A is a potent proteasome inhibitor isolated from Streptomyces metabolites. Here we show that a hydrophobic belactosin A derivative, dansyl-KF33955, can covalently, and specifically, affinity label the catalytic subunits of the 26S proteasome, which consists of the 20S protein degrading core particle and the 19S regulatory particles. The labeling of catalytic subunits proceeds faster in intact proteasomes in vivo than in isolated 20S core particles. These data suggest that the 19S regulatory particle may facilitate entry of the inhibitor into the 20S core particle. This cell-permeable chemical probe is an excellent tool with which to study the interactions of this proteasome inhibitor with proteasomes in intact cells.  相似文献   

19.
Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome, possibly by inducing oxidative stress-mediated modifications that compromise substrate delivery to proteolytic core.  相似文献   

20.
Exposure of cells to ionizing radiation slows the rate of degradation of substrates through the proteasome. Because the 26S proteasome degrades most short-lived cellular proteins, changes in its activity might significantly, and selectively, alter the life span of many signaling proteins and play a role in promoting the biological consequences of radiation exposure, such as cell cycle arrest, DNA repair, and apoptosis. Experiments were therefore undertaken to identify the radiation target that is associated with the proteasome. Regardless of whether they were irradiated before or after extraction and purification from human prostate cancer PC3 cells, 26S proteasomes remained intact but showed a rapid 30% to 50% dose-independent decrease in their three major enzymatic activities following exposure to 1 to 20 Gy. There was no effect on 20S proteasomes, suggesting that the radiation-sensitive target is located in the 19S cap of the 26S proteasome, rather than in the enzymatically active core. Because the base of the 19S cap contains an ATPase ring that mediates substrate unfolding, pore opening, and translocation of substrates into the catalytic chamber, we examined whether the ATPase activity of purified 26S proteasomes was affected. In fact, in vitro irradiation of proteasomes enhanced their ATPase activity. Furthermore, pretreatment with low concentrations of the free radical scavenger tempol was able to prevent both the radiation-induced decrease in proteolytic activity and the increase in ATP utilization, indicating that free radicals are mediators of these radiation-induced phenomena. Finally, we have shown that cell irradiation results in the accumulation of proteasome substrates: polyubiquitinated proteins and ornithine decarboxylase, indicating that the observed decrease in proteasome function is physiologically relevant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号