首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The nitric oxide (NO) donor, GEA 3162, inhibited isoproterenol-induced cyclic AMP (cAMP) accumulation in a concentration- and time-dependent manner in mouse parotid acini; SIN-1 mimicked these effects. Inhibition of stimulated cAMP accumulation was independent of phosphodiesterase activity. GEA 3162 also inhibited forskolin-induced cAMP accumulation. Removal of extracellular Ca(2+), addition of La(3+), or the calmodulin (CaM) inhibitor, calmidazolium, did not prevent the NO-mediated response, and addition of the soluble guanylyl inhibitor, ODQ, did not reverse GEA 3162-induced inhibition of cAMP accumulation. GEA 3162 also inhibited adenylyl cyclase in vitro independently of Ca(2+)/CaM. Further studies revealed that the NO synthase (NOS) inhibitor, 7-nitroindazole (7-NI), reduced significantly thapsigargin-induced Ca(2+) release and capacitative Ca(2+) entry and reversed thapsigargin inhibition of the AC Type 5/6 isoform (AC5/6). Data suggest that NO produced endogenously has dual effects on cAMP accumulation in mouse parotid acini, an inhibitory effect on AC activity and a modulatory effect on capacitative Ca(2+) entry resulting in AC5/6 inhibition.  相似文献   

2.
Store-operated Ca(2+) entry in vascular endothelial cells not only serves to refill the intracellular Ca(2+) stores, but also acts to stimulate the synthesis of nitric oxide, a key vasodilatory factor. In this study, we examined the role of cGMP in regulating the store-operated Ca(2+) entry in aortic endothelial cells. Cyclopiazonic acid (CPA) and thapsigargin, two selective inhibitors of endoplasmic reticulum Ca(2+)-ATPase, were used to induce store-operated Ca(2+) entry. 8-Bromo-cGMP, an activator of protein kinase G, inhibited the CPA- or thapsigargin-induced Ca(2+) entry in a concentration-dependent manner. An inhibitor of protein kinase G, KT5823 (1 microM) or H-8 (10 microM), abolished the inhibitory action of 8-bromo-cGMP and resumed Ca(2+) entry. Addition of S-nitroso-N-acetylpenicillamine (a nitric oxide donor) or dipyridamole (a cGMP phosphodiesterase inhibitor) during CPA treatment elevated cellular cGMP levels, stimulated protein kinase G activity, and at the same time reduced Ca(2+) influx due to CPA. Patch clamp study confirmed the existence of a CPA-activated Ca(2+)-permeable channel sensitive to cGMP inhibition. These results suggest that cGMP via a protein kinase G-dependent mechanism may play a key role in the regulation of the store-operated Ca(2+) entry in vascular endothelial cells.  相似文献   

3.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

4.
Lau KL  Kong SK  Ko WH  Kwan HY  Huang Y  Yao X 《Life sciences》2003,73(16):2019-2028
Calcium is a crucial regulator of many physiological processes such as cell growth, division, differentiation, cell death and apoptosis. In this study, we examined the effect of cGMP on agonist-induced [Ca(2+)](i) transient in isolated rat aortic endothelial cells. 100 microM ATP was applied to the cells bathed in a Ca(2+)-free physiological solution to induce a [Ca(2+)](i) transient that was caused by Ca(2+) release from intracellular stores. cGMP, which was applied after [Ca(2+)](i) reached its peak level, accelerated the falling phase of [Ca(2+)](i) transient. Pre-treatment of the cells with CPA abolished the accelerating effect of cGMP on the falling phase of [Ca(2+)](i) transient. The effect of cGMP was reversed by KT5823, a highly specific inhibitor of protein kinase G. Taken together, these data suggest that cGMP may reduce [Ca(2+)](i) level by promoting Ca(2+) uptake through sarcoplasmic/endoplasmic reticulum ATPase and that the effect of cGMP may be mediated by protein kinase G.  相似文献   

5.
Substances known to alter cyclic nucleotide levels in cells were applied to the isolated toad retina and effects on rod electrical and adaptive behavior were studied. The retina was continually superfused in control ringer’s or ringer’s containing one or a combination of drugs, and rod activity was recorded intracellularly. Superfusion with cGMP, Bu(2)GMP, isobutylmethylxanthine (IBMX; a phosphodiesterase inhibitor), or PGF(2α) (a prostaglandin) caused effects in rods that closely match those observed when extracellular Ca(2+) levels were lowered. For example, short exposures (up to 6 min) of the retina to these substances caused depolarization of the membrane potential, increase in response amplitudes, and some changes in waveform; but under dark-adapted or partially light-adapted conditions receptor sensitivity was virtually unaffected. That is, the position of the V-log I curve on the intensity axis was determined by the prevailing light level, not by drug level. These drugs, like lowered extracellular Ca(2+), also decreased the period of receptor saturation after a bright-adapting flash, resulting in an acceleration of the onset of membrane and sensitivity recovery during dark adaptation.

Long-term (6-15 min) exposure of a dark-adapted retina to 5 mM IBMX or a combination of IBMX and cGMP caused a loss of response amplitude and a desensitization of the rods that was similar to that observed in rods after a long-term low Ca(2+) (10(-9)M) treatment. Application of high (3.2 mM) Ca(2+) to the retina blocked the effects of applied Bu(2)cGMP. PGE(1) superfusion mimicked the effects of increasing extracellular Ca(2+). The results show that increased cGMP and lowered Ca(2+) produce similar alterations in the electrical activity of rods. These findings suggest that Ca(2+) and cGMP are interrelated messengers. We speculate that low Ca(2+) may lead to increased intracellular cGMP, and/or that applied cGMP, and/or that applied cGMP may lower cytosol Ca(2+), perhaps by stimulating Ca(2+)- ATPase pumps in the outer segment.

  相似文献   

6.
Different inhibitors of the Ca(2+)/calmodulin-stimulated phosphodiesterase 1 family have been described and used for the examination of phosphodiesterase 1 in cellular, organ or animal models. However, the inhibitors described differ in potency and selectivity for the different phosphodiesterase family enzymes, and in part exhibit additional pharmacodynamic actions. In this study, we demonstrate that phosphodiesterase 1C is expressed in the human glioblastoma cell line A172 with regard to mRNA, protein and activity level, and that lower activities of phosphodiesterase 2, phosphodiesterase 3, phosphodiesterase 4 and phosphodiesterase 5 are also present. The identity of the phosphodiesterase 1C activity detected was verified by downregulation of the mRNA and protein through human phosphodiesterase 1C specific small interfering RNA. In addition, the measured K(m) values (cAMP, 1.7 microm; cGMP, 1.3 microm) are characteristic of phosphodiesterase 1C. We demonstrate that treatment with the Ca(2+) ionophore ionomycin increases intracellular Ca(2+) in a concentration-dependent way without affecting cell viability. Under conditions of enhanced intracellular Ca(2+) concentration, a rapid increase in cAMP levels caused by the adenylyl cyclase activator forskolin was abolished, indicating the involvement of Ca(2+)-activated phosphodiesterase 1C. The reduction of forskolin-stimulated cAMP levels was reversed by phosphodiesterase 1 inhibitors in a concentration-dependent way. Using this cellular system, we compared the cellular potency of published phosphodiesterase 1 inhibitors, including 8-methoxymethyl-3-isobutyl-1-methylxanthine, vinpocetine, SCH51866, and two established phosphodiesterase 1 inhibitors developed by Schering-Plough (named compounds 31 and 30). We demonstrate that up to 10 microm 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine had no effect on the reduction of forskolin-stimulated cAMP levels by ionomycin, whereas the more selective and up to 10 000 times more potent phosphodiesterase 1 inhibitors SCH51866, compound 31 and compound 30 inhibited the ionomycin-induced decline of forskolin-induced cAMP at nanomolar concentrations. Thus, our data indicate that SCH51866 and compounds 31 and 30 are effective phosphodiesterase 1 inhibitors in a cellular context, in contrast to the weakly selective and low-potency phosphodiesterase inhibitors 8-methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine. A172 cells therefore represent a suitable system in which to study the cellular effect of phosphodiesterase 1 inhibitors. 8-Methoxymethyl-3-isobutyl-1-methylxanthine and vinpocetine seem not to be suitable for the study of phosphodiesterase 1-mediated functions.  相似文献   

7.
This study examined the transduction pathways activated by epinephrine in the pacemaker region of the toad heart. Recordings of membrane potential, force, and intracellular Ca(2+) concentration ([Ca(2+)](i)) were made from arrested toad sinus venosus. Sympathetic nerve stimulation activated non-alpha-, non-beta-adrenoceptors to evoke a membrane depolarization and a transient increase in [Ca(2+)](i). In contrast, the beta-adrenoceptor agonist isoprenaline (10 microM) caused membrane hyperpolarization and decreased [Ca(2+)](i). The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.5 mM) mimicked the isoprenaline-evoked membrane hyperpolarization. Epinephrine (10-50 microM) caused an initial membrane depolarization and an increase in [Ca(2+)](i) followed by membrane hyperpolarization and decreased [Ca(2+)](i). The membrane depolarizations evoked by sympathetic nerve stimulation or epinephrine were abolished either by the phospholipase C inhibitor U-73122 (20 microM) or by the blocker of D-myo-inositol 1,4,5,-trisphosphate-induced Ca(2+) release, 2-aminoethoxydiphenyl borate (2-APB, 60 microM). Neither U-73122 nor 2-APB had an affect on the membrane hyperpolarization evoked by beta-adrenoceptor activation. These results suggest that in the toad sinus venosus, two distinct transduction pathways can be activated by epinephrine to cause an increase in heart rate.  相似文献   

8.
The effect on exocytosis of La(3+), a known inhibitor of plasma membrane Ca(2+)-ATPases and Na(+)/Ca(2+) exchangers, was studied using cultured bovine adrenal chromaffin cells. At high concentrations (0.3-3 mM), La(3+) substantially increased histamine-induced catecholamine secretion. This action was mimicked by other lanthanide ions (Nd(3+), Eu(3+), Gd(3+), and Tb(3+)), but not several divalent cations. In the presence of La(3+), the secretory response to histamine became independent of extracellular Ca(2+). La(3+) enhanced secretion evoked by other agents that mobilize intracellular Ca(2+) stores (angiotensin II, bradykinin, caffeine, and thapsigargin), but not that due to passive depolarization with 20 mM K(+). La(3+) still enhanced histamine-induced secretion in the presence of the nonselective inhibitors of Ca(2+)-permeant channels SKF96365 and Cd(2+), but the enhancement was abolished by prior depletion of intracellular Ca(2+) stores with thapsigargin. La(3+) inhibited (45)Ca(2+) efflux from preloaded chromaffin cells in the presence or absence of Na(+). It also enhanced and prolonged the rise in cytosolic [Ca(2+)] measured with fura-2 during mobilization of intracellular Ca(2+) stores with histamine in Ca(2+)-free buffer. The results suggest that the efficacy of intracellular Ca(2+) stores in evoking exocytosis is enhanced dramatically by inhibiting Ca(2+) efflux from the cell.  相似文献   

9.
The effects of a monoclonal antibody (B8E5) directed against the second extracellular loop of the muscarinic M(2) receptor were studied on the L-type Ca(2+) currents (I(Ca,L)) of guinea pig ventricular myocytes using the whole cell patch-clamp technique. Similar to carbachol, B8E5 reduced the isoproterenol (ISO)-stimulated I(Ca,L) but did not significantly affect basal I(Ca,L). Atropine blocked the inhibitory effect of B8E5. The electrophysiological parameters of ISO-stimulated I(Ca,L) were not modified in presence of B8E5. Inhibition of I(Ca,L) by B8E5 was still observed when intracellular cAMP was either enhanced by forskolin or maintained constant by using a hydrolysis-resistant cAMP analog (8-bromoadenosine 3',5'-cyclic monophosphate) or by applying the phosphodiesterase inhibitor IBMX. The effect of B8E5 was mimicked by 8-bromoguanosine 3',5'-cyclic monophosphate, a potent stimulator of cGMP-dependent protein kinase, and prevented by a selective inhibitor of nitric oxide-sensitive guanylyl cyclase [1H-(1,2,4)oxadiazolo[4,3-a]quinoxaline-1-one]. These results indicate that the antibody B8E5 inhibits the beta-adrenergic-stimulated I(Ca,L) through activation of the M(2) muscarinic receptor and further suggest that the antibody acts not via the classical pathway of decreasing intracellular cAMP, but rather by increasing cGMP.  相似文献   

10.
The present study examined the effect of hepatoma-associated antigen HAb18G (homologous to CD147) expression on the NO/cGMP-regulated Ca(2+) mobilization and metastatic process of human hepatoma cells. HAb18G/CD147 cDNA was transfected into human 7721 hepatoma cells to obtain a cell line stably expressing HAb18G/CD147, T7721, as demonstrated by Northern blot and immunocytochemical studies. 8-Bromo-cGMP (cGMP) inhibited the thapsigargin-induced Ca(2+) entry in a concentration-dependent manner in 7721 cells. The cGMP-induced inhibition was abolished by an inhibitor of protein kinase G, KT5823 (1 microm). However, expression of HAb18G/CD147 in T7721 cells decreased the inhibitory response to cGMP. A similar concentration-dependent inhibitory effect on the Ca(2+) entry was observed in 7721 cells in response to a NO donor, (+/-)-S-nitroso-N-acetylpenicillamine (SNAP). The inhibitory effect of SNAP on the thapsigargin-induced Ca(2+) entry was significantly reduced in HAb18G/CD147-expressing T7721 cells, indicating a role for HAb18G/CD147 in NO/cGMP-regulated Ca(2+) entry. Experiments investigating metastatic potentials demonstrated that HAb18G/CD147-expressing T7721 cells attached to the Matrigel-coated culture plates and invaded through Matrigel-coated permeable filters at the rate significantly greater than that observed in 7721 cells. Both the attachment and invasion rates could be suppressed by SNAP, and the inhibitory effect of SNAP could be reversed by NO inhibitor, N(G)-nitro-l-arginine methyl ester. The sensitivity of the attachment and invasion rates to cGMP was significantly reduced in T7721 cells as compared with 7721 cells when cells were pretreated with thapsigargin. The difference in the sensitivity between the two cells could be abolished by a Ca(2+) channel blocker, Ni(2+) (3 mm). These results suggest that HAb18G/CD147 enhances metastatic potentials in human hepatoma cells by disrupting the regulation of store-operated Ca(2+) entry by NO/cGMP.  相似文献   

11.
ATP-elicited oscillations of the concentration of free intracellular Ca(2+) ([Ca(2+)](i)) in rat brain astrocytes were abolished by simultaneous arachidonic acid (AA) addition, whereas the tetraenoic analogue 5,8,11,14-eicosatetraynoic acid (ETYA) was ineffective. Inhibition of oscillations is due to suppression by AA of intracellular Ca(2+) store refilling. Short-term application of AA, but not ETYA, blocked Ca(2+) influx, which was evoked by depletion of stores with cyclopiazonic acid (CPA) or thapsigargin (Tg). Addition of AA after ATP blocked ongoing [Ca(2+)](i) oscillations. Prolonged AA application without or with agonist could evoke a delayed [Ca(2+)](i) increase. This AA-induced [Ca(2+)](i) rise developed slowly, reached a plateau after 5 min, could be reversed by addition of bovine serum albumin (BSA), that scavenges AA, and was blocked by 1 microM Gd(3+), indicative for the influx of extracellular Ca(2+). Specificity for AA as active agent was demonstrated by ineffectiveness of C16:0, C18:0, C20:0, C18:2, and ETYA. Moreover, the action of AA was not affected by inhibitors of oxidative metabolism of AA (ibuprofen, MK886, SKF525A). Thus, AA exerted a dual effect on astrocytic [Ca(2+)](i), firstly, a rapid reduction of capacitative Ca(2+) entry thereby suppressing [Ca(2+)](i) oscillations, and secondly inducing a delayed activation of Ca(2+) entry, also sensitive to low Gd(3+) concentration.  相似文献   

12.
Hormones, such as glucagon and glucagon-like peptide-1, potently amplify nutrient stimulated insulin secretion by raising cAMP. We have studied how cAMP affects Ca(2+)-induced Ca(2+) release (CICR) in pancreatic beta-cells from mice and rats and the role of CICR in secretion. CICR was observed as pronounced Ca(2+) spikes on top of glucose- or depolarization-dependent rise of the cytoplasmic Ca(2+) concentration ([Ca(2+)](i)). cAMP-elevating agents strongly promoted CICR. This effect involved sensitization of the receptors underlying CICR, because many cells exhibited the characteristic Ca(2+) spiking at low or even in the absence of depolarization-dependent elevation of [Ca(2+)](i). The cAMP effect was mimicked by a specific activator of protein kinase A in cells unresponsive to activators of cAMP-regulated guanine nucleotide exchange factor. Ryanodine pretreatment, which abolishes CICR mediated by ryanodine receptors, did not prevent CICR. Moreover, a high concentration of caffeine, known to activate ryanodine receptors independently of Ca(2+), failed to mobilize intracellular Ca(2+). On the contrary, a high caffeine concentration abolished CICR by interfering with inositol 1,4,5-trisphosphate receptors (IP(3)Rs). Therefore, the cell-permeable IP(3)R antagonist 2-aminoethoxydiphenyl borate blocked the cAMP-promoted CICR. Individual CICR events in pancreatic beta-cells were followed by [Ca(2+)](i) spikes in neighboring human erythroleukemia cells, used to report secretory events in the beta-cells. The results indicate that protein kinase A-mediated promotion of CICR via IP(3)Rs is part of the mechanism by which cAMP amplifies insulin release.  相似文献   

13.
The singular effects and interplay of cAMP- and cGMP-dependent protein kinase (PKA and PKG) on Ca(2+) mobilization were examined in dispersed smooth muscle cells. In permeabilized muscle cells, exogenous cAMP and cGMP inhibited inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of cAMP and cGMP caused synergistic inhibition that was exclusively mediated by PKG and attenuated by PKA. In intact muscle cells, low concentrations (10 nM) of isoproterenol and sodium nitroprusside (SNP) inhibited agonist-induced, IP(3)-dependent Ca(2+) release and muscle contraction via PKA and PKG, respectively. A combination of isoproterenol and SNP increased PKA and PKG activities: the increase in PKA activity reflected inhibition of phosphodiesterase 3 activity by cGMP, whereas the increase in PKG activity reflected activation of cGMP-primed PKG by cAMP. Inhibition of Ca(2+) release and muscle contraction by the combination of isoproterenol and SNP was preferentially mediated by PKG. In light of studies showing that PKG phosphorylates the IP(3) receptor in intact and permeabilized muscle cells, whereas PKA phosphorylates the receptor in permeabilized cells only, the results imply that inhibition of IP(3)-induced Ca(2+) release is mediated exclusively by PKG. The effect of PKA on agonist-induced Ca(2+) release probably reflects inhibition of IP(3) formation.  相似文献   

14.
15.
The present study investigates the potential role of the Ca2+-calmodulin-dependent type I phosphodiesterase (PDE)-cGMP-protein kinase G (PKG) pathway in spontaneous [Ca2+]i oscillations in GH3 cells using fura-2 single cell videoimaging. Vinpocetine (2.5-50 microM), a selective inhibitor of type I PDE, induced a concentration-dependent inhibition of spontaneous [Ca2+]i oscillations in these pituitary cells, and at the same time produced an increase of the intracellular cGMP content. The cell permeable cGMP analog N2,2'-O-dibutyryl-cGMP (dB-cGMP) (1 mM) caused a progressive reduction of the frequency and the amplitude of spontaneous [Ca2+]i oscillations when added to the medium. KT5823 (400 nM), a selective inhibitor of cGMP-dependent protein kinase (PKG), produced an increase of baseline [Ca2+]i and the disappearance of spontaneous [Ca2+]i oscillations. When KT5823 was added before vinpocetine, the PKG inhibitor counteracted the [Ca2+]i lowering effect of the cGMP catabolism inhibitor. Finally, the removal of extracellular Ca2+ or the blockade of L-type voltage-sensitive calcium channels (VSCC) by nimodipine produced a decrease of cytosolic cGMP levels. Collectively, the results of the present study suggest that spontaneous [Ca2+]i oscillations in GH3 cells may be regulated by the activity of type I PDE-cGMP-PKG pathway.  相似文献   

16.
The role of 3',5'-cyclic guanosine monophosphate (cGMP) in the activation of mitogen-activated protein kinases (MAPKs) was investigated in rat pinealocytes. Treatment with dibutyryl cGMP (DBcGMP) dose-dependently increased the phosphorylation of both p44 and p42 isoforms of MAPK. This effect of DBcGMP was abolished by PD98059 (a MAPK kinase inhibitor), H7 (a nonspecific protein kinase inhibitor), and KT5823 [a selective cGMP-dependent protein kinase (PKG) inhibitor]. Elevation of cellular cGMP content by treatment with norepinephrine, zaprinast (a cGMP phosphodiesterase inhibitor), or nitroprusside was effective in activating MAPK. Natriuretic peptides that were effective in elevating cGMP levels in this tissue were also effective in activating MAPK. Our results indicate that, in this neuroendocrine tissue, the cGMP/PKG signaling pathway is an important mechanism used by hormones and neurotransmitters in activating MAPK.  相似文献   

17.
Stimulation of ciliary cells through muscarinic receptors leads to a strong biphasic enhancement of ciliary beat frequency (CBF). The main goal of this work is to delineate the chain of molecular events that lead to the enhancement of CBF induced by acetylcholine (ACh). Here we show that the Ca(2+), cGMP, and cAMP signaling pathways are intimately interconnected in the process of cholinergic ciliary stimulation. ACh induces profound time-dependent increase in cGMP and cAMP concentrations mediated by the calcium-calmodulin complex. The initial strong CBF enhancement in response to ACh is mainly governed by PKG and elevated calcium. The second phase of CBF enhancement induced by ACh, a stable moderately elevated CBF, is mainly regulated by PKA in a Ca(2+)-independent manner. Inhibition of either guanylate cyclase or of PKG partially attenuates the response to ACh of [Ca(2+)](i), but completely abolishes the response of CBF. Inhibition of PKA moderately attenuates and significantly shortens the responses to ACh of both [Ca(2+)](i) and CBF. In addition, PKA facilitates the elevation in [Ca(2+)](i) and cGMP levels induced by ACh, whereas an unimpeded PKG activity is essential for CBF enhancement mediated by either Ca(2+) or PKA.  相似文献   

18.
We investigated second messengers involved in the action of the CRF-related peptide Dippu-DH46 and the calcitonin-like peptide Dippu-DH31 in Diploptera punctata. Dippu-DH46 causes a dose-dependent increase in intracellular cAMP levels, its diuretic activity is mimicked by cAMP agonists, but is attenuated by Rp-cAMPS. Dippu-DH46 acts synergistically with kinins and thapsigargin; both mobilize intracellular Ca2+. Dippu-DH46 also acts synergistically with cAMP agonists, and its effect is inhibited by a PKC inhibitor, suggesting it also activates intracellular Ca2+. Dippu-DH31 has no effect on cAMP levels and its activity is not blocked by cAMP agonists. Neither peptide stimulated cGMP levels in a dose-dependent manner, nor does cGMP have any effect on fluid secretion.  相似文献   

19.
The aim of the present study was to investigate the responses induced by sodium fluoride (NaF) on gastric mechanical activity, using mouse whole-stomach preparations. The mechanical activity was recorded in vitro as changes of intraluminal pressure. In most of the preparations, NaF induced a tetrodotoxin-insensitive biphasic effect characterized by early relaxation followed by slowly developing contractile response. The contraction was dependent on the concentration of NaF, whereas the relaxation was observed at only 10-30 mmol/L NaF. The contractile effect was significantly reduced by nifedipine (an L-type Ca(2+) channel blocker), ryanodine or ruthenium red (inhibitors of Ca(2+) release from sarcoplasmic reticulum), and GF109203X (a protein kinase C inhibitor). Moreover, it was abolished by neomycin (an inhibitor of phospholipase C) and potentiated by SQ22536 (an inhibitor of adenylyl cyclase). All the drugs significantly increased the relaxation, except SQ22536, which abolished it. The present results suggest that NaF causes a complex mechanical response in the whole-stomach, which might explain gastric discomfort after fluoride ingestion. The relaxation appears owing to production of cAMP, while the contractile effects imply activation of phospholipase C, protein kinase C, influx of Ca(2+), and release of Ca(2+) from ryanodine-sensitive intracellular store.  相似文献   

20.
Messutat S  Heine M  Wicher D 《Cell calcium》2001,30(3):199-211
The dynamics of intracellular free Ca(2+)([Ca(2+)](i)) changes were investigated in dorsal unpaired median (DUM) neurons of the cockroach Periplaneta americana. Activation of voltage-gated Ca(2+) channels caused a steep increase in [Ca(2+)](i). Depolarizations lasting for < 100ms led to Ca(2+) release from intracellular stores as is indicated by the finding that the rise of [Ca(2+)](i) was greatly reduced by the antagonists of ryanodine receptors, ryanodine and ruthenium red. There is a resting Ca(2+)current which is potentiated on application of a neuropeptide, Neurohormone D (NHD), a member of the adipokinetic hormone family. Ca(2+) influx enhanced in this way again caused a rise of [Ca(2+)](i) sensitive to ryanodine and ruthenium red. Such rises developed and relaxed much more slowly than the depolarization-induced signals. Ca(2+)responses similar to those induced by NHD were obtained with the ryanodine receptor agonists caffeine (20mM) and cADP-ribose (cADPR, 100nM). These Ca(2+) responses, however, varied considerably in size and kinetics, and part of the cells did not respond at all to caffeine or cADPR. Such cells, however, produced Ca(2+) rises after having been treated with NHD. Thus, the variability of Ca(2+) signals might be caused by different filling states of Ca(2+) stores, and the resting Ca(2+) current seems to represent a source to fill empty Ca(2+) stores. In line with this notion, block of the endoplasmic Ca(2+) pump by thapsigargin (1 microM) produced either no or largely varying Ca(2+) responses. The Ca(2+) signals induced by caffeine and cADPR displayed different sensitivity to ryanodine receptor blockers. cADPR failed to elicit any response when ryanodine or ruthenium red were present. By contrast, the response to caffeine, in the presence of ryanodine, was only reduced by about 50% and, in the presence of ruthenium red, it was not at all reduced. Thus, there may be different types of Ca(2+) release channels. Block of mitochondrial Ca(2+) uptake with carbonyl cyanide m -chlorophenylhydrazone (CCCP, 1 microM) completely abolished cADPR-induced Ca(2+) signals, but it did not affect the caffeine-induced signals. Taken together our findings seem to indicate that there are different stores using different Ca(2+) uptake pathways and that some of these pathways involve mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号