首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Four acylated pelargonidin glycosides and pelargonidin 3-sophoroside-5-glucoside were isolated from 23 red-purple cultivars of Pharbitis nil. The acylated anthocyanins were all based on pelargonidin 3-sophoroside-5-glucoside and were identified as the 3-O-[2-O-(beta-D-glucopyranosyl)-6-O-(trans-caffeyl)-beta-D- glucopyranoside]-5-O-(beta-D-glucopyranoside), the 3-O-[2-O-(6-O-(trans-3-O-(beta-D-glucopyranosyl)caffeyl)-beta- D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), the 3-O-[2-O-(6-O-(trans-3-O-(beta-D-glucopyranosyl)caffeyl)-beta- D-glucopyranosyl)-6-O-(trans-caffeyl)-beta-D-glucopyranoside]-5-O-(beta- D-glucopyranoside); and the 3-O-[2-O-(6-O-(trans-3-O-(beta-D-glucopyranosyl)caffeyl)-beta-D- glucopyranosyl)-6-O-(trans-4-O-(6-O-(trans-3-O-(beta-D- glucopyranosyl)caffeyl)- beta-D-glucopyranosyl)caffeyl)-beta-D-glucopyranoside]-5-O-(beta-D- glucopyranoside). By the analysis of these anthocyanin constituents variously in 23 cultivars, it was found that the red flower colour gradually changed into more bluish colour with increasing numbers of caffeic acid residues in the acylated pelargonidin glycosides. The stabilities of these anthocyanins increased in the order of increasing caffeyl substitution.  相似文献   

2.
彩色马铃薯富含花色苷,是一种天然抗氧化食品.本研究采用高效液相色谱质谱联用技术以引进品种“黑美人”为对照分析了云南马铃薯地方特色品种“剑川红”和“转心乌”花色苷的主要成分.结果表明:“剑川红”色素主要为酰化天竺葵色素类花色苷,其主要成分为天竺葵素3-[ 6-O-( 4-O-E-p-香豆酰-O-α-吡喃鼠李糖苷)-β-D-吡喃葡萄糖苷]-5-O-β-D-毗喃葡萄糖苷.“转心乌”和“黑美人”所含色素相似,主要为酰化矮牵牛色索、锦葵色素、芍药色素类衍生物,主要成分均为矮牵牛花色素3-[ 6-O-( 4-O-E-p-香豆酰-O-α-吡喃鼠李糖苷)-β-D-毗喃葡萄糖苷]-5-O-β-D-毗喃葡萄糖苷.  相似文献   

3.
Acylated anthocyanins from red radish (Raphanus sativus L.)   总被引:5,自引:0,他引:5  
Twelve acylated anthocyanins were isolated from the red radish (Raphanus sativus L.) and their structures were determined by spectroscopic analyses. Six of these were identified as pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-beta-D-glucopyranosyl]-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-caffeoyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(6-(E)-caffeoyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), pelargonidin 3-O-[6-O-(E)-p-coumaroyl-2-O-(6-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside), and pelargonidin 3-O-[6-O-(E)-feruloyl-2-O-(2-(E)-feruloyl-beta-D-glucopyranosyl)-(1-->2)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside).  相似文献   

4.
Acylated anthocyanins from the blue-violet flowers of Anemone coronaria   总被引:2,自引:0,他引:2  
Five polyacylated anthocyanins were isolated from blue-violet flowers of Anemone coronaria 'St. Brigid'. They were identified as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its demalonylated form, delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its cyanidin analog as well as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-(tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside].  相似文献   

5.
Seven acylated cyanidin 3-sambubioside-5-glucosides were isolated from the flowers of three garden plants in the Cruciferae. Specifically, four pigments were isolated from Lobularia maritima (L.) Desv., together with a known pigment, as well as, three pigments from Lunaria annua L., and two known pigments from Cheiranthus cheiri L. These pigments were determined to be cyanidin 3-O-[2-O-((acyl-II)-(beta-d-xylopyranosyl))-6-O-(acyl-I)-beta-d-glucopyranoside]-5-O-[6-O-(acyl-III)-beta-d-glucopyranoside], in which the acyl-I group is represented by glucosyl-p-coumaric acid, p-coumaric acid and ferulic acid, acyl-II by caffeic acid and ferulic acid, and acyl-III by malonic acid, respectively. The distribution and biosynthesis of acylated cyanidin 3-sambubioside-5-glucosides are discussed according to the variations of acylation and glucosylation at their 3-sambubiose residues.  相似文献   

6.
Recently marketed genetically modified violet carnations cv. Moondust and Moonshadow (Dianthus caryophyllus) produce a delphinidin type anthocyanin that native carnations cannot produce and this was achieved by heterologous flavonoid 3',5'-hydroxylase gene expression. Since wild type carnations lack a flavonoid 3',5'-hydroxylase gene, they cannot produce delphinidin, and instead accumulate pelargonidin or cyanidin type anthocyanins, such as pelargonidin or cyanidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester. On the other hand, the anthocyanins in the transgenic flowers were revealed to be delphinidin 3,5-diglucoside-6"-O-4, 6"'-O-1-cyclic-malyl diester (main pigment), delphinidin 3,5-diglucoside-6"-malyl ester, and delphinidin 3,5-diglucoside-6",6"'- dimalyl ester. These are delphinidin derivatives analogous to the natural carnation anthocyanins. This observation indicates that carnation anthocyanin biosynthetic enzymes are versatile enough to modify delphinidin. Additionally, the petals contained flavonol and flavone glycosides. Three of them were identified by spectroscopic methods to be kaempferol 3-(6"'-rhamnosyl-2"'-glucosyl-glucoside), kaempferol 3-(6"'-rhamnosyl-2"'-(6-malyl-glucosyl)-glucoside), and apigenin 6-C-glucosyl-7-O-glucoside-6"'-malyl ester. Among these flavonoids, the apigenin derivative exhibited the strongest co-pigment effect. When two equivalents of the apigenin derivative were added to 1 mM of the main pigment (delphinidin 3,5-diglucoside-6"-O-4,6"'-O-1-cyclic-malyl diester) dissolved in pH 5.0 buffer solution, the lambda(max) shifted to a wavelength 28 nm longer. The vacuolar pH of the Moonshadow flower was estimated to be around 5.5 by measuring the pH of petal. We conclude that the following reasons account for the bluish hue of the transgenic carnation flowers: (1). accumulation of the delphinidin type anthocyanins as a result of flavonoid 3',5'-hydroxylase gene expression, (2). the presence of the flavone derivative strong co-pigment, and (3). an estimated relatively high vacuolar pH of 5.5.  相似文献   

7.
Five acylated peonidin glycosides were isolated from the pale gray-purple flowers of a duskish mutant in the Japanese morning glory (Ipomoea nil or Pharbitis nil) as major pigments, along with a known anthocyanin, Heavenly Blue Anthocyanin (HBA). Three of these were based on peonidin 3-sophoroside and two on peonidin 3-sophoroside-5-glucoside as their deacylanthocyanins; both deacylanthocyanins were acylated with caffeic acid and/or glucosylcaffeic acids. By spectroscopic and chemical methods, the structures of the former three pigments were determined to be 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside], 3-O-[2-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-glucopyranoside], and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside] of peonidin. The structures of the latter two pigments were also confirmed as 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside, and 3-O-[2-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(4-O-(6-O-(3-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside of peonidin. The mutation affecting glycosylation and acylation in anthocyanin biosynthesis of Japanese morning glory was discussed.  相似文献   

8.
Three acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucosides (1-3) and one non-acylated cyanidin 3-(3(X)-glucosylsambubioside)-5-glucoside (4) were isolated from the purple-violet or violet flowers and purple stems of Malcolmia maritima (L.) R. Br (the Cruciferae), and their structures were determined by chemical and spectroscopic methods. In the flowers of this plant, pigment 1 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-D-glucopyranoside]-5-O-[6-O-(malonyl)-(beta-D-glucopyranoside) as a major pigment, and a minor pigment 2 was determined to be the cis-p-coumaroyl isomer of pigment 1. In the stems, pigment 3 was determined to be cyanidin 3-O-[2-O-(2-O-(trans-sinapoyl)-3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-6-O-(trans-p-coumaroyl)-beta-d-glucopyranoside]-5-O-(beta-D-glucopyranoside) as a major anthocyanin, and also a non-acylated anthocyanin, cyanidin 3-O-[2-O-(3-O-(beta-D-glucopyranosyl)-beta-D-xylopyranosyl)-beta-D-glucopyranoside]-5-O-(beta-D-glucopyranoside) was determined to be a minor pigment (pigment 4). In this study, it was established that the acylation-enzymes of malonic acid has important roles for the acylation of 5-glucose residues of these anthocyanins in the flower-tissues of M. maritima; however, the similar enzymatic reactions seemed to be inhibited or lacking in the stem-tissues.  相似文献   

9.
Nine new bidesmosidic 3-O-glucuronide oleanane triterpenoid saponins were isolated from the stem bark of Symplocos glomerata King along with two known saponins, salsoloside C and copteroside E, and two major lignans, (-)-pinoresinol and (-)-pinoresinol-4'-O-beta-D-glucopyranoside. The structures of the new saponins were established using one- and two-dimensional NMR spectroscopy and mass spectrometry as, 3-O-[beta-D-xylopyranosyl(1-->4)-[2-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[beta-D-xylopyranosyl(1-->4)-[3-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[beta-D-xylopyranosyl (1-->4)-[2,3-O-diacetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[alpha-L-arabinopyranosyl(1-->4)-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[alpha-L-arabinopyranosyl (1-->4)-[2-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[[beta-D-xylopyranosyl (1-->2)]-[beta-D-xylopyranosyl (1-->4)]-[3-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[[beta-D-glucopyranosyl (1-->2)]-[beta-D-xylopyranosyl (1-->4)]-[3-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, 3-O-[[beta-D-glucopyranosyl (1-->2)]-[alpha-L-arabinofuranosyl (1-->4)]-[3-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-oleanolic acid, and 3beta-O-[beta-D-xylopyranosyl(1-->4)-[2-O-acetyl]-beta-D-glucuronopyranosyl]-28-O-[beta-D-glucopyranosyl]-morolic acid. The EtOH and EtOAc extracts of the stem bark showed no cytotoxic activity. At a concentration of 370 microg/ml, the saponin mixture showed haemolytic activity and caused 50% haemolysis of a 10% suspension of sheep erythrocytes.  相似文献   

10.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(beta-D-xylopyranosyl)-beta-D- glucopyranoside]-5-O-beta-D-glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3%) and cyanidin 3-glucoside (2.1%).  相似文献   

11.
A novel class of glycolipids, assigned the trivial name blaberosides, was isolated from whole head tissues of the giant cockroach (Blaberus colosseus). The class consists of two closely related families, blaberoside I and blaberoside II, each containing species differing by 26 atomic mass units. The structure of these gentiobiose-based glycoglycerolipids was elucidated by chromatographic behavior, nuclear magnetic resonance spectroscopy, mass spectrometry, and analysis of chemical degradation products and derivatives. Species in the blaberoside I family have been identified as 2-O-[6'-O-(6"-O-3-hydroxy-11-eicosenoyl-beta-D-glucopyranosyl)-bet a-D- glucopyranosyl]-3-(hexadecyloxy)-1-(3-hydroxy-11-eicosenoyl)-1,2-p ropanediol (blaberoside Ia) and 2-O-[6'-O-(6"-O-3-hydroxy-11-eicosenoyl-beta-D-glucopyranosyl)-bet a- D-glucopyranosyl]-3-(6-octadeceloxy)-1-(3-hydroxy-11-eicosenoyl )-1,2- propanediol (blaberoside Ib). Two smaller homologs of the blaberoside II family were discerned to be 2-O-[6'-O-(6"-O-3-hydroxy-11- eicosenoyl-beta-D-glucopyranosyl)-beta-D-glucopyranosyl]-3-(hex ade cyloxy)- 1,2-propanediol (blaberoside IIa), and 2-O-[6'-O-(6"-O-3-hydroxy-11-eicosenoyl-beta-D- glucopyranosyl)-beta-D-glucopyranosyl]-3-(4-octadeceloxy)-1,2-prop anediol (blaberoside IIb). These compounds are unique because they are animal origin glyceroglycolipids with a highly flexible gentiobiose backbone, and a beta-linkage of the carbohydrate to the glycerol ether at the 2 position rather than the usual 1 position.  相似文献   

12.
Three acylated cyanidin 3-sambubioside-5-glucosides (1-3) were isolated from the violet-blue flowers of Orychophragonus violaceus, and their structures were determined by chemical and spectroscopic methods. Two of those acylated anthocyanins (1 and 3) were cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-acyl)-beta-D-glucopyranoside]-5-O-(6-O-malonyl-beta-D-glucopyranoside)s, in which the acyl groups were p-coumaric acid for 1, and sinapic acid for 3, respectively. The last anthocyanin 2 was cyanidin 3-O-[2-O-(2-O-(4-O-(6-O-(4-O-(beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-glucopyranosyl)-trans-caffeoyl)-beta-D-xylopyranosyl)-6-O-(4-O-(beta-D-glucopyranosyl)-trans-feruloyl)-beta-D-glucopyranoside]-5-O-beta-D-glucopyranoside. In these flowers, the anthocyanins 2 and 3 were present as dominant pigments, and 1 was obtained in rather small amounts.  相似文献   

13.
Two 6-hydroxypelargonidin glycosides were isolated from the orange-red flowers of Alstroemeria cultivars, and determined to be 6-hydroxypelargonidin 3-O-(beta-D-glucopyranoside) and 3-O-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside], respectively, by chemical and spectroscopic methods. In addition, five known anthocyanidin glycosides, 6-hydroxycyanidin 3-malonylglucoside, 6-hydroxycyanidin 3-rutinoside, cyanidin 3-malonylglucoside, cyanidin 3-rutinoside and pelargonidin 3-rutinoside were identified in the flowers.  相似文献   

14.
The components involved in the formation of protocyanin, a stable blue complex pigment from the blue cornflower, Centaurea cyanus, were investigated. Reconstruction experiments using highly purified anthocyanin [centaurocyanin, cyanidin 3-O-(6-O-succinylglucoside)-5-O-glucoside], flavone glycoside [apigenin 7-O-glucuronide-4'-O-(6-O-malonylglucoside)] and metals, Fe and Mg, showed the presence of another factor essential for the formation of protocyanin. The unknown factor was revealed to be Ca. Reconstructed protocyanin using anthocyanin, flavone, Fe, Mg, and Ca was identical with protocyanin from nature in UV-Vis and CD spectra, and was isolated as crystals for the first time. In addition, substitution of the metal components in protocyanin with other metals was also examined.  相似文献   

15.
Markham KR 《Phytochemistry》2003,63(5):589-595
The incomplete structure proposed in 1972 for a unique "flavone-polysaccharide" compound, MF-1, from the liverwort Monoclea forsteri, has been re-examined. Rather than the proposed 8-methoxyluteolin structure with polysaccharides attached to the 7- and 4'-hydroxyls, MF-1 has been shown to be primarily a mixture of penta- and hexa-O-glycosides of 6-methoxyluteolin, which are accompanied by their luteolin analogues. MS and NMR evidence is marshalled to define the structure of MF-la as 6-methoxyluteolin 7-O-[2-O-alpha-rhamnosyl-3-O-alpha-arabinosyl-beta-glucuronide]-4'-O-[2-O-alpha-rhamnosyl-3-O-beta-xylosyl-beta-glucuronide], and MF-1b as 6-methoxyluteolin 7-O-[2-O-alpha-rhamnosyl-beta-glucuronide]-4'-O-[2-O-alpha-rhamnosyl-3-O-beta-xylosyl-beta-glucuronide]. This report is the first to provide substantive evidence for the existence of flavone penta- and hexa-O-glycosides in nature. The newly defined structure(s) for MF-1 more closely align M. forsteri with the only other species in the order Monocleales, M. gottschei.  相似文献   

16.
Two acylated anthocyanins were isolated from selected individuals of Petunia reitzii, and identified to be delphinidin 3-O-[6-O-(4-O-(4-O-(6-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-tr ans-p-coumaroyl)-alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside]- 5-O-[beta-D-glucopyranoside] and delphinidin 3-O-[6-O-(4-O-(4-O-(beta-D-glucopyranosyl)-trans-p-coumaroyl)-alph a-L-rhamnopyranosyl)-beta-D-glucopyranoside]-5-O-[beta-D-glucopyranoside ]. Nine known anthocyanins were also identified.  相似文献   

17.
Six saponins have been isolated and identified from the leaves of Steganotaenia araliacea. They were identified as 3-O-[beta-D-galactopyranosyl(1----2)-(beta-D-galactopyranosyl (1----3))-beta-D-glucuronopyranosyl]-21-O-tigloyl and -21-O-angeloyl-R1-barrigenol, 3-O-[beta-D-glucopyranosyl(1----2)-(beta-D-xylopyranosyl (1----3))-beta-D-glucuronopyranosyl]-21-O-tigloyl and -21-O-angeloyl-R1-barrigenol, 3-O-[beta-D-glucopyranosyl(1----2)-(beta-D-glucopyranosyl-(1----3))-(alp ha-L- rhamnopyranosyl(1----4))-beta-D-glucopyranosyl] steganogenin and 3-O-[(beta-D-galactopyranosyl(1----2)-beta-D-glucuronopyranosyl]-2 8-O- beta-D-glucopyranosyl olean-12-ene-28-oic acid. Steganogenin is a new 17,22-seco-oleanolic acid derivative. The structures of the saponins were established by analysis of their 1H and 13C NMR spectra with the help of 2D-experiments and by Californium Plasma Desorption Mass Spectrometry.  相似文献   

18.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(beta-D-xylopyranosyl)-5alpha-cholestane-3beta,6alpha,8,15beta,16beta,24-hexaol, and distolasteroside D7. (22E,24R)-24-O-(beta-D-xylopyranosyl)-5alpha-cholest-22-ene-3beta,6alpha,8,15beta,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5alpha-cholestane-3beta,4beta,6alpha,7alpha,8,15alpha,16beta,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C 1300 cell culture.  相似文献   

19.
Four new withanolide glycosides, (20R,22R)-O-(3)-[beta-D- xylopyranosyl(1----3), beta-D-xylopyranosyl(1----4)]-beta-D-glucopyranosyl-3 beta,20-dihydroxy-1 alpha-acetoxy-witha-5,24-dienolide, (20R,22R)-O-(3)-[beta-D-xylopyranosyl(1----3), beta-D-glucopyranosyl(1----4)]-beta-D-glucopyranosyl-3 beta,20-dihydroxy-1 alpha-acetoxy-witha-5,24-dienolide, (20R,22R)-O-(3)-[beta-D- glucopyranosyl(1----3), beta-D-glucopyranosyl(1----4)]-beta-D-glucopyranosyl- 3 beta,20-dihydroxy-1 alpha-acetoxy-witha-5,24-dienolide and (20R,22R)-O-(3)-[beta-D-glucopyranosyl(1----3), beta-D- glucopyranosyl(1----4)]-beta-D-glucopyranosyl-3 beta, 12 beta,20-trihydroxy- 1 alpha,acetoxy-witha-5,24-dienolide, named dunawithanines C, D, E and F, respectively, were isolated from Dunalia australis. Their structures were elucidated on the basis of spectral and chemical evidence, especially NMR data of the peracetates.  相似文献   

20.
Twelve anthocyanins (1-12) were isolated from the red flowers of Camellia hongkongensis Seem. by chromatography using open columns. Their structures were elucidated on the basis of spectroscopic analyses, that is, proton-nuclear magnetic resonance, carbon 13-nuclear magnetic resonance, heteronuclear multiple quantum correlation, heteronuclear multiple bond correlation, high resolution electrospray ionization mass and ultraviolet visible spectroscopies. Out of these anthocyanins, a novel acylated anthocyanin, cyanidin 3-O-(6-O-(Z)-p-coumaroyl)-β-galactopyranoside (6), two known acylated anthocyanins, cyanidin 3-O-(6-O-(E)-p-coumaroyl)-β-galactopyranoside (7) and cyanidin 3-O-(6-O-(E)-caffeoyl)-β-galactopyranoside (8), and three known delphinidin glycosides (10-12) were for the first time isolated from the genus Camellia. Furthermore, pigment components in C. japonica L., C. chekiangoleosa Hu and C. semiserrata Chi were studied.The results indicated that the distribution of anthocyanins was differed among these species. Delphinidin glycoside was only detected in the flowers of C. hongkongensis, which is a special and important species in the section Camellia. Based on the characterization of anthocyanins in the section Camellia species, there is a close relationship among these species,and C. hongkongensis might be an important parent for creating new cultivars with bluish flower color.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号