共查询到20条相似文献,搜索用时 15 毫秒
1.
Five polyacylated anthocyanins were isolated from blue-violet flowers of Anemone coronaria 'St. Brigid'. They were identified as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its demalonylated form, delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]-3'-O-[beta-D-glucuronopyranoside], and its cyanidin analog as well as delphinidin 3-O-[2-O-(2-O-(trans-caffeoyl)-beta-D-glucopyranosyl)-6-O-(2-O-(tartaryl)malonyl)-beta-D-galactopyranoside]-7-O-[6-O-(trans-caffeoyl)-beta-D-glucopyranoside]. 相似文献
2.
From the blue perianth segments of Cichorium intybus we isolated four anthocyanins. The pigments were identified as delphinidin 3,5-di-O-(6-O-malonyl-beta-D-glucoside) and delphinidin 3-O-(6-O-malonyl-beta-D-glucoside)-5-O-beta-D-glucoside and the known compounds were delphinidin 3-O-beta-D-glucoside-5-O-(6-O-malonyl-beta-D-glucoside) and delphinidin 3,5-di-O-beta-D-glucoside. In addition 3-O-p-coumaroyl quinic acid has been identified. 相似文献
3.
In Anemone coronaria L. summer dormancy in Israel can be inducedby long photoperiods even in the middle of the winter. Cultivationin Europe has reduced but not eliminated this response to daylength.Daylength did not affect the time of flowering but dormancycaused early cessation of flowering under long days. Anothereffect of long-day treatment was to produce longer scapes. Anemone coronaria, summer dormancy, long-day induction, daylength response 相似文献
4.
Characterization of Colletotrichum acutatum Causing Anthracnose of Anemone (Anemone coronaria L.) 下载免费PDF全文
Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a pathogen population which appears to be genotypically homogeneous by molecular assays. 相似文献
5.
Five anthocyanins, cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(Z)-p-coumaroyl)-β-galactopyranoside (2), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-p-coumaroyl)-β-galactopyranoside (3), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-(E)-caffeoyl)-β-galactopyranoside (4), cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-galactopyranoside (5), and cyanidin 3-O-(2-O-β-xylopyranosyl-6-O-acetyl)-β-glucopyranoside (6), together with the known cyanidin 3-O-(2-O-β-xylopyranosyl)-β-galactopyranoside (1), were isolated from red flowers of Camellia cultivar ‘Dalicha’ (Camellia reticulata) by chromatography using open columns. Their structures were subsequently determined on the basis of spectroscopic analyses, i.e., 1H NMR, 13C NMR, HMQC, HMBC, HR ESI-MS and UV-vis. 相似文献
6.
Li JB Hashimoto F Shimizu K Sakata Y 《Bioscience, biotechnology, and biochemistry》2007,71(11):2833-2836
Ten anthocyanins, cyanidin 3-sambubioside, 3-glucoside and their acylated derivatives, cyanidin 3-lathyroside and cyanidin 3-galactoside, were isolated from red flowers of Camellia reticulata. Their structures were determined on the basis of spectroscopic analyses, and the chemotaxonomic distribution of the accumulated anthocyanins in the petals of wild Camellia reticulata and C. pitardii var. yunnanica is discussed. 相似文献
7.
8.
NADA SINNO SAOUD KHUZAMA KNIO STEPHEN JURY 《Botanical journal of the Linnean Society. Linnean Society of London》2007,153(4):417-438
This study clarifies the taxonomic status of Anemone coronaria and segregates the species and A. coronaria infraspecific variants using morphological and morphometric analyses. Principal component analysis of the coronaria group was performed on 25 quantitative and qualitative characters, and morphometric analysis of the A. coronaria infraspecific variants was performed on 21 quantitative and qualitative characters. The results showed that the A. coronaria group clustered into four major groups: A. coronaria L., A. biflora DC, A. bucharica (Regel) Juz.ex Komarov, and a final group including A. eranthioides Regel and A. tschernjaewii Regel. The data on the A. coronaria infraspecific variants clustered into six groups: A. coronaria L. var. coronaria L., var. cyanea Ard., var. albiflora Rouy & Fouc., var. parviflora Regel, var. ventreana Ard., and var. rissoana Ard. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 417–438. 相似文献
9.
The main anthocyanins from flowers of the orchids Dracula chimaera and D. cordobae were isolated from a purified methanolic extract by preparative HPLC. Their structures were determined to be cyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), cyanidin 3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside), cyanidin 3-O-beta-glucopyranoside, peonidin 3-O-(6"-O-alpha-rhamnopyranosyl-beta-glucopyranoside) and peonidin 3-O-(6"-O-malonyl-beta-glucopyranoside). The structure determinations were mainly based on extensive use of 2D and 1D NMR spectroscopy, UV-vis spectroscopy and MS. The anthocyanin contents of species belonging to the subtribe Pleurothallidinae including genus Dracula Luer (Orchidaceae) have previously not been determined. The high content of anthocyanin rutinosides found in D. chimaera and D. cordobae (78 and 28% of the total anthocyanin content, respectively) differs from previously analysed orchid species, in which glucose is found as the only anthocyanin sugar moiety. 相似文献
10.
Three anthocyanins (1–3) and eight flavonols (4–11) were isolated from the flowers of Amherstia nobilis endemic to Myanmar. Anthocyanins were identified as cyanidin 3-O-glucoside (1), 3-O-xyloside (2), and peonidin 3-O-glucoside (3). On the other hand, flavonols were identified as isorhamnetin 3-O-glucoside (4), 7-O-glucoside (5), 3,7-di-O-glucoside (6) and 3-O-rutinoside (7), quercetin 3-O-rutinoside (8) and 3-O-glucoside (9), and kaempferol 3-O-rutinoside (10) and 3-O-glucoside (11). Although an anthocyanin, pelargonidin 3-O-pentoside, has been reported from the flowers of A. nobilis, it was not found in this survey. The presence of flavonols in A. nobilis was reported in this survey for the first time. Flavonoid composition of Amherstia was chemotaxonomically compared with those of phylogenetically related genera Cynometra and Brownea. 相似文献
11.
Blue flowers of six Bhutani Meconopsis species, M. bhutanica, M. bella, M. horridula, M. simplicifolia, M. primulina and M. polygonoides, were surveyed for anthocyanins and other flavonoids. Four anthocyanins were isolated and identified as cyanidin 3-O-sambubioside-7-O-glucoside (1), cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)]-7-O-glucoside (2), cyanidin 3-O-sambubioside (4) and cyanidin 3-O-[xylosyl-(1 → 2)-(6″-malonylglucoside)] (5). On the other hand, 12 flavonols were isolated from their Meconopsis species with various combination and characterized as kaempferol 3-O-glycosides (8–12), kaempferol 3,7-O-glycosides (13–16), quercetin 3-O-glycosides (17 and 18) and isorhamnetin 3-O-glycoside (19). Of six Meconopsis species which were surveyed in this experiment, anthocyanin and flavonol composition of five species except for M. horridula was clarified for the first time. Their Meconopsis species showed the different flavonoid profiles, respectively, and flavonoid diversity within the glycosylation level of Meconopsis flowers were indicated. 相似文献
12.
Anthracnose, or leaf-curl disease of anemone, caused by Colletotrichum sp., has been reported to occur in Australia, western Europe, and Japan. Symptoms include tissue necrosis, corm rot, leaf crinkles, and characteristic spiral twisting of floral peduncles. Three epidemics of the disease have been recorded in Israel: in 1978, in 1990 to 1993, and in 1996 to 1998. We characterized 92 Colletotrichum isolates associated with anthracnose of anemone (Anemone coronaria L.) for vegetative compatibility (72 isolates) and for molecular genotype (92 isolates) and virulence (4 isolates). Eighty-six of the isolates represented the three epidemics in Israel, one isolate was from Australia, and five isolates originated from western Europe. We divided these isolates into three vegetative-compatibility groups (VCGs). One VCG (ANE-A) included all 10 isolates from the first and second epidemics, and 13 of 62 examined isolates from the third epidemic in Israel, along with the isolate from Australia and 4 of 5 isolates from Europe. Another VCG (ANE-F) included most of the examined isolates (49 of the 62) from the third epidemic, as well as Colletotrichum acutatum from strawberry, in Israel. Based on PCR amplification with species-specific primers, all of the anemone isolates were identified as C. acutatum. Anemone and strawberry isolates of the two VCGs were genotypically similar and indistinguishable when compared by arbitrarily primed PCR of genomic DNA. Only isolate NL-12 from The Netherlands, confirmed as C. acutatum but not compatible with either VCG, had a distinct genotype; this isolate represents a third VCG of C. acutatum. Isolates from anemone and strawberry could infect both plant species in artificial inoculations. VCG ANE-F was recovered from natural infections of both anemone and strawberry, but VCG ANE-A was recovered only from anemone. This study of C. acutatum from anemone illustrates the potential of VCG analysis to reveal distinct subspecific groups within a pathogen population which appears to be genotypically homogeneous by molecular assays. 相似文献
13.
14.
The effects of day-length and temperature on flowering and dormancyinduction were studied in Anemone coronaria L., with plantsraised either from corms or achenes. An Israeli hybrid sourcewas used (de Caen cv. Hollandia x Israeli wild type). Dormancy onset is characterized by the cessation of foliageleaf production, the appearance of leaf scales protecting theperennating bud, and leaf senescence. Dormancy was induced byhigh temperature and long days but increasing temperatures (from17/12 °C to 32/12 °C) induced earlier dormancy thanprolonging the photoperiod (range 816 h). A significant(P = 0.01) interaction was found between these factors, withsmaller photoperiodic effects the higher the temperature. At22/17 °C the critical day-length for dormancy inductionwas between 11 and 12 h. The transition from the vegetative to the reproductive stageappears to be an autonomous process that occurs with developmentin plants raised from either corms or achenes and does not requireenvironmental induction. Photo- and thermoperiodic effects onflowering were indirect, being mediated through their influenceon dormancy induction. Anemone coronaria L., dormancy, flowering, photoperiod, thermoperiod 相似文献
15.
The presence of anthocyanidins and anthocyanins were analyzed in flowers of 30 taxa of Aconitum. Delphinidin was detected as a major anthocyanidin from the hydrolysate of 29 taxa with violet and violet-blue flowers. Pelargonidin was identified as a major anthocyanidin in one taxon with white flowers (partially pale reddish purple; White group N155C by R.H.S. Colour Chart). This is the first reported detection of pelargonidin as a major anthocyanidin from Aconitum flowers. Pelargonidin was also found in ten taxa as a minor anthocyanidin, whereas cyanidin was detected from the flowers of all 30 taxa as a minor anthocyanidin.Two anthocyanins polyacylated by p-hydroxybenzoic acids, violdelphin and monodeacylcampanin were identified from 29 taxa with violet and violet-blue flowers as major anthocyanins. This is the first reported isolation of monodeacylcampanin from Aconitum flowers. The structures of these two anthocyanins were elucidated on the basis of Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS). 相似文献
16.
17.
采用人工干扰方法,探讨多花菜豆和蚕豆花的冗余及其对不可测干扰的适应。结果表明,多花菜豆和蚕豆的花序、花的时间冗余和花的数量冗余,保证了总有一部分花序和花能避开外界因子的干扰而结荚。多花菜豆受干扰与未受干扰(对照)植株的花有效率均为2.2%;而受干扰植株的花序有效率为29.0%,比对照(15.9%)增加近1倍。对蚕豆连续摘除开放的花朵和连续摘除嫩荚这两种处理与对照的单株平均结荚数十分接近。分别为3.2、3.1和3.1。多花菜豆花序上部的花和蚕豆花序中较小的花常常凋落不结实,表现出花的自疏现象,所谓的无效花,但当分别只保留上部花和小花时,它们即可成为结荚的有效花。另外,研究表明,即使给多花菜豆和蚕豆提供充足的养分,每个花序的平均结荚数并无明显增加,说明养分不是产生大量无效花的主要原因。多花菜豆和蚕豆所开的大量花是一种备用。不是多余的或可有可无的,是对付外界随机干扰的一种适应;其花序和花的时间冗余以及花的数量冗余在个体繁殖和物种延续中起着关键性作用。 相似文献
18.
19.
The red ketocarotenoid astaxanthin (3,3'-dihydroxy-4,4'-diketo-beta,beta-carotene) is widely used as an additive in feed for the pigmentation of fish and crustaceans and is frequently included in human nutritional supplements as well. There is considerable interest in developing a plant-based biological production process for this valuable carotenoid. Adonis aestivalis (Ranunculaceae) is unusual among plants in synthesizing and accumulating large amounts of astaxanthin and other ketocarotenoids. The formation of astaxanthin requires only the addition of a carbonyl at the number 4 carbon of each beta-ring of zeaxanthin (3,3'-dihydroxy-beta,beta-carotene), a carotenoid typically present in the green tissues of higher plants. We screened an A. aestivalis flower library to identify cDNAs that might encode the enzyme that catalyzes the addition of the carbonyls. Two closely related cDNAs selected in this screen were found to specify polypeptides similar in sequence to plant beta-carotene 3-hydroxylases, enzymes that convert beta-carotene (beta,beta-carotene) into zeaxanthin. The Adonis enzymes, however, exhibited neither 4-ketolase nor 3-hydroxylase activity when presented with beta-carotene as the substrate in Escherichia coli. Instead, the products of the Adonis cDNAs were found to modify beta-rings in two distinctly different ways: desaturation at the 3,4 position and hydroxylation of the number 4 carbon. The 4-hydroxylated carotenoids formed in E. coli were slowly metabolized to yield compounds with ketocarotenoid-like absorption spectra. It is proposed that a 3,4-desaturation subsequent to 4-hydroxylation of the beta-ring leads to the formation of a 4-keto-beta-ring via an indirect and unexpected route: a keto-enol tautomerization. 相似文献
20.
A phytochemical investigation on the rhizome of Anemone hupehensis resulted in the isolation of thirteen compounds, including six neolignan glycosides (1-6), two phenylpropanoid glycosides (7, 8), a phenolic glycoside (9) and four triterpenoid saponins (10-13). The structures of the isolated compounds were elucidated on the basis of spectroscopic data. This is the first report of neolignan glycoside, phenylpropanoid glycoside, and phenolic glycoside from genus Anemone. This is also the first study to report compounds 1-5 and 7-9 from family Ranunculaceae. All the compounds, except 10 were isolated from A. hupehensis for the first time. The chemotaxonomic significance of the isolated compounds was discussed. 相似文献