首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial rps2 gene from barley, like that of rice, wheat, and maize, has an extended open reading frame (ORF) at the 3-region when compared to that from lower plants. However, the extended portions are variable among these cereals. Since barley and wheat belong to the same tribe (Triticeae), it would be interesting to know when and where the two types of rps2 were generated during evolution. To determine this, we utilized the mitochondrial (mt)DNA sequence to examine variations of the rps2 genes in the tribe Triticeae. By means of the variable 3-region, the distribution of barley (B)-type and wheat (W)-type rps2 sequences was studied in 19 genera of the tribe. The B-type sequence was identified in 10 of the 19 genera, whereas the W-type sequence was present in all 19 genera. Thus, ten of the examined genera have both types of rps2 sequences due to the presence of two copies of the gene. The W-type sequence was also present in the tribe Bromeae and the B-type sequence was also found in Aveneae and Poeae. Phylogenetic trees based on the B-type and W-type sequences were different from those based on other molecular data. This suggests that the mitochondrial genome in Triticeae has a unique evolutionary history.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

2.
The pea mitochondrial genome contains a truncated rps7 gene lacking ca. 40 codons at its 5 terminus. This single-copy sequence is immediately downstream of and slightly overlapping an actively transcribed and edited reading frame of 744 bp (designated ccb248) homologous to the bacterial helC gene which encodes a subunit of the ABC-type heme transporter involved in cytochrome c biogenesis. This region of mitochondrial DNA appears recombinogenic, and the carboxy-termini of helC-type proteins are predicted to vary in sequence and length among plants. Sequences corresponding to the 5 coding region of rps7 were not detected elsewhere in the pea mitochondrial genome using wheat rps7 probes, and only a very short internal rps7 segment was observed in soybean mitochondrial DNA. The presence of rps7-homologous sequences in the nuclear genomes of pea and soybean is consistent with the recent transfer of a functional mitochondrial rps7 gene to the nucleus in certain plant lineages.  相似文献   

3.
4.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2. Received: 20 November 1997 / Accepted: 29 January 1998  相似文献   

5.
6.
7.
The endpoints of the large inverted repeat (IR) of chloroplast DNA in flowering plants differ by small amounts between species. To quantify the extent of this movement and define a possible mechanism for IR expansion, DNA sequences across the IR—large single-copy (IR-LSC) junctions were compared among 13Nicotiana species and other dicots. In mostNicotiana species the IR terminates just upstream of, or somewhere within, the 5 portion of therps19 gene. The truncated copy of this gene,rps19, varies in length even between closely related species but is of constant size within a single species. InNicotiana, six differentrps19 structures were found. A phylogenetic tree ofNicotiana species based on restriction site data shows that the IR has both expanded and contracted during the evolution of this genus. Gene conversion is proposed to account for these small and apparently random IR expansions. A large IR expansion of over 12 kb has occurred inNicotiana acuminata. The new IR-LSC junction in this species lies within intron 1 of theclpP gene. This rearrangement occurred via a double-strand DNA break and recombination between poly (A) tracts inclpP intron 1 and upstream ofrps19. Nicotiana acuminata chloroplast DNA contains a molecular fossil of the IR-LSC junction that existed prior to this dramatic rearrangement.  相似文献   

8.
Bacterial diversity associated with Baer Soda Lake in Inner Mongolia of China was investigated using a culture-independent method. Bacterial 16S rRNA gene libraries were generated using bacterial oligonucleotide primers, and 16S rRNA gene sequences of 58 clones were analyzed phylogenetically. The library was dominated by 16S rDNAs of Gram-negative bacteria (24% -Proteobacteria, 31% -Proteobacteria, 33% -Proteobacteria, and 2% -Proteobacteria), with a lower percentage of clones corresponding to Gram-positive bacteria. Forty cloned sequences were similar to that of known bacterial isolates (>97% sequence similarity), represented by the species of the genera Brevundimonas, Comamonas, Alcaligenes, Stenotrophomonas, and Klebsiella. Eighteen cloned sequences showed less affiliation with known taxa (<97% sequence similarity) and may represent novel taxa.Communicated by K. Horikoshi  相似文献   

9.
10.
A collection of 44 cloned 5S DNA units fromTriticum aestivum cv. Chinese Spring were grouped into 12 sequence-types based on sequence similarity and the respective consensus sequences were then produced. The relationship between these 12 consensus sequences (T. aestivum S 1-S 8 andT. aestivum L 1-L 4), together with two clones sequenced byGerlach andDyer, and the 5S DNA consensus sequences from diploidTriticum spp. were then determined by numerical methods. Both phenetic and cladistic analyses were carried out. The following wheat 5S DNA sequences were found to group with respective sequences from diploidTriticum spp.:T. aestivum S 4, S 6 withT. tauschii S;T. aestivum S 3 withT. monococcum S andT. monococcum S-Rus 7;T. aestivum L 1 andT. aestivum L-G&D withT. speltoides L;T. aestivum L 2, L 3 withT. tauschii L;T. aestivum L 4 withT. monococcum L andT. monococcum L-Rus 12. The analyses suggested that 5 out of the 65S Dna loci present in wheat were identified at the sequence level. The locus that could not be identified in this analysis was the5S Dna-B 1 locus. A group ofT. aestivum sequences (T. aestivum S 1, S 7, S 8, S-G&D) were found to be distinct from the other 5S DNA sequences in the data base. The existence of the distinct group of 5S DNA sequences suggests that there is a gap in our current understanding of wheat evolution with respect to the5S Dna loci.  相似文献   

11.
12.
Characterization of the Oenothera mitochondrial ribosomal gene cluster rps19-rps3-rpl16 shows the two genes rps3 and rpl16 to be separated by 9 nucleotides. The first codon of rpl16 is a GTG codon for valine and the only potential translational start. This GTG codon is conserved at the same position in maize, Petunia and Marchantia mitochondria, while sequences diverge upstream. These observations suggest that GTG at least at this position may act as translation initiation codon in plant mitochondria. Analysis of RNA editing suggests both genes to code for functional ribosomal proteins in Oenothera mitochondria. A duplication/recombination event at a decanucleotide in the intron of rps3 created a pseudogene missing part of the intron and the 3 exon.  相似文献   

13.
The greenbug, Schizaphis graminum (Rhodani), is one of the major insect pests of wheat worldwide and it is important to develop a basic understanding of the chromosomal locations of known and new greenbug resistance genes. Gby is a new greenbug resistance gene in the wheat line Sandos selection 4040. A mapping population used in this study was derived from a cross of Sandos 4040 and PI220127, a greenbug susceptible wheat land race from Afghanistan. A progeny test indicated that Gby is inherited as a single semi-dominant gene. A genetic linkage map consisting of Gby, Xgwm322 (a wheat microsatellite marker), XksuD2 (an STS marker) and 18 restriction fragment length polymorphism (RFLP) loci was constructed. We used DNA from Chinese Spring 7A deletion lines to show that the gwm332 and ksuD2 amplified fragments mapped in this study are located on a long arm of chromosome 7A. This suggests that Gby is located on wheat chromosome 7A. Gby was mapped to the area in the middle of the island of putative defense response genes that are represented by RFLP markers (Xpsr119, XZnfp, Xbcd98 and Pr1b) previously mapped to the distal part of the short arm of wheat chromosome group 7. This region of chromosome 7A is characterized by a high recombination rate and a high physical density of markers which makes Gby a very good candidate for map-based cloning. The selection accuracy when the RFLP markers Xbcd98, Xpsr119 or XZnfp and Pr1b flanking Gby are used together to tag Gby is 99.78%, suggesting that they can be successfully used in marker assisted selection.  相似文献   

14.
Summary We have cloned two types of variable copy number DNA sequences from the rice embryo genome. One of these sequences, which was cloned in pRB301, was amplified about 50-fold during callus formation and diminished in copy number to the embryonic level during regeneration. The other clone, named pRB401, showed the reciprocal pattern. The copy numbers of both sequences were changed even in the early developmental stage and eliminated from nuclear DNA along with growth of the plant. Sequencing analysis of the pRB301 insert revealed some open reading frames and direct repeat structures, but corresponding sequences were not identified in the EMBL and LASL DNA databases. Sequencing of the nuclear genomic fragment cloned in pRB401 revealed the presence of the 3rps12-rps7 region of rice chloroplast DNA. Our observations suggest that during callus formation (dedifferentiation), regeneration and the growth process the copy numbers of some DNA sequences are variable and that nuclear integrated chloroplast DNA acts as a variable copy number sequence in the rice genome. Based on data showing a common sequence in mitochondria and chloroplast DNA of maize (Stern and Lonsdale 1982) and that the rps12 gene of tobacco chloroplast DNA is a divided gene (Torazawa et al. 1986), it is suggested that the sequence on the inverted repeat structure of chloroplast DNA may have the character of a movable genetic element.  相似文献   

15.
Summary Aneuploid stocks, which included Triticum aestivum/alien, disomic, chromosome addition lines, wheat/alien, ditelosomic, chromosome addition lines, and the available aneuploids of Chinese Spring wheat, were used to locate genes that influence milling energy requirement (ME). Genes that affected ME were found on all seven homoeologous chromosome groups. The addition of complete wheat chromosomes 1B, 1D, 2A, 2D, 5B, 6B, 7B and 7D increased ME. Positive effects were also found in specific chromosome arms: 1BS, 2DS, 5AS, 5BS and 6BL. Wheat chromosome 3B conditioned low ME and the gene(s) responsible was located on the short arm. Other negative effects were attributed to wheat chromosome arms 4BL, 4DL, 5DS and 6DS. Alien chromosome additions that conferred high ME included 2H, 5H, 6H and 7H of barley, Hordeum vulgare and 2R, 2R, 4R, 4RL, 6R, 6RL and 7RL of rye, Secale cereale. Those that conferred a low ME included 1H ch of H. chilense, and 6u and 7u of Aegilops umbellulata, 5R and 5RS of S. cereale and 5R m and 5R mS of S. montanum. Although the control of ME is polygenic, there is a major effect of genes located on the short arms of homoeologous group 5 chromosomes.  相似文献   

16.
A family of three cDNAs, designated TaSUT1A, 1B and 1D, encoding sucrose transporter (SUT) proteins was isolated from a hexaploid wheat (Triticum aestivum) endosperm library. The cDNA sequences are 96% identical but are distinguishable from one another by virtue of a size polymorphism in the 3-untranslated region (UTR). The predicted amino acid sequences are 98% identical and are highly similar to the sucrose transporters from rice, maize and barley. A gene for TaSUT1 was isolated from genomic libraries of Aegilops tauschii (the donor of the D genome of wheat) and the coding sequence found to be identical to that of TaSUT1D cDNA. There is only one copy of each TaSUT1 gene in hexaploid wheat and it is located on chromosome 4. Genomic Southern analysis and PCR analysis across the 3 polymorphic region of hexaploid, tetraploid and progenitor diploid wheat DNAs established that the TaSUT1A gene was present in the putative A-genome progenitor, T. monococcum, and that the TaSUT1B gene was present in the putative B-genome progenitor, T. searsii. All three TaSUT1 genes are expressed at high levels in filling grain, showing a good correlation with the developmental time course of growth. This reinforces the view that in cereals a major role of SUT1 is in the post-phloem sugar transport pathway associated with seed filling.  相似文献   

17.
A gene coding for a protein that shows homologies to prokaryotic ribosomal protein S2 is present in the mitochondrial (mt) genome of wheat (Triticum aestivum). The wheat gene is transcribed as a single mRNA which is edited by C-to-U conversions at seven positions, all resulting in alteration of the encoded amino acid. Homologous gene sequences are also present in the mt genomes of rice and maize, but we failed to identify the corresponding sequences in the mtDNA of all dicotyledonous species tested; in these species the mitochondrial RPS2 is probably encoded in the nucleus. The protein sequence deduced from the wheat rps2 gene sequence has a long C-terminal extension when compared to other prokaryotic RPS2 sequences. This extension presents no similarity with any known sequence and is not conserved in the maize or rice mitochondrial rps2 gene. Most probably, after translation, this peptide extension is processed by a specific peptidase to give rise to the mature wheat mitochondrial RPS2.  相似文献   

18.
19.
Organisation of the ribosomal RNA genes in Streptomyces coelicolor A3(2)   总被引:15,自引:0,他引:15  
Summary Using Southern hybridisation of radiolabelled purified ribosomal RNAs to genomic DNA the ribosomal RNA genes of Streptomyces coelicolor A3(2) were shown to be present in six gene sets. Each gene set contains at least one copy of the 5 S, 16 S and 23 S sequences and in at least two cases these are arranged in the order 16 S-23S-5S. Three gene sets, rrnB, rrnD and rrnF, were isolated by screening a library of S. coelicolor A3(2) DNA. The restriction map of one of these, rrnD, was determined and the nucleotide sequences corresponding to the three rRNAs were localised by Southern hybridisation. The gene order in rrnD is 16S-23S-5S.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号