首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The phylogeography of Atlantic brown trout ( Salmo trutta ) was analysed using mitochondrial DNA control region complete sequences of 774 individuals from 57 locations. Additionally, the available haplotype information from 100 published populations was incorporated in the analysis. Combined information from nested clade analysis, haplotype trees, mismatch distributions, and coalescent simulations was used to characterize population groups in the Atlantic basin. A major clade involved haplotypes assigned to the Atlantic (AT) lineage, but another major clade should be considered as a distinct endemic lineage restricted to the Iberian Peninsula. The phylogeography of the Atlantic populations showed the mixed distribution of several Atlantic clades in glaciated areas of Northern Europe, whereas diverged haplotypes dominated the coastal Iberian rivers. Populations inhabiting the Atlantic rivers of southern France apparently contributed to postglacial colonization of northern basins, but also comprised the source of southern expansions during the Pleistocene.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 904–917.  相似文献   

2.
During the last two centuries, lynx populations have undergone severe declines and extinctions in Europe. The Alpine lynx, once distributed across the whole Alpine arc, became extinct due to direct human prosecution and deprivation of its main prey in the 1930s. Similar to the Iberian lynx Lynx pardinus , its taxonomy has been subject to several controversies. Moreover, knowing the taxonomic status of the Alpine lynx will help to define conservation units of extant lynx populations in Europe. In this study, we investigated two mitochondrial DNA regions in museum specimens ( n =15) representing the autochthonous Alpine population and in samples from extant Eurasian lynx Lynx lynx populations in Europe and Asia ( n =17). Phylogenetic analysis (cytochrome b , 345 bp) placed the Alpine lynx within the Eurasian lynx lineage. Among all individuals examined, seven different haplotypes (control region, 300 bp) were observed but no unique Alpine haplotype was discovered. Haplotypes of the extinct Alpine population were identical to previously described haplotypes in Scandinavian lynx signifying a recent genetic ancestry with current European populations. Moreover, our genetic data suggest two distinct glacial refugia for the Carpathian and Balkan population. Overall this study demonstrates that historical DNA from extinct populations can help to disentangle the phylogenetic relationships and historical biogeography of taxa with only a limited number of extant populations remaining.  相似文献   

3.
The biogeographical distribution of brown trout mitochondrial DNA haplotypes throughout the Iberian Peninsula was established by polymerase chain reaction-restriction fragment polymorphism analysis. The study of 507 specimens from 58 localities representing eight widely separated Atlantic-slope (north and west Iberian coasts) and six Mediterranean drainage systems served to identify five main groups of mitochondrial haplotypes: (i) haplotypes corresponding to non-native, hatchery-reared brown trout that were widely distributed but also found in wild populations of northern Spain (Cantabrian slope); (ii) a widespread Atlantic haplotype group; (iii) a haplotype restricted to the Duero Basin; (iv) a haplotype shown by southern Iberian populations; and (v) a Mediterranean haplotype. The Iberian distribution of these haplotypes reflects both the current fishery management policy of introducing non-native brown trout, and Messinian palaeobiogeography. Our findings complement and extend previous allozyme studies on Iberian brown trout and improve present knowledge of glacial refugia and postglacial movement of brown trout lineages.  相似文献   

4.
An extensive survey of mitochondrial haplotypes in honeybee colonies from the Iberian Peninsula has corroborated previous hypotheses about the existence of a joint clinal variation of African (A) and west European (M) evolutionary lineages. It has been found that the Iberian Peninsula is the European region with the highest haplotype diversity (12 haplotypes detected of the M lineage and 10 of the A lineage). The frequency of A haplotypes decreases in a SW-NE trend, while that of M haplotypes increases. These results are discussed in relation to hypotheses about the African origin of Apis mellifera and an early colonization of west Europe during intermediate Pleistocene glaciation events, followed by a regional differentiation. The extant pattern of haplotype frequency and distribution seems to be influenced at a regional scale by adaptation to local climatic conditions and the mobile beekeeping that has become a large-scale practice during the last decades. Other previous anthropogenic influences (Greek, Roman and Arab colonizations) are thought to be of minor importance in present day populations.  相似文献   

5.
Apis mellifera is composed of three evolutionary branches including mainly African (branch A), western and northern European (branch M), and southeastern European (branch C) populations. The existence of morphological clines extending from the equator to the Polar Circle through Morocco and Spain raised the hypothesis that the branch M originated in Africa. Mitochondrial DNA analysis revealed that branches A and M were characterized by highly diverged lineages implying very remote links between both branches. It also revealed that mtDNA haplotypes from lineages A coexisted with haplotypes M in the Iberian Peninsula and formed a south-north frequency cline, suggesting that this area could be a secondary contact zone between the two branches. By analyzing 11 populations sampled along a France-Spain/Portugal-Morocco-Guinea transect at 8 microsatellite loci and the DraI RFLP of the COI-COII mtDNA marker, we show that Iberian populations do not present any trace of “africanization” and are very similar to French populations when considering microsatellite markers. Therefore, the Iberian Peninsula is not a transition area. The higher haplotype A variability observed in Spanish and Portuguese samples compared to that found in Africa is explained by a higher mutation rate and multiple and recent introductions. Selection appears to be the best explanation to the morphological and allozymic clines and to the diffusion and maintenance of African haplotypes in Spain and Portugal.  相似文献   

6.
Sequencing of the complete mitochondrial DNA control region from 31 samples of the Eurasian otter, Lutra lutra , enabled us to establish the length and structure of this fragment, as well as to describe, for the first time, the RS3 repetitive region located at the 3' end. In addition, genetic variability of the 5' end was examined in 63 individuals, 57 of which were wild otters from the Iberian Peninsula and six captive reared otters. This analysis resulted in extremely low variability. All the samples from the Iberian Peninsula share a single haplotype, Lut 1, the most common haplotype in Europe. Captive otters showed two haplotypes: Lut 3, which has been described in wild otters from eastern Germany, and Lut 6, an haplotype not described to date. Higher variability was observed in the repetitive RS3 region. The tandem repeat was composed of an array of ten repeat units of 22 bp with differences in the repetitive motifs that differed in the arrays of different specimens. In total, 20 different haplotypes from 31 individuals were found. However, the geographical distribution of these haplotypes did not generate a phylogeographical signal. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 397–403.  相似文献   

7.
Nested clade analysis was applied to cytochrome b restriction site data previously obtained on 20 natural populations of the European rabbit across the Iberian Peninsula to test the hypothesis of postglacial dispersal from two main refugia, one in the northeast and the other in the southwest. Apart from historical fragmentation that resulted in geographic discontinuity of two distinct mitochondrial DNA (mtDNA) clades A and B, patterns of haplotype genetic variability have been shaped mostly by restricted gene flow via isolation by distance. The distribution of tip versus interior haplotypes suggests that dispersal occurred from both the southwestern and northeastern groups. Dispersal from the southwest had a north and northwest direction, whereas from the northeast it had mostly a western and southern orientation, with subsequent overlap in a southeastern-northwestern axis across the Iberian Peninsula. The analysis of the pairwise mismatch distribution of a 179-181-bp fragment of the mtDNA control region, for seven of those populations, further supports the idea that major patterns of dispersal were in the direction of central Iberia. Additionally, rabbit populations do not show signs of any significant loss of genetic diversity in the recent past, implying that they maintained large population sizes and structure throughout the ice ages. This is congruent with the fact that the Iberian Peninsula was itself a glacial refugium during Quaternary ice ages. Nonetheless, climatic oscillations of this period, although certainly milder than in northern Europe, were sufficient to affect the range distributions of Iberian organisms.  相似文献   

8.
The European earwig, Forficula auricularia, is a cosmopolitan insect endemic to Europe, West Asia and North Africa, which has invaded many temperate regions of the world including Australia and New Zealand. F. auricularia has been shown to be a complex of morphologically identical, reproductively isolated lineages that possess two distinct clades of mitochondrial DNA. Entomological collection data, historical literature and further field collections were used to develop a greater understanding of Australian F. auricularia’s invasion biology and its current distribution. Genetic analysis of F. auricularia collected from Australia and New Zealand using two mitochondrial genes (COI and a fragment overlapping parts of the COI -COII genes) was also undertaken. To identify the possible source populations of the Australasian invasion these sequences were compared to those from 16 locations within Britain and continental Europe. All Australasian populations were shown to be of the clade B lineage. Tasmanian and New Zealand populations consist of a single subclade comprised of only 4 and 1 haplotypes respectively. The Australian mainland populations also contained a second subclade consisting of up to 11 haplotypes indicating that multiple introductions possibly occurred on the Australian mainland. Comparison of mitochondrial genomes from Australasian and European populations showed the Australian mainland subclade to be most closely related to Portuguese haplotypes, and the Tasmanian and New Zealand clade closely related to those in Brittany, France. No European haplotypes perfectly matched the Australasian sequences. Therefore, the original source populations are still to be identified with harbours on the Iberian Peninsula’s western coast and those on the English Channel likely candidate areas.  相似文献   

9.
Cicada barbara (Stål) and Cicada orni L. are two Mediterranean cicadas, very similar in morphology, that produce distinct acoustic mating signals and that have partially overlapping distribution ranges in the Iberian Peninsula, occurring in sympatry in several locations. In the present study, six microsatellite loci were analysed in C. barbara , four of which were also analysed in C. orni . Geographical and temporal genetic variation in these species was studied. No evidence of hybridization was found, enabling us to infer that the isolating barriers between these species are efficient. Partitioning of geographic variation in each species, revealed the following patterns: Iberian Peninsula and Northwestern African populations of C. barbara showed higher differentiation between than within each region, supporting C. barbara subspecific taxonomy ( C. barbara lusitanica in the Iberian Peninsula and C. barbara barbara in Northwestern Africa) and highlighting isolation coincident with the presence of physical barriers to gene-flow; differentiation between populations of C. orni from both sides of the Pyrenees was very low, and this mountain range may not constitute a significant barrier for the dispersal of this species; Greek populations of C. orni were found to be highly differentiated from Western European populations; and no pattern of isolation-by-distance was found in either species within the Iberian Peninsula.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 249–265.  相似文献   

10.
Species that contain populations with different reproductive modes offer excellent opportunities to study the transition between such strategies. Salamandra salamandra (Linnaeus, 1758) is one of two species within the Salamandra – Lyciasalamandra clade which displays two reproductive modes simultaneously. Along the S. salamandra distribution, the common reproductive mode is ovoviviparity although the species also has viviparous populations in the northern Iberian Peninsula. The occurrence of viviparity has recently been reported in two small offshore island populations on the Atlantic coast (NW Iberia), which originated after the last glacial period (8000–9000 years ago). In this paper, we analysed ovoviviparous, hybrid and viviparous populations (inland and mainland) from 17 localities across the northern Iberian Peninsula using two mitochondrial markers (Cyt b and COI , c . 1100 bp). Phylogenetic and phylogeographic analyses highly support that viviparity arose as an evolutionary novelty in the S. salamandra island populations and that viviparous populations are therefore not monophyletic. The recent insularity of Atlantic island populations leads us to conclude that the transition from ovoviviparity to viviparity can happen in a very short-time span. Additionally, to determine the likely source of this evolutionary transition, we discuss how ecological pressures could have an effect on the maintenance of the ovoviviparous reproductive mode. Hence, taking into account the results of this study, we propose the consideration of the island populations as an evolutionary unit for conservation purposes.  相似文献   

11.
Due to their maternal mode of inheritance, mitochondrial markers can be regarded as almost 'ideal' tools in evolutionary studies of conifer populations. In the present study, polymorphism was analysed at one mitochondrial intron (nad 1, exon B/C) in 23 native European Pinus sylvestris populations. In a preliminary screening for variation using a polymerase chain reaction-restriction fragment length polymorphism approach, two length variants were identified. By fully sequencing the 2.5 kb region, the observed length polymorphism was found to result from the insertion of a 31 bp sequence, with no other mutations observed within the intron. A set of primers was designed flanking the observed mutation, which identified a novel sequence-tagged-site mitochondrial marker for P. sylvestris. Analysis of 747 trees from the 23 populations using these primers revealed the occurrence of two distinct haplotypes in Europe. Within the Iberian Peninsula, the two haplotypes exhibited extensive population differentiation (PhiST = 0.59; P < or = 0.001) and a marked geographical structuring. In the populations of central and northern Europe, one haplotype largely predominated, with the second being found in only one individual of one population.  相似文献   

12.
The Iberian Peninsula contains diverse populations of freshwater fish, with major river basins comprising differentiated biogeographic units. The Duero River flows through the North‐Western Iberian Peninsula and is one of the most important rivers within the Iberian glacial refuge. Brown trout (Salmo trutta) populate this whole basin, and studies using both allozyme and microsatellite loci have detected a geographically sorted distribution of genetic variation in this species. In this work, sequences of the mitochondrial control region obtained from 299 brown trout from the Duero River were compared with other Iberian and European datasets. Two differentiated haplotype groups were detected inside the Duero River basin. One of them was related to the Atlantic (AT) lineage that is present in Northern European populations, whereas the other comprised an unique group that was restricted to the inner region of the basin. The amount of divergence of this Duero group from the other brown trout populations studied is consistent with a new trout lineage (Duero, DU) that is endemic to this river basin and that diverged from other Atlantic populations during the Pleistocene. The distribution of the DU and AT quaternary lineages in the Duero River was consistent with the ichthyological pattern described in the basin that originated during the Miocene–Pliocene. Evidence of selective processes that favour the haplotypes of the DU lineage may explain this discrepancy.  相似文献   

13.
We have analysed the genetic diversity of South and Central American (SCA) goats by partially sequencing the mitochondrial control region of 93 individuals with a wide geographical distribution. Nucleotide and haplotype diversities reached values of 0.020 ± 0.00081 and 0.963 ± 0.0012 respectively. We have also observed a rather weak phylogeographic structure, with almost 69% of genetic variation included in the within-breed variance component. The topology of a median-joining network analysis including 286 European, Iberian, Atlantic and SCA mitochondrial sequences was very complex, with most of the haplotypes forming part of independent small clusters. SCA sequences showed a scattered distribution throughout the network, and clustering with Spanish and Portuguese sequences occurred only occasionally, not allowing the distinguishing of a clear Iberian signature. Conversely, we found a prominent cluster including Canarian, Chilean, Argentinian and Bolivian mitochondrial haplotypes. This result was independently confirmed by constructing a Bayesian phylogenetic tree (posterior probability of 0.97). Sharing of mitochondrial haplotypes by SCA and Canarian goats suggests that goat populations from the Atlantic archipelagos, where Spanish and Portuguese ships en route to the New World used to stow food and supplies, participated in the foundation of SCA caprine breeds.  相似文献   

14.
The phylogeography of wild boars (WB) and domestic pigs (Sus scrofa) has contributed important insights into where and when domestication occurred. The geographic distribution of two core haplotypes (E1a and E1c) of the main European phylogenetic clade suggests that Central Europe was an early domestication centre, although the complexity of the pattern does not exclude the possibility that multiple domestication events occurred in different regions. To investigate the relationships among WB and domestic pig breeds in Iberia, a fragment of the mitochondrial DNA control region from a large sample (n = 409) of WB and local pig breeds was co‐analysed with published sequences from other European populations. The Iberian sample revealed a high frequency of a sub‐cluster (E1c) of the European haplogroup E1 in 77% of total Iberian samples, 96% of WB, 90% of Alentejano (Portugal) and 87% of Iberian breed pigs (Spain; Black Hairy, Black Hairless and Red varieties). Low genetic distance (FST = 0.105) was observed between Alentejano (Portugal) and Iberian breed pigs (Spain). Alentejano and Iberian breed pigs showed low genetic distances to both Iberian and Central European WB (average FST = 0.345 and 0.215, respectively). This pattern suggests that early pig husbandry in the Iberian Peninsula did not solely rely on imported Central European stock, but also included the recruitment of local WB.  相似文献   

15.
We studied the phylogeography of alder buckthorn (Frangula alnus), a bird-dispersed shrub or small tree distributed over most of Europe and West Asia and present in three of the four main refugia of West Palaearctic temperate woody plants: the Iberian Peninsula, the Balkans and Anatolia. A total of 78 populations from 21 countries were analysed for chloroplast DNA variation using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and 21 different haplotypes were distinguished. We found a very strong overall population differentiation (GST = 0.81) and phylogeographical structure, and a sharp contrast between the haplotype-rich refugia and the almost completely uniform area of postglacial colonization. The haplotype network comprises three lineages made up of haplotypes from the Iberian Peninsula, Anatolia with the Caucasus, and temperate Europe. The Iberian and the Anatolian branches represent parts of a major lineage that spans over the whole northern Mediterranean Basin and some neighbouring areas and probably dates back to the Tertiary. Many haplotypes of this lineage are distributed locally and most populations are fixed for a single haplotype; these populations have apparently been very stable since their establishment, experiencing negligible gene flow and few mutations. The temperate European lineage consists of one very widespread and abundant plus six locally distributed haplotypes. Four of them are located in Southeast Europe, the putative refugium of all extant temperate European populations. Contrary to populations from Iberia and Anatolia, F. alnus populations from the southeastern European refugium have most genetic variation within populations. Bird-mediated seed dispersal has apparently allowed not only a very rapid postglacial expansion of F. alnus but also subsequent regular seed exchanges between populations of the largely continuous species range in temperate Europe. In contrast, the disjunct F. alnus populations persisting in Mediterranean mountain ranges seem to have experienced little gene flow and have therefore accumulated a high degree of differentiation, even at short distances. Populations from the southern parts of the glacial refugia have contributed little to the postglacial recolonization of Europe, but their long-term historical continuity has allowed them to maintain a unique store of genetic variation.  相似文献   

16.
Native red deer (Cervus elaphus) in Western Europe might at least partially derive from refugial populations which survived in the Iberian Peninsula during the last glacial maximum, and that expanded northwards at the onset of the Holocene. However, the phylogeny and genetic structure of red deer populations in the Iberian Peninsula are still poorly known. This study was planned, in a first step, to reconstruct the phylogenetic relationship of the main red deer populations extant in Spain by the analyses of an extensive sample of mitochondrial DNA sequences. Results indicate that sequences from these populations can be assigned to one of two deeply divergent mtDNA lineages (South-Western and Central-Eastern) with molecular divergence nearby the 2 %. In each lineage were respectively found sixteen and thirteen different haplotypes. It was evidenced that they may be allopatrically distributed in Spain with 86.6 % sequences of the South-Western lineage at the South-Western side and the 65 % sequences of Central-Eastern lineage in the Central-Eastern side. These mitochondrial lineages might have originated in two distinct refugial populations during the last glacial maximum. Genetic data also reveal instances of admixture between native populations and translocated European red deer, which belong to at least three distinct subspecies. Gene introgression was mainly due to red deer from Western European populations. The genetic contribution of red deer translocated from Eastern Europe (C. e. hippelaphus) or North Africa (C. e. corsicanus, C. e. barbarus) was apparently less deep. The extant phylogenetic relationship and evidences of genetic admixture suggest that sound conservation actions for the native Iberian red deer should severely restrict the introduction of alien red deer and, when possible, avoid admixture between the South-Western and Central-Eastern mtDNA lineages.  相似文献   

17.
Understanding patterns of genetic structure is fundamental for developing successful management programmes for deme‐structured organisms, such as amphibians. We used five microsatellite loci and DNA sequences of the mitochondrial control region to assess the relative influences of landscape (geographic distance, altitude and rivers as corridors for dispersal) and historical factors on patterns of gene flow in populations of the toad Bufo bufo in Central Spain. We sampled 175 individuals from eight populations distributed along two major river drainages and used maximum‐likelihood and Bayesian approaches to infer patterns of gene flow and population structure. The mitochondrial DNA data show closely‐related haplotypes distributed across the Iberian Peninsula with no geographic structuring, suggesting recent differentiation of haplotypes and extensive gene flow between populations. On the other hand, microsatellites provide finer resolution, showing that high altitude populations (> 2000 m) exchange lower numbers of migrants with other populations. The results of Bayesian estimates for recent migration rates in high altitude populations suggest source‐sink dynamics between ponds that are consistent with independent data from monitoring over the past 20 years. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 824–839.  相似文献   

18.
Current understanding of the postglacial colonization of Nearctic and Palearctic species relies heavily on inferences drawn from the phylogeographic analysis of contemporary generic variants. Modern postglacial populations are supposed to be representative of their Pleistocene ancestors, and their current distribution is assumed to reflect the different colonization success and dispersal patterns of refugial lineages. Yet, testing of phylogeographic models against ancestral genomes from glacial refugia has rarely been possible. Here we compare ND1 mitochondrial DNA variation in late Pleistocene (16,000-40,000 years before present), historical and contemporary Atlantic salmon (Salmo salar) populations from northern Spain and other regions of western Europe. Our study demonstrates the presence of Atlantic salmon in the Iberian glacial refugium during the last 40,000 years and points to the Iberian Peninsula as the likely source of the most common haplotype within the Atlantic lineage in Europe. However, our findings also suggest that there may have been significant changes in the genetic structure of the Iberian refugial stock since the last ice age, and question whether modern populations in refugial areas are representative of ice age populations. A common haplotype that persisted in the Iberian Peninsula during the Pleistocene last glacial maximum is now extremely rare or absent from European rivers, highlighting the need for caution when making phylogeographic inferences about the origin and distribution of modern genetic types.  相似文献   

19.
The European brown bear (Ursus arctos) shows a particular phylogeography that has been used to illustrate the model for contraction-expansion dynamics related to glacial refugia in Southern European peninsulas. Recent studies, however, have nuanced the once generally accepted paradigm, indicating the existence of cryptic refugia for some species further north. In this paper we collected available data on chronology and mitochondrial haplotypes from Western European brown bears, adding new sequences from present day individuals from the Cantabrian (North Iberia) area, in order to reconstruct the dynamics of the species in the region. Both genetics and chronology show that the Iberian Pleistocene lineages were not the direct ancestors of the Holocene ones, the latter entering the Peninsula belatedly (around 10,000 years BP) with respect to other areas such as the British Isles. We therefore propose the existence of a cryptic refugium in continental Atlantic Europe, from where the bears would expand as the ice receded. The delay in the recolonization of the Iberian Peninsula could be due to the orographic characteristics of the Pyrenean-Cantabrian region and to the abundant presence of humans in the natural entrance to the Peninsula.  相似文献   

20.
Aim  We examined the genetic structure among populations and regions for the springtails Cryptopygus antarcticus antarcticus and Gomphiocephalus hodgsoni (Collembola) to identify potential historical refugia and subsequent colonization routes, and to examine population growth/expansion and relative ages of population divergence.
Location  Antarctic Peninsula for C. a. antarcticus ; Antarctic continent (southern Victoria Land) for G. hodgsoni .
Methods  Samples were collected from 24 and 28 locations across the Antarctic Peninsula and southern Victoria Land regions for C. a. antarcticus and G. hodgsoni , respectively. We used population genetic, demographic and nested clade analyses based on mitochondrial DNA (cytochrome c oxidase subunit I and subunit II).
Results  Both species were found to have population structures compatible with the presence of historical glacial refugia on Pleistocene (2 Ma–present) time-scales, followed by post-glacial expansion generating contemporary geographically isolated populations. However, G. hodgsoni populations were characterized by a fragmented pattern with several 'phylogroups' (likely ancestral haplotypes present in high frequency) retaining strong ancestral linkages among present-day populations. Conversely, C. a. antarcticus had an excess of rare haplotypes with a much reduced volume of ancestral lineages, possibly indicating historical founder/bottleneck events and widespread expansion.
Main conclusions  We infer that these differences reflect distinct evolutionary histories in each locality despite the resident species having similar life-history characteristics. We suggest that this has predominantly been influenced by variation in the success of colonization events as a result of intrinsic historical glaciological differences between the Antarctic Peninsula and continental Antarctic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号