首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intermediate filament-nuclear matrix interactions were studied in cultured rat ventral prostate cells and isolated rat uterine epithelial cells. Cytokeratin filaments were identified by immunoelectron microscopy. In addition to conventional thin section of Triton X-100 treated cells, subcellular residues composed of intermediate filaments and nuclear matrix were critical-point dried and platinum-carbon replicated. The results demonstrate the presence of a previously unrecognized type of filamentous cross-bridges that link intermediate filaments to the nuclear pore complexes.  相似文献   

2.
Intermediate filaments, actin-containing microfilaments and microtubules are the three main cytoskeletal systems of vertebrate and many invertebrate cells. Although these systems are composed of distinctly different proteins, they are in constant and intimate communication with one another. Understanding the molecular basis of this cytoskeletal crosstalk is essential for determining the mechanisms that underlie many cell-biological phenomena. Recent studies have revealed that intermediate filaments and their associated proteins are important components in mediating this crosstalk.  相似文献   

3.
Intermediate filaments are cytoskeletal polymers encoded by a large family of differentially expressed genes that provide crucial structural support in the cytoplasm and nucleus of higher eukaryotes. Perturbation of their function accounts for several genetically determined diseases in which fragile cells cannot sustain mechanical and non-mechanical stresses. Recent studies shed light on how this structural support is modulated to meet the changing needs of cells, and reveal a novel role whereby intermediate filaments influence cell growth and death through dynamic interactions with non-structural proteins.  相似文献   

4.
The three-dimensional orientation and arrangement of intermediate filaments in Romney wool ortho-, meso-, and paracortical cells has been revealed using single axis high voltage electron tomography. Modelled tomograms confirm that intermediate filaments in orthocortical cells are arranged helically, with the helical angle progressively increasing from the centre to the periphery of macrofibrils. Intermediate filaments in meso- and paracortical cells display parallel arrangements differing mainly in packing density, with the mesocortex packed more tightly than the paracortex. The intermediate filament arrangements observed confirm expectations based on earlier two-dimensional transmission electron microscopy observations by the authors and other researchers. It is expected that these findings will contribute to a better understanding of the biological and structural basis of wool fibre curvature.  相似文献   

5.
Sertoli cells of the ground squirrel (Spermophilus lateralis), a seasonal breeder, were examined by light and electron microscopy and their structure, particularly the organization of the cytoskeleton, was related to events that occur in the seminiferous epithelium during spermatogenesis. Among the events considered and described are the apical movement of elongate spermatids, withdrawal of residual cytoplasm from germ cells, transport of smooth endoplasmic reticulum (SER) between the base and apex of the Sertoli cells, and sperm release. These events are dramatically evident in this species because the seminiferous epithelium is thin, i.e., there are few germ cells, and both the germ cells and Sertoli cells are large. Sertoli cells of the ground squirrel have a remarkably well developed cytoskeleton. Microfilaments occur throughout the cell but are most evident in ectoplasmic specializations associated with junctions. Intermediate filaments occur around the nucleus, as a layer at the base of the cell, and adjacent to desmosome-like junctions with germ cells. Intermediate filaments, together with microtubules, are also abundant in regions of the cell involved with the transport of SER, in cytoplasm associated with elongate spermatids, and in processes that extend into the residual cytoplasm of germ cells. Our observations of ultrastructure are consistent with the hypothesis that Sertoli cell microtubules are involved with the movement of germ cells within the seminiferous epithelium, and further implicate these structures as possibly playing a role in the retraction of residual cytoplasm from germ cells and the intracellular transport of SER. The abundance and organization of intermediate filaments suggest that these cytoskeletal elements may also be involved with events that occur during spermatogenesis.  相似文献   

6.
Intermediate filament systems of an established glioma cell line have been characterized by double immunofluorescence microscopy and by immunoelectron microscopy using two antibodies, one of which recognizes glial fibrillary acid protein (GFA) but not vimentin, and the second which recognizes vimentin but not GFA. The results show that glioma cells express two immunologically distinct IF polypeptides which are found in the same 10-nm filaments. Juxtanuclear caps formed after exposure of the cells to colcemid consisted of intermediate filaments composed of both GFA and vimentin. In immunoelectron microscopy both untreated cells and cells treated with colcemid show discontinuous labelling when only a single antibody is used, but continuous labelling when both antibodies are used simultaneously.  相似文献   

7.
High-resolution field emission scanning electron microscopy was used to study the organisation of intermediate filaments around lipid droplets and their binding to these droplets, in primary culture of bovine adrenal cells. Whole-mount preparations of intermediate filaments and bound lipid droplets were prepared from cells grown on Formvar-coated grids and processed by freeze-drying. Intermediate filaments were seen as an interconnected network enveloping the entire droplet. The bound filaments appear to be directly adherent to the surface of the droplet and hence take on its curved contour. The binding of the filaments to the droplets was determined by means of tilting. This study provides a new approach to investigate the cytoskeleton and its associated structures with high-resolution three-dimensional images.  相似文献   

8.
Intermediate filaments include the nuclear lamins, which are universal in metazoans, and the cytoplasmic intermediate filaments, which are much more varied and form cell type-specific networks in animal cells. Until now, it has been thought that insects harbor lamins only. This view is fundamentally challenged by the discovery, reported in BMC Biology, of an intermediate filament-like cytoplasmic protein, isomin, in the hexapod Isotomurus maculatus. Here we briefly review the history of research on intermediate filaments, and discuss the implications of this latest finding in the context of what is known of their structure and functions.  相似文献   

9.
By indirect immunofluorescence microscopy and electron microscopy, we studied the behavior of intermediate filaments during mitosis in three human epithelial cell lines, derived from normal epidermis (PcaSE-1, from a cancer patient), stratified epithelium (CNE, from nasopharyngeal carcinoma) and simple epithelium (SPC-A-1 from lung adenocarcinoma) respectively. CNE cells and SPC-A-1 cells express two different intermediate filament systems; keratin filaments and vimentin filaments, but PcaSE-1 cells only express keratin filaments. The keratin filament system in PcaSE-1 cells remained intact and encircled the developing mitotic spindle as the cells entered mitosis. In contrast, in CNE cells and SPC-A-1 cells, keratin filaments appeared to disassemble into amorphous cytoplasmic bodies during mitosis. However, their vimentin filaments remained morphologically intact throughout mitosis. We propose; (1) The disassembly of keratin filaments in mitotic epithelial cells is more or less associated with the degree of their cell malignancy rather than with the abundance of keratin filaments in interphase. (2) Intermediate filaments may be involved in the positioning and/or centering of the spindle during mitosis. (3) The possible function of vimentin filament system in CNE cells is positioning and orientation of chromosomes.  相似文献   

10.
本文用间接免疫荧光法和电镜术观察了分别来自人表皮(PcaSE-1)、复层上皮(CNE)和单层上皮(SPC-A-1)的3个上皮细胞系的细胞在有丝分裂过程中中等纤维的行为。结果表明,CNE细胞和SPC-A-1细胞表达两种不同类型的中等纤维系统:角蛋白纤维和波形纤维,而PcaSE-1细胞仅表达角蛋白纤维。当细胞进入有丝分裂时,PcaSE-1细胞的角蛋白纤维维持完整的形态且将有丝分裂纺锤体围绕在细胞中央。相反,在CNE细胞和SPC-A-1细胞中,在细胞有丝分裂时,角蛋白纤维解聚成无定形的胞质小体,然而它们的波形纤维始终保持完整的形态。我们认为(1)在分裂上皮细胞中,角蛋白纤维的解聚与细胞的恶性程度有关,而与间期上皮细胞中是否含有丰富的角蛋白纤维无明显关系。(2)在上皮细胞有丝分裂时,中等纤维可能参于纺锤体的定位和趋中。(3)在分裂CNE细胞中,波形纤维的可能功能是染色体的定位和定向。  相似文献   

11.
The distribution and motility of cytoplasmic particles was examined in PtK1 cells in which intermediate filament networks had been disrupted by acrylamide. In these cells, particles (mitochondria and vesicles) accumulated near the cell center although saltatory movements continued. This left a broad sheet of agranular cytoplasm at the periphery of the cell. Particles were capable of movement into this sheet. Intermediate filaments were absent in the peripheral cytoplasm although microtubules remained in a normal configuration. Particles apparently move along the microtubules. These results indicate that particle movement along microtubules is not dependent upon the normal configuration of intermediate filaments. It is suggested that intermediate filaments are necessary for normal organelle distribution and serve as a matrix with which particles can associate to maintain position.  相似文献   

12.
Intermediate filament protein partnership in astrocytes.   总被引:20,自引:0,他引:20  
Intermediate filaments are general constituents of the cytoskeleton. The function of these structures and the requirement for different types of intermediate filament proteins by individual cells are only partly understood. Here we have addressed the role of specific intermediate filament protein partnerships in the formation of intermediate filaments in astrocytes. Astrocytes may express three types of intermediate filament proteins: glial fibrillary acidic protein (GFAP), vimentin, and nestin. We used mice with targeted mutations in the GFAP or vimentin genes, or both, to study the impact of loss of either or both of these proteins on intermediate filament formation in cultured astrocytes and in normal or reactive astrocytes in vivo. We report that nestin cannot form intermediate filaments on its own, that vimentin may form intermediate filaments with either nestin or GFAP as obligatory partners, and that GFAP is the only intermediate filament protein of the three that may form filaments on its own. However, such filaments show abnormal organization. Aberrant intermediate filament formation is linked to diseases affecting epithelial, neuronal, and muscle cells. Here we present models by which the normal and pathogenic functions of intermediate filaments may be elucidated in astrocytes.  相似文献   

13.
Intermediate filaments have long been considered mechanical components of the cell that provide resistance to deformation stress. Practical experimental problems, including insolubility, lack of good pharmacological antagonists, and the paucity of powerful genetic models have handicapped the research of other functions. In single-layered epithelial cells, keratin intermediate filaments are cortical, either apically polarized or apico-lateral. This review analyzes phenotypes of genetic manipulations of simple epithelial cell keratins in mice and Caenorhabditis elegans that strongly suggest a role of keratins in apico-basal polarization and membrane traffic. Published evidence that intermediate filaments can act as scaffolds for proteins involved in membrane traffic and signaling is also discussed. Such a scaffolding function would generate a highly polarized compartment within the cytoplasm of simple epithelial cells. While in most cases mechanistic explanations for the keratin-null or overexpression phenotypes are still missing, it is hoped that investigators will be encouraged to study these as yet poorly understood functions of intermediate filaments.  相似文献   

14.
Ausmees N  Kuhn JR  Jacobs-Wagner C 《Cell》2003,115(6):705-713
Various cell shapes are encountered in the prokaryotic world, but how they are achieved is poorly understood. Intermediate filaments (IFs) of the eukaryotic cytoskeleton play an important role in cell shape in higher organisms. No such filaments have been found in prokaryotes. Here, we describe a bacterial equivalent to IF proteins, named crescentin, whose cytoskeletal function is required for the vibrioid and helical shapes of Caulobacter crescentus. Without crescentin, the cells adopt a straight-rod morphology. Crescentin has characteristic features of IF proteins including the ability to assemble into filaments in vitro without energy or cofactor requirements. In vivo, crescentin forms a helical structure that colocalizes with the inner cell curvatures beneath the cytoplasmic membrane. We propose that IF-like filaments of crescentin assemble into a helical structure, which by applying its geometry to the cell, generates a vibrioid or helical cell shape depending on the length of the cell.  相似文献   

15.
Intermediate filaments are filaments 10?nm in diameter that make up an important component of the cytoskeleton in most metazoan taxa. They are most familiar for their role as the fibrous component of α-keratins such as skin, hair, nail, and horn but are also abundant within living cells. Although they are almost exclusively intracellular in their distribution, in the case of the defensive slime produced by hagfishes, they are secreted. This article surveys the impressive diversity of biomaterials that animals construct from intermediate filaments and will focus on the mechanisms by which the mechanical properties of these materials are achieved. Hagfish slime is a dilute network of hydrated mucus and compliant intermediate filament bundles with ultrasoft material properties. Within the cytoplasm of living cells, networks of intermediate filaments form soft gels whose elasticity arises via entropic mechanisms. Single intermediate filaments or bundles are also elastic, but substantially stiffer, exhibiting modulus values similar to that of rubber. Hard α-keratins like wool are stiffer still, an effect that is likely achieved via dehydration of the intermediate filaments in these epidermal appendages. The diverse mechanisms described here have been employed by animals to generate materials with stiffness values that span an impressive eleven orders of magnitude.  相似文献   

16.
Summary Intermediate filaments of toad oxyntic cells were isolated and analysed by SDS-PAGE. The major proteins of the residue were identified as actin and a 51,000 dalton polypeptide. Immunological crossreactivity between toad oxyntic cell intermediate filament components and anti-prekeratin, was shown by double immunodiffusion tests and indirect immunofluorescence. The immunofluorescent decoration of oxyntic cells and the electron microscope images are coincident in locating the intermediate filaments mainly at the cortical and perinuclear basal zones. Furthermore, the cortical zone appears especially rich in prekeratin-like material at its adluminal third. This results in a cup-like structure that encloses the cell portion occupied by the tubulovesicular system, which does not contain intermediate filaments. The translocation of membranes occurring during the secretory cycle of the oxyntic cell, has been attributed to a system of contractile proteins. The disposition of the prekeratin-like material suggests a role for intermediate filaments in the generation of movement, produced by actin and myosin interaction, by providing a fixed plane for the anchoring of actin microfilaments.  相似文献   

17.
The antipsychotic drug trifluoperazine (TFP) causes a reversible rounding of cells of the rat liver epithelial cell line, WIRL. We have investigated the cytoplasmic organization of these cells after TFP treatment using SEM, TEM and immunofluorescence and have observed significant differences between the control and treated cells. Mitochondria are converted to the condensed configuration with distended cristae and the endoplasmic rcticulum becomes tubular with distended cisternae. Intermediate filaments, visualized with a monoclonal antibody, are aggregated to a cap on the nucleus in an arrangement different from that induced by colcemid.  相似文献   

18.
Eukaryotic cells have highly organized, interconnected intracellular compartments. The nuclear surface and cytoplasmic cytoskeletal filaments represent compartments involved in such an association. Intermediate filaments are the major cytoskeletal elements in this association. Desmin is a muscle-specific structural protein and one of the earliest known muscle-specific genes to be expressed during cardiac and skeletal muscle development. Desmin filaments have been shown to be associated with the nuclear surface in the myogenic cell line C2C12. Previous studies have revealed that mice lacking desmin develop imperfect muscle, exhibiting the loss of nuclear shape and positioning. In the present work, we have analyzed the association between desmin filaments and the outer nuclear surface in nuclei isolated from pectoral skeletal muscle of chick embryos and in primary chick myogenic cell cultures by using immunofluorescence microscopy, negative staining, immunogold, and transmission electron microscopy. We show that desmin filaments remain firmly attached to the outer nuclear surface after the isolation of nuclei. Furthermore, positive localization of desmin persists after gentle washing of the nuclei with high ionic strength solutions. These data suggest that desmin intermediate filaments are stably and firmly connected to the outer nuclear surface in skeletal muscles cells in vivo and in vitro.  相似文献   

19.
The three-dimensional organization of the cytoplasm of randomly migrating neutrophils was studied by stereo high-voltage electron microscopy. Examination of whole-mount preparations reveals with unusual clarity the structure of the cytoplasmic ground substance and cytoskeletal organization; similar clarity is not observed in conventional sections. An extensive three-dimensional network of fine filaments (microtrabeculae) approximately 7 to 17 nm in diameter extends throughout the cytoplasm and between the two cell cortices; it also comprises the membrane ruffles and filopodia. The granules are dispersed within the lattice and are surrounded by microtrabeculae. The lattice appears to include dense foci from which the microtrabeculae emerge. Triton X-100 dissolves the plasma membrane, most of the granules, and many of the microtrabecular strands and leaves as a more stable structure a cytoskeletal network composed of various filaments and microtubules. Heavy meromyosin-subfragment 1 (S1) decoration discloses actin filaments as the major filamentous component present in membrane ruffles and filopodia. Actin filaments, extending from the leading edge of the cells, are of uniform polarity, with arrowheads pointing towards the cell body. Likewise, the filaments forming the core of filopodia have the barbed end distal. End-to-side associations of actin filaments as well as fine filaments (2--3 nm) which are not decorated with S1 and link actin filaments are observed. The ventral cell cortex includes numerous substrate-associated dense foci with actin filaments radiating from the dense center. Virtually all the microtubules extend from the centrosome. An average of 35 +/- 7 microtubules originate near the pair of centrioles and radiate towards the cell periphery; microtubule fragments are rare. Intermediate filaments form an open network of single filaments in the perinuclear space. Comparison of Triton-extracted and unextracted cells suggest that many of the filamentous strands seen in unextracted cells have as a core a stable actin filament.  相似文献   

20.
Chicken skeletal muscle taken from embryos in ovo was examined by thin-section electron microscopy. Measurements of filament diameters reveal three nonoverlapping groups of filaments: thin (actin myofibrillar) filaments with mean diameters of 5.3 +/- 0.6 nm (S.D.), thick (myosin myofibrillar) filaments with mean diameters of 15 +/- 1.4 nm, and intermediate filaments with mean diameters of 9.3 +/- 0.9 nm. During muscle development these diameters do not change. By counting the number of filaments observed in the sarcoplasm at different stages, we find that the spatial density of intermediate filaments decreases during avian myogenesis in ovo, from 91 intermediate filaments/micron 2 at 6 days to 43 intermediate filaments/micron 2 at 17 days in ovo. Initially randomly arranged, some intermediate filaments become associated with Z discs, sarcoplasmic reticulum, nuclear membrane, and the sarcolemma between 6 and 10 days in ovo. These associated intermediate filaments course both parallel and transverse to myofibrils, forming lateral connections between myofibrillar Z discs and longitudinal connections from Z disc to Z disc within myofibrils. Intermediate filaments also appear to connect Z discs with the nuclear membrane. The intermediate filament associations persist through day 17 of development, after which the presence of cytoskeletal filaments is obscured by the densely packed myofibrils and membranes. Intermediate filament distribution becomes anisotropic during development. A greater proportion of intermediate filaments in the immediate perimyofibrillar area are oriented parallel to myofibrils than in other areas, so that the majority of the intermediate filaments nearest the myofibrils course parallel to them. The longitudinal intramyofibrillar intermediate filaments persist throughout development, as shown by their existence in KI-extracted adult myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号