首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
SUMOylation is an important post‐translational modification process that regulates different cellular functions in eukaryotes. SIZ/PIAS‐type SAP and Miz1 (SIZ1) proteins exhibit SUMO E3 ligase activity, which modulates SUMOylation. However, SIZ1 in tomato has been rarely investigated. In this study, a tomato SIZ1 gene (SlSIZ1) was isolated and its molecular characteristics and role in tolerance to drought stress are described. SlSIZ1 was up‐regulated by cold, sodium chloride (NaCl), polyethylene glycol (PEG), hydrogen peroxide (H2O2) and abscisic acid (ABA), and the corresponding proteins were localized in the nucleus. The expression of SlSIZ1 in Arabidopsis thaliana (Arabidopsis) siz1‐2 mutants partially complemented the phenotypes of dwarf, cold sensitivity and ABA hypersensitivity. SlSIZ1 also exhibited the activity of SUMO E3 ligase to promote the accumulation of SUMO conjugates. Under drought stress, the ectopic expression of SlSIZ1 in transgenic tobacco lines enhanced seed germination and reduced the accumulation of reactive oxygen species. SlSIZ1 overexpression conferred the plants with improved growth, high free proline content, minimal malondialdehyde accumulation and increased accumulation of SUMO conjugates. SlSIZ1 is a functional homolog of Arabidopsis SIZ1 with SUMO E3 ligase activity. Therefore, overexpression of SlSIZ1 enhanced the tolerance of transgenic tobacco to drought stress.  相似文献   

2.
Small ubiquitin-like modifier (SUMO) is a member of the superfamily of ubiquitin-like polypeptides that become covalently attached to various intracellular target proteins as a way to alter their function, location, and/or half-life. Here we show that the SUMO conjugation system operates in plants through a characterization of the Arabidopsis SUMO pathway. An eight-gene family encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation, and release. A diverse array of conjugates could be detected, some of which appear to be SUMO isoform-specific. The levels of SUMO1 and -2 conjugates but not SUMO3 conjugates increased substantially following exposure of seedlings to stress conditions, including heat shock, H(2)O(2), ethanol, and the amino acid analog canavanine. The heat-induced accumulation could be detected within 2 min from the start of a temperature upshift, suggesting that SUMO1/2 conjugation is one of the early plant responses to heat stress. Overexpression of SUMO2 enhanced both the steady state levels of SUMO2 conjugates under normal growth conditions and the subsequent heat shock-induced accumulation. This accumulation was dampened in an Arabidopsis line engineered for increased thermotolerance by overexpressing the cytosolic isoform of the HSP70 chaperonin. Taken together, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in plants with initial data indicating that one important function may be in stress protection and/or repair.  相似文献   

3.
4.
SUMO conjugation and deconjugation   总被引:15,自引:0,他引:15  
Ligation of the ubiquitin-like protein SUMO (Smt3p) to other proteins is essential for viability of the yeast Saccharomyces cerevisiae. Like ubiquitin (Ub), SUMO undergoes ATP-dependent activation by a specific activating enzyme. SUMO-activating enzyme is a heterodimer composed of Uba2p and Aos1p, polypeptides with sequence similarities, respectively, to the C- and N-terminal parts of Ub-activating enzyme. To study the function of SUMO conjugation, we isolated uba2 mutants that were temperature-sensitive for growth. In these mutants conjugation of SUMO to other proteins was drastically reduced, even at the temperature permissive for growth. In a screen for spontaneous suppressors of the temperature-sensitive growth phenotype of the mutant uba2-ts9, we isolated a strain with a null mutation (sut9) in a gene of hitherto unknown function (SUT9/YIL031W/SMT4). This gene encodes a protein with similarities to Ulp1p, a dual-function protease that processes the SUMO precursor and deconjugates SUMO from its substrates. The novel protein was therefore termed Ulp2p. Inactivation of ULP2 in a strain expressing wild-type SUMO-activating enzyme resulted in slow and temperature-sensitive growth, and accumulation of SUMO conjugates. Thus, mutations in SUMO-activating enzyme and mutations in Ulp2p suppress each other, indicating that SUMO conjugation and deconjugation must be in balance for cells to grow normally. Other phenotypes of ulp2 mutants include a defect in cell cycle progression, hypersensitivity to DNA damage, and chromosome mis-segregation. Ulp2p is predominantly located within the nucleus, whereas Ulp1p colocalizes with nuclear pore complex proteins, indicating that the apparently distinct functions of the two SUMO deconjugating enzymes are spatially separated. Received: 1 March 2000 / Accepted: 22 March 2000  相似文献   

5.
6.
A proper equilibrium of post‐translational protein modifications is essential for normal cell physiology, and alteration in these processes is key in neurodegenerative disorders such as Alzheimer's disease. Recently, for instance, alteration in protein SUMOylation has been linked to amyloid pathology. In this work, we aimed to elucidate the role of protein SUMOylation during aging and increased amyloid burden in vivo using a His6‐HA‐SUMO1 knock‐in mouse in the 5XFAD model of Alzheimer's disease. Interestingly, we did not observe any alteration in the levels of SUMO1‐conjugation related to Alzheimer's disease. SUMO1 conjugates remained localized to neuronal nuclei upon increased amyloid burden and during aging and were not detected in amyloid plaques. Surprisingly however, we observed age‐related alterations in global levels of SUMO1 conjugation and at the level of individual substrates using quantitative proteomic analysis. The identified SUMO1 candidate substrates are dominantly nuclear proteins, mainly involved in RNA processing. Our findings open novel directions of research for studying a functional link between SUMOylation and its role in guarding nuclear functions during aging.  相似文献   

7.
Arabidopsis SUMO E3 ligase SIZ1 is involved in excess copper tolerance   总被引:2,自引:0,他引:2  
Chen CC  Chen YY  Tang IC  Liang HM  Lai CC  Chiou JM  Yeh KC 《Plant physiology》2011,156(4):2225-2234
The reversible conjugation of the small ubiquitin-like modifier (SUMO) to protein substrates occurs as a posttranslational regulatory process in eukaryotic organisms. In Arabidopsis (Arabidopsis thaliana), several stress-responsive SUMO conjugations are mediated mainly by the SUMO E3 ligase SIZ1. In this study, we observed a phenotype of hypersensitivity to excess copper in the siz1-2 and siz1-3 mutants. Excess copper can stimulate the accumulation of SUMO1 conjugates in wild-type plants but not in the siz1 mutant. Copper accumulated to a higher level in the aerial parts of soil-grown plants in the siz1 mutant than in the wild type. A dramatic difference in copper distribution was also observed between siz1 and wild-type Arabidopsis treated with excess copper. As a result, the shoot-to-root ratio of copper concentration in siz1 is nearly twice as high as that in the wild type. We have found that copper-induced Sumoylation is involved in the gene regulation of metal transporters YELLOW STRIPE-LIKE 1 (YSL1) and YSL3, as the siz1 mutant is unable to down-regulate the expression of YSL1 and YSL3 under excess copper stress. The hypersensitivity to excess copper and anomalous distribution of copper observed in the siz1 mutant are greatly diminished in the siz1ysl3 double mutant and slightly in the siz1ysl1 double mutant. These data suggest that SIZ1-mediated sumoylation is involved specifically in copper homeostasis and tolerance in planta.  相似文献   

8.
SUMO proteins are small ubiquitin-like modifiers found in all eukaryotes that become covalently conjugated to other cellular proteins. The SUMO conjugation pathway is biochemically similar to ubiquitin conjugation, although the enzymes within the pathway act exclusively on SUMO proteins. This post-translational modification controls many processes. Here, I will focus on evidence that SUMOylation plays a critical role(s) in mitosis: Early studies showed a genetic requirement for SUMO pathway components in the process of cell division, while later findings implicated SUMOylation in the control of mitotic chromosome structure, cell cycle progression, kinetochore function and cytokinesis. Recent insights into the targets of SUMOylation are likely to be extremely helpful in understanding each of these aspects. Finally, growing evidence suggests that SUMOylation is a downstream target of regulation through Ran, a small GTPase with important functions in both interphase nuclear trafficking and mitotic spindle assembly.  相似文献   

9.
10.
SUMO is a small ubiquitin-like protein that becomes covalently conjugated to a variety of target proteins, the large majority of which are found in the nucleus. Ulp1 is a member of a family of proteases that control SUMO function positively, by catalyzing the proteolytic processing of SUMO to its mature form, and negatively, by catalyzing SUMO deconjugation. In Drosophila S2 cells, depletion of Ulp1 by RNA interference results in a dramatic change in the overall spectrum of SUMO conjugates, indicating that SUMO deconjugation is substrate-specific and plays a critical role in determining the steady state targets of SUMO conjugation. Ulp1 normally serves to prevent the accumulation of SUMO-conjugated forms of a number of proteins, including the aminoacyl-tRNA synthetase EPRS. In the presence of Ulp1, most SUMO conjugates reside in the nucleus. However, in its absence, SUMO-conjugated EPRS accumulates in the cytoplasm, contributing to an overall shift of SUMO from the nucleus to the cytoplasm. The ability of Ulp1 to restrict SUMO conjugates to the nucleus is independent of its role as a SUMO-processing enzyme because Ulp1-dependent nuclear localization of SUMO is even observed when SUMO is expressed in a preprocessed form. Studies of a Ulp1-GFP fusion protein suggest that Ulp1 localizes to the nucleoplasmic face of the nuclear pore complex. We hypothesize that, as a component of the nuclear pore complex, Ulp1 may prevent proteins from leaving the nucleus with SUMO still attached.  相似文献   

11.
SUMOylation, the reversible covalent attachment of small ubiquitin-like modifier (SUMO) peptides has emerged as an important regulator of target protein function. Here we show, by characterization of the Toxoplasma gondii SUMO pathway, that the SUMO conjugation system operates in apicomplexan parasites. A gene encoding the SUMO tag was discovered as were genes encoding the various enzymes required for SUMO processing, ligation and release. Various SUMO conjugates were immuno-detected and by means of a global proteomic-based approach, we identified several T. gondii SUMOylated proteins that reveal many diverse cellular processes in which the modification plays a role. More specifically, SUMO conjugates were seen at the tachyzoite surface in response to signaling generated by host cell contact at the time of invasion. Also, under tissue culture conditions that stimulate bradyzoite differentiation (alkaline pH), we observed the conjugates at the parasitophorous vacuole membrane. The labeling was also at the surface of the mature cysts isolated from parasite-infected mouse brain. Overall, the SUMO conjugation system appears to be a complex and functionally heterogeneous pathway for protein modification in T. gondii with initial data indicating that it is likely to play a putative role in host cell invasion and cyst genesis.  相似文献   

12.
13.
14.
The nucleoporin RanBP2 has SUMO1 E3 ligase activity.   总被引:35,自引:0,他引:35  
Posttranslational modification with SUMO1 regulates protein/protein interactions, localization, and stability. SUMOylation requires the E1 enzyme Aos1/Uba2 and the E2 enzyme Ubc9. A family of E3-like factors, PIAS proteins, was discovered recently. Here we show that the nucleoporin RanBP2/Nup358 also has SUMO1 E3-like activity. RanBP2 directly interacts with the E2 enzyme Ubc9 and strongly enhances SUMO1-transfer from Ubc9 to the SUMO1 target Sp100. The E3-like activity is contained within a 33 kDa domain of RanBP2 that lacks RING finger motifs and does not resemble PIAS family proteins. Our findings place SUMOylation at the cytoplasmic filaments of the NPC and suggest that, at least for some substrates, modification and nuclear import are linked events.  相似文献   

15.
Li  Rui  Ma  Jing  Liu  Huamin  Wang  Xia  Li  Jing  Li  Zhineng  Li  Mingyang  Sui  Shunzhao  Liu  Daofeng 《Plant Molecular Biology Reporter》2021,39(2):301-316

Wintersweet (Chimonanthus praecox L.) is a traditional winter-flowering plant in China and a popular cut flower in winter. Its unique flowering characteristics under cold stress may involve the regulation of a large number of proteins. Protein post-translational modification is an important regulating type for the gene function. However, little is known about the post-translational modification in wintersweet. SUMOylation is an important post-translational modification in eukaryotes. Small ubiquitin-like modifier (SUMO) E3 ligases perform multiple functional regulatory activities in plants via SUMOylation. Here, we cloned and identified a SIZ/PIAS-type SUMO E3 ligase, CpSIZ1, from wintersweet. CpSIZ1 shared high similarity with other SIZ1 proteins. Quantitative real-time PCR (qRT-PCR) indicated that CpSIZ1 was expressed in all tissues tested, with the highest expression in flower wither period of stage 6, and followed by mature leaves except for different flower development stages. The ectopic expression of CpSIZ1 in Arabidopsis, including the CpSIZ1 overexpression in siz1-2 mutant (HB line) and CpSIZ1 overexpression in WT (OE line), not only promoted vegetative growth, delayed flowering and accelerated leaf senescence, but also improve the cold tolerance in Arabidopsis. Therefore, our studies have enrich the understanding of function of SIZ1 gene in woody plant, and provide a good foundation for further research on the post-translational modification regulation mechanism in this winter-flowering plant.

  相似文献   

16.
17.
18.
19.
Vertebrate Tpr and its yeast homologs Mlp1/Mlp2, long coiled-coil proteins of nuclear pore inner basket filaments, are involved in mRNA export, telomere organization, spindle pole assembly, and unspliced RNA retention. We identified Arabidopsis thaliana NUCLEAR PORE ANCHOR (NUA) encoding a 237-kD protein with similarity to Tpr. NUA is located at the inner surface of the nuclear envelope in interphase and in the vicinity of the spindle in prometaphase. Four T-DNA insertion lines were characterized, which comprise an allelic series of increasing severity for several correlating phenotypes, such as early flowering under short days and long days, increased abundance of SUMO conjugates, altered expression of several flowering regulators, and nuclear accumulation of poly(A)+ RNA. nua mutants phenocopy mutants of EARLY IN SHORT DAYS4 (ESD4), an Arabidopsis SUMO protease concentrated at the nuclear periphery. nua esd4 double mutants resemble nua and esd4 single mutants, suggesting that the two proteins act in the same pathway or complex, supported by yeast two-hybrid interaction. Our data indicate that NUA is a component of nuclear pore-associated steps of sumoylation and mRNA export in plants and that defects in these processes affect the signaling events of flowering time regulation and additional developmental processes.  相似文献   

20.
Ubiquitin-dependent proteolytic control of SUMO conjugates   总被引:5,自引:0,他引:5  
Posttranslational protein modification with small ubiquitin-related modifier (SUMO) is an important regulatory mechanism implicated in many cellular processes, including several of biomedical relevance. We report that inhibition of the proteasome leads to accumulation of proteins that are simultaneously conjugated to both SUMO and ubiquitin in yeast and in human cells. A similar accumulation of such conjugates was detected in Saccharomyces cerevisiae ubc4 ubc5 cells as well as in mutants lacking two RING finger proteins, Ris1 and Hex3/Slx5-Slx8, that bind to SUMO as well as to the ubiquitin-conjugating enzyme Ubc4. In vitro, Hex3-Slx8 complexes promote Ubc4-dependent ubiquitylation. Together these data identify a previously unrecognized pathway that mediates the proteolytic down-regulation of sumoylated proteins. Formation of substrate-linked SUMO chains promotes targeting of SUMO-modified substrates for ubiquitin-mediated proteolysis. Genetic and biochemical evidence indicates that SUMO conjugation can ultimately lead to inactivation of sumoylated substrates by polysumoylation and/or ubiquitin-dependent degradation. Simultaneous inhibition of both mechanisms leads to severe phenotypic defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号