首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of geometric taper on the derivation of the true propagation coefficient from three pressures determined 10 cm apart ('three-point method'). For this purpose the true propagation coefficients of a uniform latex tube (length 50 cm, outer diameter 12.73 mm, Womersley phase velocity 6.23-6.42 ms-1 (1-10 Hz), Womersley damping coefficient 0.05-0.14 m-1 (1-10 Hz) and of a tapered latex tube (length 50 cm, outer diameter varying from 15.88 to 9.45 mm, in the middle section with same properties as the uniform tube) were determined. The real part of the true propagation coefficient (the damping coefficient) was compared with apparent damping, and with the damping coefficient calculated using Womersley's theory. The imaginary part of the true propagation coefficient (the phase coefficient) was expressed in terms of phase velocity. True phase velocity was compared with measurements of apparent phase velocity, foot-to-foot velocity, and calculations of phase velocity parameters Womersley's theory and the Moens-Korteweg equation. The results show that in the uniform tube the three-point propagation coefficient is in agreement with all other estimates. Taper causes an error in the three-point propagation coefficient. At some frequencies the damping is reversed to amplification (values up to -2 m-1) and the phase velocity may be both overestimated or underestimated (up to 50%). The overestimation of true damping as reported in the literature cannot be explained from vessel taper.  相似文献   

2.
3.
A new method for measuring total respiratory input impedance (Zrs), which ensures minimal motion of extrathoracic airway walls, was tested over frequencies of 4-30 Hz in 14 normal subjects and 10 patients with airway obstruction. It consists of applying pressure variations around the head, rather than at the mouth, so that transmural pressure across upper airway walls is equal to the small pressure drop across the pneumotachograph. Compared with reference Zrs values obtained by directly measuring airway wall motion with a head plethysmograph and correcting the data for it, the investigated method provided similar values for respiratory resistance at all frequencies (30 Hz, 3.67 +/- 2.24 cmH2O X 1(-1) X s compared with 3.55 +/- 2.00) but slightly overestimated respiratory reactance at the largest frequencies (30 Hz, 2.82 +/- 1.28 cmH2O X 1(-1) X s compared with 2.52 +/- 1.22, P less than 0.01). In contrast, when the data were not corrected for airway wall motion, resistance was largely underestimated, especially in patients (-48% at 30 Hz, P less than 0.001), and the reactance-frequency curve was shifted to the right. The investigated method is almost as accurate as the reference method, provides equally reproducible data, and is much simpler.  相似文献   

4.
Aortic input impedance was calculated in seven subjects in the control state (normal reflection) and during the Mueller maneuver (increased reflection) to evaluate "effective arterial length" under altered physiological conditions. Regional foot-to-foot pulse wave velocities and pressure waveforms along the aorta were used to define an "apparent anatomic length" or distance to a dominant discrete site of reflection "seen" by the ejecting ventricle. Time of wave travel was taken to be one-half the interval from the foot of the incident wave to the midsystolic inflection point. Knowing the time of travel from the returning reflection and velocity, distances calculated to the "apparent anatomic length" were 35 +/- 2 and 34 +/- 2 during control and Mueller maneuver, respectively (P = NS). The frequency of the first minimum of the modulus (fmin) and the first zero crossing of the phase angle (f phi) were determined from the input impedance spectra. During baseline conditions, fmin (3.9 +/- 0.2 Hz) approximately equaled f phi (4.2 +/- 0.2 Hz), and the resulting "effective lengths" calculated using the quarter-wavelength formula were similar to the apparent anatomic length. These data suggested that the aortic region incorporating the renal arterial branches as a site of discrete reflection and that terminal load was not significantly frequency dependent. During Mueller maneuver, however, f min (3.3 +/- 0.2 Hz) and f phi (5.1 +/- 0.2 Hz) were significantly discordant, the terminal load became strongly frequency dependent, and effective length calculated from f min was dissimilar (P less than 0.05) from the unchanged apparent anatomic length.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Low-frequency respiratory mechanical impedance in the rat   总被引:1,自引:0,他引:1  
A modified forced oscillatory technique was used to determine the respiratory mechanical impedances in anesthetized, paralyzed rats between 0.25 and 10 Hz. From the total respiratory (Zrs) and pulmonary impedance (ZL), measured with pseudorandom oscillations applied at the airway opening before and after thoracotomy, respectively, the chest wall impedance (ZW) was calculated as ZW = Zrs - ZL. The pulmonary (RL) and chest wall resistances were both markedly frequency dependent: between 0.25 and 2 Hz they contributed equally to the total resistance falling from 81.4 +/- 18.3 (SD) at 0.25 Hz to 27.1 +/- 1.7 kPa.l-1 X s at 2 Hz. The pulmonary compliance (CL) decreased mildly, from 2.78 +/- 0.44 at 0.25 Hz to 2.36 +/- 0.39 ml/kPa at 2 Hz, and then increased at higher frequencies, whereas the chest wall compliance declined monotonously from 4.19 +/- 0.88 at 0.25 Hz to 1.93 +/- 0.14 ml/kPa at 10 Hz. Although the frequency dependence of ZW can be interpreted on the basis of parallel inhomogeneities alone, the sharp fall in RL together with the relatively constant CL suggests that at low frequencies significant losses are imposed by the non-Newtonian resistive properties of the lung tissue.  相似文献   

6.
Forced oscillatory impedance of the respiratory system at low frequencies   总被引:6,自引:0,他引:6  
Respiratory mechanical impedances were determined during voluntary apnea in five healthy subjects, by means of 0.25- to 5-Hz pseudo/random oscillations applied at the mouth. The total respiratory impedance was partitioned into pulmonary (ZL) and chest wall components with the esophageal balloon technique; corrections were made for the upper airway shunt impedance and the compressibility of alveolar gas. Neglect of these shunt effects did not qualitatively alter the frequency dependence of impedances but led to underestimations in impedance, especially in the chest wall resistance (Rw), which decreased by 20-30% at higher frequencies. The total resistance (Rrs) was markedly frequency dependent, falling from 0.47 +/- 0.06 (SD) at 0.25 Hz to 0.17 +/- 0.01 at 1 Hz and 0.15 +/- 0.01 kPa X l-1 X s at 5 Hz. The changes in Rrs were caused by the frequency dependence of Rw almost exclusively between 0.25 and 2 Hz and in most part between 2 and 5 Hz. The effective total respiratory (Crs,e) and pulmonary compliance were computed with corrections for pulmonary inertance derived from three- and five-parameter model fittings of ZL. Crs,e decreased from the static value (1.03 +/- 0.18 l X kPa-1) to a level of approximately 0.35 l X kPa-1 at 2-3 Hz; this change was primarily caused by the frequency-dependent behavior of chest wall compliance.  相似文献   

7.
Vagal control of heart rate (HR) is mediated by direct and indirect actions of ACh. Direct action of ACh activates the muscarinic K(+) (K(ACh)) channels, whereas indirect action inhibits adenylyl cyclase. The role of the K(ACh) channels in the overall picture of vagal HR control remains to be elucidated. We examined the role of the K(ACh) channels in the transfer characteristics of the HR response to vagal stimulation. In nine anesthetized sinoaortic-denerved and vagotomized rabbits, the vagal nerve was stimulated with a binary white-noise signal (0-10 Hz) for examination of the dynamic characteristic and in a step-wise manner (5, 10, 15, and 20 Hz/min) for examination of the static characteristic. The dynamic transfer function from vagal stimulation to HR approximated a first-order, low-pass filter with a lag time. Tertiapin, a selective K(ACh) channel blocker (30 nmol/kg iv), significantly decreased the dynamic gain from 5.0 +/- 1.2 to 2.0 +/- 0.6 (mean +/- SD) beats.min(-1).Hz(-1) (P < 0.01) and the corner frequency from 0.25 +/- 0.03 to 0.06 +/- 0.01 Hz (P < 0.01) without changing the lag time (0.37 +/- 0.04 vs. 0.39 +/- 0.05 s). Moreover, tertiapin significantly attenuated the vagal stimulation-induced HR decrease by 46 +/- 21, 58 +/- 18, 65 +/- 15, and 68 +/- 11% at stimulus frequencies of 5, 10, 15, and 20 Hz, respectively. We conclude that K(ACh) channels contribute to a rapid HR change and to a larger decrease in the steady-state HR in response to more potent tonic vagal stimulation.  相似文献   

8.
Increased blood pressure (BP) and heart rate during exercise characterizes the exercise pressor reflex. When evoked by static handgrip, mechanoreceptors and metaboreceptors produce regional changes in blood volume and blood flow, which are incompletely characterized in humans. We studied 16 healthy subjects aged 20-27 yr using segmental impedance plethysmography validated against dye dilution and venous occlusion plethysmography to noninvasively measure changes in regional blood volumes and blood flows. Static handgrip while in supine position was performed for 2 min without postexercise ischemia. Measurements of heart rate and BP variability and coherence analyses were used to examine baroreflex-mediated autonomic effects. During handgrip exercise, systolic BP increased from 120 +/- 10 to 148 +/- 14 mmHg, whereas heart rate increased from 60 +/- 8 to 82 +/- 12 beats/min. Heart rate variability decreased, whereas BP variability increased, and transfer function amplitude was reduced from 18 +/- 2 to 8 +/- 2 ms/mmHg at low frequencies of approximately 0.1 Hz. This was associated with marked reduction of coherence between BP and heart rate (from 0.76 +/- 0.10 to 0.26 +/- 0.05) indicative of uncoupling of heart rate regulation by the baroreflex. Cardiac output increased by approximately 18% with a 4.5% increase in central blood volume and an 8.5% increase in total peripheral resistance, suggesting increased cardiac preload and contractility. Splanchnic blood volume decreased reciprocally with smaller decreases in pelvic and leg volumes, increased splanchnic, pelvic and calf peripheral resistance, and evidence for splanchnic venoconstriction. We conclude that the exercise pressor reflex is associated with reduced baroreflex cardiovagal regulation and driven by increased cardiac output related to enhanced preload, cardiac contractility, and splanchnic blood mobilization.  相似文献   

9.
Ethmozine decreased the maximum rate of action potential rise (Vmax) in a dose-dependent manner. Using the Scatchard plot the apparent dissociation constant was calculated to be 1.52 X 10(-5) g/ml. Ethmozine also decreased the force of contraction in the concentration range between 1 X 10(-6) and 1 X 10(-4) g/ml with the apparent dissociation constant obtained from the Scatchard plot being equal to 1.48 X 10(-5) g/ml. The linear correlation coefficient between the decrease in Vmax and the decrease in the force of contraction was found to be equal to 0.998. Negative inotropic action of ethmozine was less pronounced when the stimulation frequency had been switched from 0.8 to 0.1 Hz. The decrease in Vmax under the action of ethmozine (3 X 10(-5) g/ml) was diminished from 56 +/- 7% (0.8 Hz) to only 3 +/- 8% (0.1 Hz). This was accompanied by the decrease in the negative inotropic effect: from 58 +/- 9% (0.8 Hz) to 16 +/- 15% (0.1 Hz). It was assumed that the negative inotropic action of ethmozine was mediated by the Na--Ca exchange, which was inhibited by the decrease of the intracellular Na+ concentration due to the blockade of sodium channels by ethmozine.  相似文献   

10.
Recent studies on respiratory impedance (Zrs) have predicted that at frequencies greater than 64 Hz a second resonance will occur. Furthermore, if one intends to fit a model more complicated than the simple series combination of a resistance, inertance, and compliance to Zrs data, the only way to ensure statistically reliable parameter estimates is to include data surrounding this second resonance. An additional question, however, is whether the resulting parameters are physiologically meaningful. We obtained input impedance data from eight healthy adult humans using discrete frequency forced oscillations from 4 to 200 Hz. Three resonant frequencies were seen: 8 +/- 2, 151 +/- 10, and 182 +/- 16 Hz. A seven-parameter lumped element model provided an excellent fit to the data in all subjects. This model consists of an airway resistance (Raw), which is linearly dependent on frequency, and airway inertance separated from a tissue resistance, inertance, and compliance by a shunt compliance (Cg) thought to represent gas compressibility. Model estimates of Raw and Cg were compared with those suggested by measurement of Raw and thoracic gas volume using a plethysmograph. In all subjects the model Raw and Cg were significantly lower than and not correlated with the corresponding plethysmographic measurement. We hypothesize that the statistically reliable but physiologically inconsistent parameters are a consequence of the distorting influence of airway wall compliance and/or airway quarter-wave resonance. Such factors are not inherent to the seven-parameter model.  相似文献   

11.
This study explored a novel method for measuring cerebrovascular impedance to quantify the relationship between pulsatile changes in cerebral blood flow (CBF) and arterial pressure. Arterial pressure in the internal or common carotid artery (applanation tonometry), CBF velocity in the middle cerebral artery (transcranial Doppler), and end-tidal CO(2) (capnography) were measured in six young (28 ± 4 yr) and nine elderly subjects (70 ± 6 yr). Transfer function method was used to estimate cerebrovascular impedance. Under supine resting conditions, CBF velocity was reduced in the elderly despite the fact that they had higher arterial pressure than young subjects. As expected, cerebrovascular resistance index was increased in the elderly. In both young and elderly subjects, impedance modulus was reduced gradually in the frequency range of 0.78-8 Hz. Phase was negative in the range of 0.78-4.3 Hz and fluctuated at high frequencies. Compared with the young, impedance modulus increased by 38% in the elderly in the range of 0.78-2 Hz and by 39% in the range of 2-4 Hz (P < 0.05). Moreover, increases in impedance were correlated with reductions in CBF velocity. Collectively, these findings demonstrate the feasibility of assessing cerebrovascular impedance using the noninvasive method developed in this study. The estimated impedance modulus and phase are similar to those observed in the systemic circulation and other vascular beds. Moreover, increases in impedance in the elderly suggest that arterial stiffening, besides changes in cerebrovascular resistance, contributes to reduction in CBF with age.  相似文献   

12.
Mice are used with increasing frequency as models of human cardiovascular diseases, but significant gaps exist in our knowledge of vascular function in the aging mouse. We determined aortic input impedance spectra, pulse wave velocity, and augmentation index in adult (8-mo-old) and old (29-mo-old) mice to determine whether arterial stiffening occurred with age in mice as it does in humans. Pressure and blood velocity signals measured simultaneously from the same location in the ascending aorta were used to determine input impedance spectra (0-10 harmonics). The first minimum of the impedance modulus occurred at the second harmonic in adult mice but shifted to the fourth harmonic in old mice. Characteristic impedance (average of 2nd-10th harmonic) was 57% higher in old mice: 471 +/- 62 vs. 299 +/- 10 (SE) dyn.s.cm-3 (P < 0.05). Pulse pressure and augmentation index, determined from the aortic pressure signals, were also higher in old mice: 42 +/- 2.2 vs. 29 +/- 4.9 mmHg (P < 0.05) and 37 +/- 5 vs. 14 +/- 2% (P < 0.005). Aortic pulse wave velocity measured from the timing of upstrokes of the Doppler velocity signals was 45% higher in old mice: 416 +/- 22 vs. 286 +/- 14 cm/s (n = 3, P < 0.01). These results reproduce age-related findings reported in humans and confirm that mice may be used as models of age-related vascular stiffening.  相似文献   

13.
Evidence suggests that both the arterial baroreflex and vestibulosympathetic reflex contribute to blood pressure regulation, and both autonomic reflexes integrate centrally in the medulla cardiovascular center. A previous report indicated increased sympathetic baroreflex sensitivity during the midluteal (ML) phase of the menstrual cycle compared with the early follicular (EF) phase. On the basis of this finding, we hypothesize an augmented vestibulosympathetic reflex during the ML phase of the menstrual cycle. Muscle sympathetic nerve activity (MSNA), mean arterial pressure (MAP), and heart rate responses to head-down rotation (HDR) were measured in 10 healthy females during the EF and ML phases of the menstrual cycle. Plasma estradiol (Delta72 +/- 13 pg/ml, P < 0.01) and progesterone (Delta8 +/- 2 ng/ml, P < 0.01) were significantly greater during the ML phase compared with the EF phase. The menstrual cycle did not alter resting MSNA, MAP, and heart rate (EF: 13 +/- 3 bursts/min, 80 +/- 2 mmHg, 65 +/- 2 beats/min vs. ML: 14 +/- 3 bursts/min, 81 +/- 3 mmHg, 64 +/- 3 beats/min). During the EF phase, HDR increased MSNA (Delta3 +/- 1 bursts/min, P < 0.02) but did not change MAP or heart rate (Delta0 +/- 1 mmHg and Delta1 +/- 1 beats/min). During the ML phase, HDR increased both MSNA and MAP (Delta4 +/- 1 bursts/min and Delta3 +/- 1 mmHg, P < 0.04) with no change in heart rate (Delta0 +/- 1 beats/min). MSNA and heart rate responses to HDR were not different between the EF and ML phases, but MAP responses to HDR were augmented during the ML phase (P < 0.03). Our results demonstrate that the menstrual cycle does not influence the vestibulosympathetic reflex but appears to alter MAP responses to HDR during the ML phase.  相似文献   

14.
The early, rapid phase of tension recovery (phase 2) after a step change in sarcomere length is thought to reflect the force-generating transition of myosin bound to actin. We have measured the relation between the rate of tension redevelopment during phase 2 (r), estimated from the half-time of tension recovery during phase 2 (r = t0.5(-1)), and steady-state force at varying [Ca2+] in single fibers from rabbit psoas. Sarcomere length was monitored continuously by laser diffraction of fiber segments (length approximately 1.6 mm), and sarcomere homogeneity was maintained using periodic length release/restretch cycles at 13-15 degrees C. At lower [Ca2+] and forces, r was elevated relative to that at pCa 4.0 for both releases and stretches (between +/- 8 nm). For releases of -3.4 +/- 0.7 nm.hs-1 at pCa 6.6 (where force was 10-20% of maximum force at pCa 4.0), r was 3.3 +/- 1.0 ms-1 (mean +/- SD; N = 5), whereas the corresponding value of r at pCa 4.0 was 1.0 +/- 0.2 ms-1 for releases of -3.5 +/- 0.5 nm.hs-1 (mean +/- SD; N = 5). For stretches of 1.9 +/- 0.7 nm.hs-1, r was 1.0 +/- 0.3 ms-1 (mean +/- SD; N = 9) at pCa 6.6, whereas r was 0.4 +/- 0.1 ms-1 at pCa 4.0 for stretches of 1.9 +/- 0.5 (mean +/- SD; N = 14). Faster phase 2 transients at submaximal Ca(2+)-activation were not caused by changes in myofilament lattice spacing because 4% Dextran T-500, which minimizes lattice spacing changes, was present in all solutions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We measured the effective resistance (Reff) and elastance (Eeff) of the chest wall in four subjects, relaxed at functional residual capacity (FRC), during sinusoidal volume changes (5% vital capacity up to 4 Hz) delivered at the mouth. Subjects sat in a head-out body plethysmograph, and transthoracic pressure was measured with an esophageal balloon. Changes in Reff and in Eeff with frequency were nearly the same in all subjects. Reff (in cmH2O X l-1 X s) was 2.9 +/- 0.8 at 0.2 Hz and fell sharply to minimum values (0.5-0.9) at 1-4 Hz. Eeff (in cmH2O X l-1) increased from approximately 10 at the lowest frequency to a plateau of about 15 at 1-3 Hz and decreased above 3 Hz. In the same subjects, we measured the relative magnitude and phase between the displacements of different parts of the chest wall with magnetometers during identical sinusoidal forcing. Results indicate that the chest wall expands and deflates uniformly at frequencies up to 1 Hz. Thereafter the abdomen makes relatively larger excursions, and the relative magnitude and phase of displacement at different points on the chest wall show complex changes. We conclude that the frequency dependence of Reff and Eeff below 1 Hz is not due to nonuniformities in displacement of different parts of the chest wall. The frequency dependency of Reff is consistent with an increasing contribution of rate-independent plastic dissipation to the pressure difference in phase with flow as breathing frequency decreases.  相似文献   

16.
To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.  相似文献   

17.
Electrocardiograms were recorded hourly for five days in 16 caged Macaca fascicularis by means of a miniaturized ECG transmitter connected to two chest leads. The lowest heart rates were 135 +/- 35 (mean +/- SD, n= 31) beats/min at 5 a.m., and the highest were 192 +/- 22 (n = 29) beats/min at 3 p.m. Sinus arrhythmia was common. Eight of the animals were trained to exercise in a specially designed enclosed treadmill; their heart rates were recorded daily during two 10-min periods of running at 3.4 km/h. Transfer of the monkeys (n k0) to the treadmill increased heart rate from 186 +/- 24 to 228 +/- 23 beats/min; exercise further increased it to 271 +/- 8 beats/min.  相似文献   

18.
Because premenopausal women have lower cardiovascular morbidity than postmenopausal women, it has been proposed that estrogen may have a protective role. Estrogen is involved in smooth muscle relaxation both through its specific receptor as well as through calcium channel blockade. This study examined the acute effect of estradiol on invasive cardiovascular hemodynamics in 18 postmenopausal women (age 62.6 +/- 7.6 years, means +/- SD). The effect of estradiol on left ventricular chamber performance was studied in 9 women using simultaneous left ventricular pressure-volume recordings. In a further group of 9 women, the acute effect of estradiol on arterial function was assessed using input impedance (derived from simultaneous aortic pressure and flow recordings), pressure waveform analysis, and pulse wave velocity. After 2 mg micronized 17beta-estradiol was administered, serum estradiol levels increased from 50.9 +/- 21.9 to 3,190 +/- 2,216 pmol/l, P < 0.0001. There was no effect of estradiol on either left ventricular inotropic or lusitropic function. There was no acute effect of estradiol on arterial impedance, reflection coefficient, augmentation index, or pulse wave velocity. There was a trend to decreased heart rate and cardiac output in both groups of 9 women. Because heart rate and cardiac output were common to both hemodynamic data sets, results for these parameters were pooled. Across all 18 women, there was a small but significant decrease in heart rate (69.2 +/- 10.4 vs. 67.2 +/- 9.9 beats/min, P = 0.02), as well as a significant decrease in cardiac output (4.82 +/- 1.77 vs. 4.17 +/- 1.56 l/min, P = 0.002). Despite achieving supraphysiological serum levels, this study found no significant effect of acute 17beta-estradiol on ventricular or large artery function.  相似文献   

19.
Two methods of measuring respiratory transfer impedance (Ztr) were compared in 14 normal subjects, from 4 to 30 Hz, 1) studying the relationship between transrespiratory pressure (Prs) and flow at the chest when varying pressure at the mouth (Ztrm) and 2) studying the relationship between Prs and flow at the mouth when varying pressure around the chest wall (Ztrw). The similarity of the two relationships was expected on the basis of a T-network model. Almost identical phase responses were obtained from the two methods. Pressure-flow ratios were slightly larger for Ztrw than for Ztrm, but differences did not exceed 2% on average in 11 of 14 subjects. When the data were analyzed with the six-coefficient model proposed by DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956), similar values were found for tissue compliance and tissue inertance but slightly different values for gaseous inertance in the airways (1.97 +/- 0.35 X 10(-2) cmH2O X l-1 X s2 for Ztrw vs. 1.73 +/- 0.26 for Ztrm; P less than 0.01). Similar results were also found for total respiratory resistance but with a slightly larger contribution of airway resistance for Ztrw (64 +/- 14 vs. 57 +/- 10%; P less than 0.05). As a practical conclusion it is recommended to measure Ztrw, which is technically much easier.  相似文献   

20.
Exercise training has been found to increase coronary vascularity of the heart in experimental animals. Maximum coronary flow and minimum coronary resistance were determined in 16 dogs with the injection of microspheres (15 micron) into the left atrium at rest and during the intravenous infusion of adenosine (0.7 mg X min-1 X kg-1). Heart rate was paced at 150 beats/min. Dogs were divided into three groups with microsphere injections made before and after 4-5 wk of daily exercise (group 1); before and after 8-10 wk of daily exercise (group II); and before and after 8-10 wk of cage rest (group III). Results of average left ventricular maximum myocardial flow before and after daily exercise were 4.08 +/- 0.34 and 4.89 +/- 0.33 ml X min-1 X g-1 for group I, 5.13 +/- 0.32 and 5.55 +/- 0.56 ml X min-1 X g-1 for group II, and 5.24 +/- 0.43 and 4.34 +/- 0.55 ml X min-1 X g-1 for group III. Arterial pressure, maximum coronary flow, and minimum coronary resistance were not significantly different before and after any condition in all three groups of dogs. Peak reactive hyperemia coronary flow was not altered by daily exercise. These results indicate that maximum coronary flow and minimum coronary resistance were not altered by either 4-5 or 8-10 wk of exercise training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号