首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The steroid hormone estrogen profoundly influences growth and differentiation programs in the reproductive tract of cycling and pregnant mamals. It is thought that estrogen exerts its cellular effects by regulating the expression of specific target genes. We utilized a messenger RNA differential display method to identify the genes whose expression is modulated by estrogen in the preimplantation rat uterus. Here we report the cloning of a novel gene (ERG1) that is tightly regulated by estrogen in two key reproductive tissues, the uterus and oviduct. Spatio-temporal analyses reveal that ERG1 mRNA is expressed in a highly stage-specific manner in the uterus and oviduct, and its expression is restricted to the surface epithelium of both of these tissues. Nucleotide sequence analysis of the full-length ERG1 cDNA indicates that it has an open reading frame of 1821 nuceotides encoding a putative protein of 607 amino acids with a single transmembrane domain and a short cytoplasmic tail. The extracellular part of the protein contains several distinct structural motifs. These include a zona pellucida binding domain, which is present in a number of proteins such as the zona pellucida sperm binding proteins, and uromodulin, In addition, there is a repeat of a motif called CUB domain, which exists in a number of genes involved in development and differentiation such as bone morphogenetic protein 1 (BMP1). Although the precise function of ERG1 eludes us presently, its unique pattern of expression in the uterus and oviduct and its regulation by estrogen, a principal reproductive hormone, lead us to speculate that this novel gene plays an important role in events during the reproductive cycle and early pregnancy.  相似文献   

3.
4.
5.
The association of estrogen receptors with non-nuclear/cytoplasmic compartments in target tissues has been documented. However, limited information is available on the distribution of estrogen receptor isoforms, specially with regard to the newly described beta isotype. The subcellular localization of estrogen receptor alpha and beta isoforms was investigated in rabbit uterus and ovary. Native alpha and beta subtypes were immunodetected using specific antibodies after subjecting the tissue to fractionation by differential centrifugation. The ovary expressed alpha and beta estrogen receptors in predominant association to cytosolic components. However, in the uterus, a substantial proportion of the total estrogen binding capacity and coexpression of the two isoforms was detected in mitochondria and microsomes. The mitochondrial-enriched subfraction represented an important source of 17beta-estradiol binding, where the steroid was recognized in a stereospecific and high affinity manner. The existence of mitochondrial and membrane estrogen binding sites correlated with the presence of estrogen receptor alpha but mainly with estrogen receptor beta proteins. Using macromolecular 17beta-estradiol derivatives in Ligand Blot studies, we could confirm that both alpha and beta isoforms were expressed as the major estrogen binding proteins in the uterus, while estrogen receptor alpha was clearly the dominant isoform in the ovary. Other low molecular weight estrogen receptor alpha-like proteins were found to represent an independent subpopulation of uterine binding sites, expressed to a lesser extent. This differential cellular partitioning of estrogen receptor alpha and beta forms may contribute to the known diversity of 17beta-estradiol effects in target organs. Both estrogen receptor alpha and beta expression levels and cellular localization patterns among tissues, add complexity to the whole estrogen signaling system, in which membrane and mitochondrial events could also be implicated.  相似文献   

6.
The novel natural product DT56a (Tofupill/Femarelle), derived from soybean, has been shown to relieve menopausal vasomotor symptoms and to increase bone mineral density with no effect on sex steroid hormone levels or endometrial thickness. In the present study, we compared the effects of DT56a and estradiol-17beta (E2) on bone and cartilage (Ep) of immature or ovariectomized female rats, by measuring the changes in the specific activity of the BB isozyme of creatine kinase (CK). Single short-term injection of high doses of DT56a induced estrogenic activity in bones and uterus similar to that of E2. When administered in multiple oral doses, DT56a stimulated skeletal tissues similarly to E2, but whereas E2 increased CK specific activity in the uterus, DT56a did not. The selective estrogen receptor modulator (SERM) raloxifene (Ral) blocked the stimulation of CK by either DT56a or by E2 in all tissues tested. Our findings suggest that DT56a acts as a selective estrogen receptor modulator stimulating skeletal tissues without affecting the uterus. The effect of DT56a on other systems, such as the vascular and the central nervous system, are currently under investigation.  相似文献   

7.
Steroid hormone receptors are proteolyzed by different types of enzymes present in target tissues. Effective protease inhibitors protecting steroid hormone receptors in various target tissues were investigated. Progesterone receptor (PR) in hen oviduct and estrogen receptor (ER) in cow uterus were specifically protected by relatively low concentrations (0.5 mM) of leupeptin or antipain (inhibitors of serine and thiol proteases). It was indicated that two different types of enzymes which modify native glucocorticoid receptor (GR) are present in rat liver. One was inhibited by 1 mM leupeptin or 1 mM antipain, while the other was inhibited by 1 mM phosphoramidon (inhibitor of thermolysin like proteases) or 10 mM sodium molybdate. Native PR, ER, and GR were shown to have similar Stokes radii (44 Å).  相似文献   

8.
9.
10.
Structure and dynamics of the estrogen receptor   总被引:3,自引:0,他引:3  
To evaluate the structure and function of estrogen receptor (ER) in various mammalian systems, the cytosolic forms of receptor from calf uterus and from MCF-7 human breast cancer cells have been purified to virtual homogeneity by sequential selective adsorption to estradiol-Sepharose and heparin-Sepharose. In both cases, the purified steroid-receptor complex appears to exist as an activated 5S homo- or heterodimer of mol. wt 65,000 (4S) steroid-binding subunits. Purified ER has high affinity for DNA and serves as a substrate for phosphorylation by a purified rat brain kinase. Several monoclonal antibodies prepared against affinity-purified MCF-7 cytosol ER have been used to localize receptor by an indirect immunoperoxidase technique in fixed, frozen sections of human breast tumors, human uterus, rabbit uterus and in other mammalian reproductive tissues and cancers, as well as in fixed MCF-7 cell cultures and in paraffin-embedded sections of breast tumors and human endometrium. In all cases, we have observed only nuclear localization of immunoreactive receptor in tissues and whole cells, even under conditions in which virtually all of the receptor is found in a low-salt extract (cytosol) of the target cells. Treatment of cells or tissues in vivo or in vitro with estradiol alters the intensity but not the distribution of specific staining for ER. By immunoelectron microscopy, receptor was localized in the euchromatin, but not in the marginated heterochromatin or nucleoli of MCF-7 nuclei and epithelial and stromal nuclei of postmenopausal human endometrium. These observations suggest that the majority of the unoccupied receptor may actually reside in the nucleus, rather than in the cytoplasm as previously thought. Thus, hormone action may involve binding of the steroid directly to receptor loosely associated with nuclear components, followed by conversion of the steroid-receptor complex to an activated form which becomes more tightly associated with chromatin.  相似文献   

11.
Multiple administration of estrogens in doses of 1 and 10 micrograms reduces specific binding of 3H-estradiol by subcellular fractions of rat uterus tissues. The cytoreceptor apparatus of the uterus of androgen-sterile rats is marked by the decreased response to a prolonged (7-8 days) hormone administration as compared to responses seen in normal and ovariectomized animals. The depletion of estrogen receptors is not linked with a rise of the endogenous steroid level in blood plasma and cytosol from uterine tissues.  相似文献   

12.
The cellular actions of steroid hormone progesterone (P) are mediated via its nuclear receptors, which regulate the expression of specific target genes. The identity of gene networks that are regulated by the P receptors (PRs) in the uterus at various stages of the reproductive cycle and pregnancy, however, remain largely unknown. In this study, we have used oligonucleotide microarrays to identify mRNAs whose expression in the pregnant mouse uterus is modulated by RU486, a well-characterized PR antagonist, which is also an effective inhibitor of implantation. We found that, in response to RU486, expression of mRNAs corresponding to 78 known genes was down-regulated at least 2-fold in the preimplantation mouse uterus. The PR regulation of several of these genes was ascertained by administering P to ovariectomized wild-type and PR knockout (PRKO) mice. Detailed spatio-temporal analysis of these genes in the pregnant uterus indicated that their expression in the epithelium and stroma could be correlated with the expression of PR in those cell types. Furthermore, time-course studies suggested that many of these genes are likely primary targets of PR regulation. We also identified 70 known genes that were up-regulated at least 2-fold in the pregnant uterus in response to RU486. Interestingly, initial examination of a number of RU486-inducible genes reveals that their uterine expression is also regulated by estrogen. The identification of several novel PR-regulated gene pathways in the reproductive tract is an important step toward understanding how P regulates the physiological events leading to implantation.  相似文献   

13.
In an attempt to learn whether modulation of steroid hormone receptor by arachidonate is generalized or not, the arachidonate effect was examined in cytosol estrogen (ER), progestin (PR), androgen (AR) and glucocorticoid receptors (GCR) from the central and peripheral tissues of rats by sucrose density gradient centrifugation, and gel filtration on LH20 columns or dextran-coated charcoal absorption. Arachidonate and other long-chain fatty acids appear to inhibit the specific binding of estrogen ([3H]R2858), progestin ([3H]R5020), androgen ([3H]R1881) and glucocorticoid ([3H]dexamethasone) to the respective receptors in brain (neonatal cerebral cortex and hypothalamus-preoptic area, HPOA), uterus and prostate, with the exception of the potentiating effect on the brain estrogen receptors. The potency of the unsaturated fatty acids paralleled to some degree the number of cis double bonds and carbon, in that oleate (C18:1) arachidonate (C20:4) docosahexaenoate (C22:6). The arachidonate inhibition was dose-dependent in the tissue steroid hormone receptors, except for dose-dependent potentiation of the brain cortical estrogen receptors. Inhibitory potency as expressed by the concentration for 50% maximum inhibition (Ki) was in the range of 11-18 microM for the receptors other than the uterine estrogen receptors with the value of 44 microM, suggesting lower sensitivity for the estrogen receptor to the arachidonate effect in the uterus. Analysis on kinetics and Scatchard plot revealed the non-competitive type of the inhibition. In addition, arachidonate lowered dose-dependently the peak of labelled progestin or estrogen binding to the 8S receptor proteins, which were collected from fractions in the 8S region of the cytosols from intact or diethylstibestrol-primed rat uteri. These results suggest the generalized modulatory effect of arachidonate on the steroid hormone receptors in the central and peripheral tissues. Arachidonate could affect, negatively or positively, the estrogen receptors, and negatively the progestin, androgen and glucocorticoid receptors, through a possibly direct but weak binding at sites different from steroid binding sites on the receptor molecules. A potential messenger role of arachidonate itself has been implicated in the regulation or modulation of the steroid hormone receptors.  相似文献   

14.
A radioreceptor assay of Epidermal Growth Factor (EGF), which uses as binder plasma membranes prepared from target tissues, instead of specific antibodies, is described. The amount of the polypeptide hormone present in the homogenate has been measured in various tissues. Submaxillary gland and parotid are confirmed to possess the highest levels of the factor. Results obtained incubating sliced tissues with or without pilocarpine, a drug which stimulates the hormone release, suggest that the tissues under investigation can be classified in two groups: a - “target tissues” (i.e. epidermis and corneal epithelium) b- “synthetizing” tissues (i.e. submaxillary gland, parotid, liver), which release the factor under pilocarpine stimulation.  相似文献   

15.
16.
Summary Although estrogens have been shown to stimulate a variety of morphologic and biochemical changes in the uterus in vivo, no clear consistent demonstration of similar responses in vitro have been made; thus, a defined organ culture system using the immature mouse uterus was established to study the possibility of demonstrating estrogenic responses in vitro. Uterine tissue from immature outbred mice (17 to 24 days of age) were cut crosswise in 1-mm3 coins and cultured in a defined medium in the absence of serum, phenol red, or growth factor supplements. Diethylstilbestrol (DES), a synthetic estrogen, was added to the media at doses ranging from 1 to 100 ng/ml. The effect of DES on uterine cell proliferation was assessed by morphologic changes in uterine epithelial and stromal cells, increase in number of epithelial cells per unit basement membrane, increase in height of luminal epithelial cells, and [3H]thymidine incorporation. Functional changes were determined by measuring the amounts of the estrogen-inducible uterine protein, lactoferrin, that was localized in the epithelial cells and secreted into the media, and the localization of the estrogen receptor in the cultured tissues. Results indicate that under the described conditions of culture, estrogens like DES can induce morphologic and biochemical responses in the uterus that are similar to those seen in vivo. This organ culture system will aid in the investigation of various mechanisms involved in the hormonal regulation of growth and differentiation of estrogen target tissues.  相似文献   

17.
18.
In mammals, estrogens have a multiplicity of effects ranging from control of differentiation of selected brain nuclei, reproductive functions, sexual behavior. In addition, these hormones influence the manifestation of disorders like depression and Alzheimer's. Study of the cells target for the hormone has shown that estrogen receptors (ERs) are expressed in all known neural cells, including microglia. In view of the potential interest in the use of estrogens in the therapy of several pathologies of the nervous system, it would be of interest to fully understand the mechanism of estrogen activity in the various neural target cells and get an insight on the molecular means allowing the hormone to display such a variety of effects. We have proposed the use of a reductionist approach for the systematic understanding of the estrogen activities in each specific type of target cell. Thus, we have generated a model system in which to study the activation of one of the known (ERs), estrogen receptor alpha. This system allowed us to identify a number of novel genes which expression may be influenced following the activation of this receptor subtype by estradiol (E2). We here report on data recently obtained by the study of one of these target genes, nip2, which encodes a proapoptotic protein product. We hypothesize that nip2 might be an important molecular determinant for estrogen anti-apoptotic activity in cells of neural origin and represents a potential target for drugs aimed at mimicking the E2 beneficial effects in neural cells.  相似文献   

19.
M Lippman 《Life sciences》1976,18(2):143-152
Steroid hormones induce responses in target tissues by a mechanism involving the specific initial interaction of hormone with cytoplasmic receptor molecules. These receptors, usually localized in target tissues have high binding affinities and limited binding specificities for biologically active steroids. Examination of human leukemic lymphoblasts has revealed these receptors in some tumor samples. Their presence is well correlated with hormone responsiveness of the tumor in vitro. Similar studies on human breast cancer tumor homogenates has indicated that about 23 of primary tumors contain estrogen receptor. The absence of receptor predicts a lack of response to hormone therapy almost invariably, while the presence of receptor increases but does not assure that the tumor will be hormone responsive. Recently in vitro tissue culture systems which mimic the hormone responses observed in vivo have been developed which should significantly aid in the clarification of the mechanisms whereby steroid hormones stimulate and inhibit growth in target tissues.  相似文献   

20.
雌激素的非基因组调节模式在雌性生殖系统中广泛存在.雌激素通过基因组、非基因组及两种调节模式的整合在不同组织中行使多种生理功能.卵巢中雌激素能通过非基因组效应对卵细胞起到保护作用.子宫中雌激素对多种基因的表达都是通过非基因组模式.对雌激素非基因组效应的研究将有利于进一步了解雌激素的作用机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号