首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although mouse t haplotypes carry recessive mutations causing male sterility and embryonic lethality, they persist in wild mouse populations via male transmission ratio distortion (TRD). Genetic evidence suggests that at least five t-haplotype-encoded loci combine to cause TRD. One of these loci, called the t complex responder (Tcr), is absolutely required for any deviation from Mendelian segregation to occur. A candidate for the Tcr gene has previously been identified. Evidence that this gene represents Tcr is its localization to the appropriate genomic subregion and testis-specific expression pattern. Here, we report the molecular cloning of the region between recombinant chromosome breakpoints defining the Tcr locus. These results circumscribe Tcr to a 150- to 220-kb region of DNA, including the 22-kb candidate responder gene. This gene and two other homologs were created by large genomic duplications, each involving segments of DNA 10-fold larger than the individual genes.  相似文献   

3.
4.
5.
The t haplotype is an ancestral version of proximal mouse chromosome 17 that has evolved mechanisms to persist as an intact genomic variant in mouse populations. t haplotypes contain mutations that affect embryonic development, male fertility and male transmission ratio distortion (TRD). Collectively, these mutations drive the evolutionary success of t haplotypes, a phenomenon that remains one of the longstanding mysteries of mouse genetics. Molecular genetic analysis of TRD has been confounded by inversions that arose to lock together the various elements of this complex trait. Our first molecular glimpse of the TRD mechanism has finally been revealed with the cloning of the t complex responder (Tcr) locus, a chimeric kinase with a genetically cis active effect. Whereas + sperm in a +/t male have impaired flagellar function caused by the deleterious action of trans-active, t-haplotype-encoded 'distorters,' the mutant activity of Tcr counterbalances the distorter effects, maintaining the motility and fertilizing ability of t sperm.  相似文献   

6.
7.
8.
The t-haplotype, a variant form of the t-complex region on mouse chromosome 17, acts as selfish genetic element and is transmitted at high frequencies (> 95%) from heterozygous (t/+) males to their offspring. This phenotype is termed transmission ratio distortion (TRD) and is caused by the interaction of the t-complex responder (Tcr) with several quantitative trait loci (QTL), the t-complex distorters (Tcd1 to Tcd4), all located within the t-haplotype region. Current data suggest that the distorters collectively impair motility of all sperm derived from t/+ males; t-sperm is rescued by the responder, whereas (+)-sperm remains partially dysfunctional. Recently we have identified two distorters as regulators of RHO small G proteins. Here we show that the nucleoside diphosphate kinase gene Nme3 acts as a QTL on TRD. Reduction of the Nme3 dosage by gene targeting of the wild-type allele enhanced the transmission rate of the t-haplotype and phenocopied distorter function. Genetic and biochemical analysis showed that the t-allele of Nme3 harbors a mutation (P89S) that compromises enzymatic activity of the protein and genetically acts as a hypomorph. Transgenic overexpression of the Nme3 t-allele reduced t-haplotype transmission, proving it to be a distorter. We propose that the NME3 protein interacts with RHO signaling cascades to impair sperm motility through hyperactivation of SMOK, the wild-type form of the responder. This deleterious effect of the distorters is counter-balanced by the responder, SMOK(Tcr), a dominant-negative protein kinase exclusively expressed in t-sperm, thus permitting selfish behaviour and preferential transmission of the t-haplotype. In addition, the previously reported association of NME family members with RHO signaling in somatic cell motility and metastasis, in conjunction with our data involving RHO signaling in sperm motility, suggests a functional conservation between mechanisms for motility control in somatic cells and spermatozoa.  相似文献   

9.
K. G. Ardlie  L. M. Silver 《Genetics》1996,144(4):1787-1797
t haplotypes are naturally occurring forms of mouse chromosome 17 that show non-Mendelian transmission from heterozygous +/t males. In laboratory studies, transmission ratios of >=0.90 or higher are typically observed. With transmission ratios of this level, theoretical analyses predict high frequencies of t haplotypes (~ 75%) in wild populations. In contrast, empirical frequencies of only 15-25% are typically found. This has led to the suggestion that modifiers of drive may play a role in reducing t frequencies. We have measured transmission ratio distortion (TRD) levels in wild +/t mice to examine this hypothesis. TRD was very high in both litters collected from wild-caught pregnant females, and in wild litters bred in the laboratory (mean = 0.9). Contrary to the results of other studies, we found no difference in TRD levels between semilethal and lethal t haplotypes nor between litters conceived from cycling or postpartum estrus. We found three litters with aberrantly low TRDs that were all multiply sired, although the role this might play in natural populations is unknown. These findings show a general absence of modifiers of drive in natural populations and suggest that other factors are responsible for the low observed frequencies of wild t haplotypes.  相似文献   

10.
The mouse Tcr locus is defined by its central role in the transmission ratio distortion phenotype characteristic of t haplotypes. A molecular candidate for Tcr has been identified in the form of a gene--Tcp-10b--expressed during spermatogenesis. Tcp-10b is one member of a multigene family present in two to four copies on different homologs of chromosome 17. The coding regions of the Tcp-10 genes present within two inbred strains were compared with those of the tw5 haplotype. The various gene family members are highly conserved relative to each other with a minimum nucleotide identity of 98.6% in all pairwise comparisons. Maximal parsimony analysis indicates that the Tcp-10 gene family has evolved in a concerted manner with the obliteration of nearly all individual gene-specific characteristics. As a consequence, the candidate for the full-length mutant Tcr gene product is distinguished by only a single, highly conservative, amino acid change. The data are consistent with the hypothesis that the effector of mutant Tcr activity is a second, alternatively spliced product that is expressed in a haploid- and allele-specific manner.  相似文献   

11.
Transmission ratio distortion (TRD) of mouse t haplotypes occurs through the interaction of multiple distorter loci with the t complex responder (Tcr) locus. Males heterozygous for a t haplotype will transmit the t-bearing chromosome to nearly all of their offspring. This process is mediated by the production of functionally inequivalent gametes: wildtype meiotic partners of t spermatozoa are rendered functionally inactive. The Tcr locus, which is required for TRD to occur, is thought to somehow protect its host spermatid from the sperm-inactivating effects of linked distorter genes (Lyon 1984). In previous work, Tcr was mapped to a small genetic interval in t haplotypes, and a candidate gene from this region was isolated (Tcp-10b t). In this work, we further localize Tcr to a 40-kb region that contains the 21-kb Tcp-10b t gene. A cloned genomic copy of Tcp-10b t was used to generate transgenic mice. The transgene was bred into a variety of genetic backgrounds to test for non-Mendelian segregation. Abberrant segregation was observed in some mice carrying either a complete t haplotype or a combination of certain partial t haplotypes. These observations, coupled with those of Snyder and colleagues (in this issue), provide genetic and functional evidence that the Tcp-10b t gene is Tcr. However, other genotypes that were predicted to produce distortion did not. The unexpected data from a variety of crosses in this work and those of our colleagues suggest that elements to the TRD system and the Tcr locus remain to be identified.  相似文献   

12.
Mary F. Lyon 《Cell》1984,37(2):621-628
Transmission ratios of male mice heterozygous for various combinations of partial t-haplotypes provide evidence in support of a model for the genetic basis of ratio distortion, involving two or more distorter genes acting on a responder locus. The t form of the responder locus, Tcr, in the medial part of the haplotype, must be present and heterozygous for distortion to occur. When the responder alone is present, as in tlow haplotypes, the chromosome carrying it is transmitted in a low ratio (<50%). The t forms of the distorter loci act additively, in cis or trans, to raise the transmission of whichever chromosome carries Tcr. Identified distorter loci are Tcd-1, in the proximal part of the haplotype, Tcd-2, distal to Tcr, and probably Tcd-3, lying between Tcr and Tcd-2. In the absence of Tcr the distorters are transmitted normally. The system is compared with the SD system of Drosophila.  相似文献   

13.
Studies on the genetic control of immune response to sperm whale myoglobin were initiated. As demonstrated in this paper, the T lymphocyte proliferative response to whale myoglobin is under H-2-linked Ir gene control. Mice of H-2d, H-2f, and H-2s haplotypes were high responders to the myoglobin, whereas haplotypes H-2b, H-2k, H-2p, H-2q, and H-2r were low responders. The Ir gene(s) was localized between H-2K and H2D regions, since the recombinant strain A.TL (KsIkSkDd) was a low responder and A.TH (KsIsSsDd) was a high responder. Further studies with recombinant strains revealed that the expression of the high-responder I-Ad or Ias alleles was sufficient to give a good response, since strains D2.GD (d d b b b b b b) and B10.HTT (s s s s k k k d) were high responders. The expression of the I-Cd allele in strains B10.A (k k k k k d d d) and B10.A(5R) (b b b k k d d d) also gave high response, and thus suggested a second Ir gene, derived from the H-2d haplotype. The finding that expression of the I-Cs allele in B10.S(8R) (k k ? ? s s s s) did not result in high response suggests the lack of the second Ir gene in the high-responder H-2s haplotype.  相似文献   

14.
The mouse t complex responder (Tcr) locus plays a central haploid-specific role in the transmission ratio distortion phenotype expressed during germ cell differentiation in t-carrying males. The accumulated data map Tcr to a region of less than 500 kb. Over 400 kb of this region has been cloned and consists entirely of sequences associated with a clustered family of large cross-hybridizing elements of 30 kb to 70 kb in size. We have characterized a gene family within this region that is expressed uniquely in male germ cells with a complex pattern of RNA processing. Antibodies produced against a product of the putative open reading frame recognize a testes-specific polypeptide. Genetic data support the hypothesis that this polypeptide(s) functions to effect the Tcr phenotype.  相似文献   

15.
Safronova LD  Kudriavtsev IV 《Genetika》2001,37(9):1198-1206
Mouse t-complex located on chromosome 17 contains genes affecting solely male fertility. Some genes of this complex are recessive lethals; nonetheless, the high frequency of the t-complex carriers in a population is maintained due to a mechanism referred to as transmission ratio distortion (TRD), i.e., after crosses with wild-type females, males heterozygous for the t-complex transmit the t-bearing chromosome to nearly all their offspring, which suggests that the t-complex genes control sperm function. Analysis of this phenomenon shows that the resultant TRD is determined by the ratio between the distorter genes (Tcd) and a responder gene (Tcr) located within the t-complex region. Many authors believe that two to six distorter genes currently known have an additive effect. A genetic model of the non-Mendelian inheritance in the progeny of heterozygous male mice specifically explains sterility of animals carrying the t-complex with complementary lethal genes. The model suggests that some distorter gene products interacting with the responder gene have a selective effect on motility of both mutant and wild-type sperm. Insufficient sperm motility and/or their unsuccessful capacitation result in poor if any fertilization. Information on the t-complex genes is necessary for understanding the biological mechanisms of male sterility and may be used in medical practice.  相似文献   

16.
Using the cDNA sequence of porcine T-cell receptor (TCR) alpha-, beta-, gamma-, and delta-chain genes, we screened a porcine BAC library to isolate clones containing these genes. The isolated BAC clones were confirmed to carry these TCR genes by partial nucleotide sequencing. Among the clones obtained in the present screening, two clones carried both the TCR alpha-chain gene (TRA) and the TCR delta-chain gene (TRD) while one clone each carried only the sequence of either TRA or TRD. This observation demonstrated that TRA and TRD are localized in close proximity on a swine chromosome. Also two clones contained the sequence of the TCR beta-chain gene (TRB), and two clones contained the sequence of TCR gamma-chain gene (TRG). Fluorescence in situ hybridization using the above BAC clones as probes revealed that TRA and TRD, TRB, and TRG loci reside on swine chromosomes 7q15.3-->q21, 18q11.3-->q12, and 9q21-->q22, respectively. The chromosome positions of TRA and TRB are consistent with those determined by somatic cell hybrid analysis (Rettenberger et al., 1996). In addition, RH mapping of these genes was performed using the INRA-University of Minnesota RH panel DNA. The result confirmed the position of TRA and TRB reported earlier (http://imprh.toulouse.inra.fr/), and further demonstrated that TRG was located 11 cR away from genetic marker SW989 toward the marker S0019.  相似文献   

17.
The Bacteroides conjugal tetracycline resistance (Tcr) elements appear not to be plasmids. In many cases, resistance to erythromycin (Emr) is cotransferred with Tcr. Using a newly constructed shuttle cosmid, pNJR1, we cloned 44 to 50 kilobase pairs of a conjugal Tcr Emr element on overlapping cosmid clones. Cosmid libraries were made in Escherichia coli with DNA from the original clinical Bacteroides thetaiotaomicron DOT strain containing Tcr Emr-DOT or from a Bacteroides uniformis Tcr Emr-DOT transconjugant strain. The cosmid clones were mobilized from E. coli into B. uniformis in groups of 10 to 20 per filter mating, with selection for Tcr or Emr transconjugants. The Tcr and Emr genes were cloned both separately and together on 30-kilobase-pair fragments. Several of the Tcr clones also contained transfer genes that permitted self-transfer of the cosmid from B. uniformis donors to E. coli or B. uniformis recipients. Neither the Tcr nor the Emr gene conferred resistance on E. coli, and the transfer-proficient clones did not self-transfer out of E. coli. Southern blot analysis was used to compare DNA from independently isolated Bacteroides strains carrying conjugal Tcr or Tcr Emr elements and their respective B. uniformis transconjugants. Results of these analyses indicate that there are large regions of homology, including regions outside the Tcr and Emr genes, but that the elements are not identical. Some Tcr clones contained a region which hybridized to chromosomal DNA from the wild-type B. uniformis recipient strain that did not carry the Tcr Emr-DOT element. This region of homology appeared not to be a junction fragment. It was not required in a Bacteroides recipient for successful transfer of the Tcr Emr element. Although we are not sure we have cloned a junction fragment between the Tcr Emr-DOT element and the B. uniformis chromosome, the preliminary function and restriction map appears to be linear.  相似文献   

18.
Deviation from Mendelian inheritance expectations (transmission ratio distortion, TRD) has been observed in several species, including the mouse and humans. In this study, TRD was characterized in the turkey genome using both allelic (specific- and unspecific-parent TRD) and genotypic (additive- and dominance-TRD) parameterizations within a Bayesian framework. In this study, we evaluated TRD for 23 243 genotyped Turkeys across 56 393 autosomal SNPs. The analyses included 500 sires, 2013 dams and 11 047 offspring (trios). Three different haplotype sliding windows of 4, 10 and 20 SNPs were used across the autosomal chromosomes. Based on the genotypic parameterizations, 14 haplotypes showed additive and dominance TRD effects highlighting regions with a recessive TRD pattern. In contrast, the allelic model uncovered 12 haplotype alleles with the allelic TRD pattern which showed an underrepresentation of heterozygous offspring in addition to the absence of homozygous animals. For regions with the allelic pattern, only one particular region showed a parent-specific TRD where the penetrance was high via the dam, but low via the sire. The gene set analysis uncovered several gene ontology functional terms, Reactome pathways and several Medical Subject Headings that showed significant enrichment of genes associated with TRD. Many of these gene ontology functional terms (e.g. mitotic spindle assembly checkpoint, DRM complex and Aneuploidy), Reactome pathways (e.g. Mismatch repair) and Medical Subject Headings (e.g. Adenosine monophosphate) are known to be related to fertility, embryo development and lethality. The results of this study revealed potential novel candidate lethal haplotypes, functional terms and pathways that may enhance breeding programs in Turkeys through reducing mortality and improving reproduction rate.  相似文献   

19.
Cell-free supernatants from broth cultures of Mycoplasma arthritidis (MAS) induce vigorous proliferative responses in thymus-derived T lymphocytes from H2k or H2d strains of mice. Populations of lymphoid cells from mice of H2b, H2q, or H2s haplotypes do not respond to this stimulus. Previous studies with lymphoid cells from congenic and recombinant strains of mice indicate that the T cell proliferative response induced by MAS is controlled by a gene(s) that maps to the I-E/C subregion of the murine major histocompatibility complex (MHC). The T cell proliferative response induced by MAS is dependent upon the presence of a population of la+, radioresistant accessory cells (AC). Data presented here demonstrates that responder strain AC that have been pulsed with MAS (followed by extensive washing) induced vigorous proliferative responses in subsequently added T cell populations. Pulsing of T cells with MAS, followed by the addition of AC, however, did not result in T cell proliferation. MAS was found to stimulate (responder X nonresponder) F1 T cells to proliferate if the MAS was presented in the context of either responder or (responder X nonresponder) F1 AC; nonresponder strain AC were ineffective in this regard. Nonresponder strain T cells were found to be capable of responding to MAS if it was presented in the context of responder strain AC, even if the T cells and AC were completely allogeneic. Thus, nonresponder strain T cells mounted vigorous proliferative responses if the MAS was presented in the context of responder strain AC. Conversely, responder strain T cells did not respond to MAS presented in the context of nonresponder strain AC. In addition, lymphoid cells from a B10 leads to B6AF1 radiation bone marrow chimera were also found to be capable of responding to MAS, but only in the presence of AC that expressed cell surface determinants controlled by the I-E/C subregion. The data presented here indicate that MAS-induced T cell proliferative responses are controlled at the level of the AC by a gene(s) that maps to the I-E/C subregion of the MHC.  相似文献   

20.
Abstract Segregation distorters are selfish genetic elements that bias Mendelian segregation in their favor. All well-known segregation distortion systems consist of one or more "distorter" loci that act upon a "responder" locus. At the t complex of the house mouse, segregation distortion is brought about by the harmful effect of t alleles at a number of distorter loci on the wild-type variant of the responder locus. The responder and distorter alleles are closely linked by a number of inversions, thus forming a coherent t haplotype. It has been conjectured that the close integration of the various components into a "complete" t haplotype has been crucial for the evolutionary success of these selfish genetic elements. By means of a population genetical metapopulation model, we show that this intuition may be unfounded. In fact, under most circumstances an "insensitive" t haplotype retaining only the responder did invade and reach a high frequency, despite the fact that this haplotype has a strong segregation disadvantage. For certain population structures, the complete t haplotype was even competitively excluded by partial t haplotypes with lower segregation ratios. Moreover, t haplotypes carrying one or more recessive lethals only prevailed over their nonlethal counterparts if the product of local population size and migration rate ( Nm ) was not much smaller or larger than one. These phenomena occurred for rather realistic fitness, segregation, and recombination values. It is therefore quite puzzling that partial t haplotypes are absent from natural house mousepopulations, and that t haplotypes carrying recessive lethals prevail over nonlethal t haplotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号