首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven human pituitary adenomas obtained by transphenoidal surgery were investigated for the intracellular localization of PRL and GH, using the protein A-gold immunocytochemical technique. Among the seven cases two were prolactinomas, two were GH-secreting adenomas and three were mixed PRL and GH-secreting adenomas. When PRL or GH were revealed, immunoreactivity was found in the cellular compartments involved in protein secretion, RER, Golgi apparatus and secretory granules of corresponding secreting cells. An increasing gradient in the intensity of labeling was observed from the RER to the Golgi and to the granules which may correspond to the increasing concentration of the proteins occurring along their secretory pathway. In addition, crinophagy or destruction of secretory granules by the lysosomal system was observed for both secretory cells. Cells displaying simultaneously PRL and GH reactivity were never found, neither in pure nor in mixed adenomas demonstrating that in the different adenomas studied, secreting cells have retained their specificity and differentiation for the secretion of a single hormone.  相似文献   

2.
Seven human pituitary adenomas obtained by transphenoidal surgery were investigated for the intracellular localization of PRL and GH, using the protein A-gold immunocytochemical technique. Among the seven cases two were prolactinomas, two were GH-secreting adenomas and three were mixed PRL and GH-secreting adenomas. When PRL or GH were revealed, immunoreactivity was found in the cellular compartments involved in protein secretion, RER, Golgi apparatus and secretory granules of corresponding secreting cells. An increasing gradient in the intensity of labeling was observed from the RER to the Golgi and to the granules which may correspond to the increasing concentration of the proteins occurring along their secretory pathway. In addition, crinophagy or destruction of secretory granules by the lysosomal system was observed for both secretory cells. Cells displaying simultaneously PRL and GH reactivity were never found, neither in pure nor in mixed adenomas demonstrating that in the different adenomas studied, secreting cells have retained their specificity and differentiation for the secretion of a single hormone.  相似文献   

3.
The GH3 rat pituitary cell line which secretes prolactin (PRL) is characterized by the paucity and small size of secretory granules. We looked for the presence, in these cells and in normal PRL cells, of two acidic tyrosine-sulfated proteins which are widely distributed in dense-core secretory granules of endocrine and neuronal cells, secretogranins I and II, using immunofluorescence and electron microscope immunoperoxidase techniques. Both secretogranins were detected in secretory granules of GH3 cells and of normal cells. Moreover, with our pre-embedding approach, secretogranins were localized within some RER cisternae and within all sacules of the Golgi stacks in both PRL cell models. A few small vesicles, large dilated vacuolar or multivesicular structures, and some lysosome-like structures were also immunoreactive. Double localization of secretogranins and PRL performed on GH3 cells by immunofluorescence indicated that all cells contained secretogranins I and II, whereas only 50-70% of the cells contained PRL. Moreover, in the case of hormone treatment known to increase the number of secretory granules, most if not all mature secretory granules were immunoreactive for secretogranins, whereas in certain cells some of the granules were apparently not immunoreactive for PRL. These immunocytochemical observations show that GH3 cells, which under normal conditions form only a small number of secretory granules, produce secretogranins and package them into these granules.  相似文献   

4.
Prolactin (PRL) cells of the goat adenohypophysis have been identified by the IgG-gold procedure with anti-sheep PRL serum. The secretion of these cells show differences in size and labelling in the three reproductive stages under study. Cells containing PRL can be grouped into low secretory activity cells (PRL-I) and high secretory activity cells (PRL-II) regarding their ultrastructure and functional significance. PRL-I were the most frequent cells in animals at the anoestrus stage, presenting numerous secretory granules and scarce development of the rough endoplasmic reticulum (RER) and Golgi complex (GC). At anoestrus and pregnancy stages there are frequent granule fusions, and the hormonal content partially disappears, perhaps by digestion. PRL-II cells were the most numerous at the lactating stage, presenting a moderate number of secretory granules and well-developed GC and RER. Some PRL-II cells of lactating animals exhibiting scarce granules and numerous exocytosis suggesting a high secretory activity. In both anoestrus and pregnancy stages most granules range in diameter from 450 to 750 nm, in contrast to the lactating stage in which most granules range in diameter from 150 to 450 nm.  相似文献   

5.
Summary The immunocytochemical peroxidase-antiperoxidase technique was used to identify prolactin- and growth hormone-producing cells in the porcine pituitary at the ultrastructural level. The growth hormone-producing cells contain round secretory granules (300 nm to 500 nm in diameter). The prolactin-producing cells can be identified by their distinct round and ovoid secretory granules which vary in size. Most of these cells contain large granules (450 nm to 750 nm in diameter), but some prolactin-producing cells display smaller secretory granules (250 nm to 500 nm). The two hormones were localized exclusively in the secretory granules. Staining for prolactin was observed in round and ovoid granules, as well as in small and polymorphic granules within the Golgi complex. This study confirmed (i) that the two hormones are located in different cells, and (ii) that under normal physiological conditions no one cell can synthesize and store both hormones simultaneously.  相似文献   

6.
Summary Prolactin (PRL) cells were studied electron-microscopically and morphometrically in the annual cyprinodont fish, Cynolebias whitei during its life cycle. In prehatching larvae, PRL cells possessed small secretory granules, giant mitochondria and a well-developed Golgi apparatus. During hatching, no changes were observed in the volume density of the secretory granules, indicating that no increased release of PRL occurs at hatching. A significant change in the composition of PRL cells, i.e., the volume densities per cytoplasm volume of the different organelles, occurred between one day and one week of age. Thereafter, only minor differences were observed between age groups, indicating that no major changes occur in PRL cell activity during the lifespan of C. whitei. However, the volume density per cell volume of the nucleus decreased steadily with age during the lifespan. A comparison of the PRL cells in young and adult fish reared in fresh water (FW) with siblings reared from hatching in diluted sea water (1/3 SW) did not reveal any differences with respect to the volume densities of the organelles, including the secretory granules. However, significant differences were observed with respect to the diameter, electron-dense content and affinity to anti- PRL serum of the secretory granules. These differences indicate that, despite the similar volumetric composition of the PRL cells, their secretory granules contain a substantially higher concentration of PRL in FW-reared fish than in 1/3 SW-reared fish.  相似文献   

7.
To identify intracellular calcium pools that may be involved in the secretory process in prolactin (PRL) cells, hemi pituitaries were incubated in medium containing 10(-6) M dopamine, 5 mM cyclic cAMP (experimentals), or in medium alone (controls) and then processed for electron microscopy using potassium pyroantimonate to localize intracellular calcium. PRL in the medium was measured by radioimmunoassay. The concentration of antimonate associated with mitochondria, Golgi saccules, and secretory granules was estimated. Dopamine inhibition of PRL secretion (> 80% at 1, 2, 3 h) resulted in accumulation of secretory granules in all stages of maturation and dilation of Golgi saccules at 2 and 3 h, accompanied by increased mitochondria antimonate and increased Golgi-associated antimonate. Cyclic AMP stimulation of secretion (635% at 5 min., declining to 34% at 1 h) resulted in marked exocytosis at 5 and 15 min., declining after 30 min. Mitochondrial antimonate decreased after 30 min. Stimulated cells exhibited numerous coated membrane structures at or near exocytotic pits and an amassing of microvesicles at the margin of the Golgi apparatus. Although some secretory granules consistently exhibited reactivity to antimonate (unchanged by inhibition or stimulation), plasma membrane, and granule membrane translocated to the plasma membrane during exocytosis, were not reactive.  相似文献   

8.
Immunodetection of renin-angiotensin system (RAS) components indicates that there is a local RAS in anterior pituitary cells, particularly in lactotropes. We have attempted to determine if RAS molecules are secreted by lactotropes and the secretory pathways and intracellular sites of maturation. We investigated the secretory activity of individual lactotropes, using the reverse hemolytic plaque assay (RHPA), with GH3B6 tumor cells and normal male rat pituitary cells. We also determined the subcellular distributions of RAS components in these cells. Both tumor and normal cells secreted angiotensinogen, prorenin, renin, angiotensin I, angiotensin-converting enzyme, and angiotensin II, although at different levels. The percentage of secretory cells was generally higher in tumor lactotropes than in normal cells. The subcellular distribution of RAS components obtained by immunoperoxidase was very similar in both cell types, although the intensities of immunoreactivity differed. Cleaved and uncleaved components were found in rough endoplasmic reticulum (RER), Golgi saccules, and secretory granules, all compartments of the secretory pathway. The cleaved components in the RER suggest the existence of early maturation, whereas the presence of uncleaved products in the secretory granules of normal lactotropes might indicate late maturation sites.  相似文献   

9.
Recent immunoelectron microscopic studies have shown that immunoreactive prolactin (PRL) in rat pituitary can be detected not only in typical PRL cells, characterized by large secretory granules, but also in another type of cell, which contains small secretory granules. To determine whether or not these two cell types are involved in PRL biosynthesis, we developed a procedure to investigate PRL gene expression by using in situ hybridization at the ultrastructural level. Rat pituitary was fixed and vibratome sections were incubated with a PRL [35S]-cDNA probe and subsequently flat-embedded in Araldite. Semi-thin and ultra-thin sections were processed for autoradiography. The results indicate that only the two PRL cell types were labeled. When immunolabeling for PRL was applied to ultra-thin sections, only immunopositive cells were seen to contain silver grains. In these cells the silver grains were associated with the rough endoplasmic reticulum and nucleus. When a growth hormone (GH) [35S]-cDNA probe was used as a control, only GH-secreting cells were labeled. This study confirms that the two PRL cell types are involved in biosynthesis of PRL. Moreover, this simple in situ hybridization technique provides a new approach to accurately localize mRNA in complex tissue and to investigate the subcellular distribution of mRNA under differing experimental conditions.  相似文献   

10.
A pre-embedding immunoperoxidase procedure performed directly on cultured cells in situ was used to localize several intracellular antigens at the electron-microscope level. With this procedure, we compared the effect of various fixatives, with or without saponin permeabilization, on the immunoreactivity of a secretory product (prolactin) and membrane proteins in cultured prolactin cells. Prolactin was detected within all compartments of its intracellular secretory pathway. Membrane antigens of the rough endoplasmic reticulum, the Golgi apparatus, and lysosomes were localized in distinct intracellular compartments. These immunocytochemical results are discussed in relationship to others in the literature that describe the localization of similar types of antigens. The technique, here described, which preserves ultrastructural detail and antigenicity, should be applicable for the localization of other intracellular antigens in cultured cells.  相似文献   

11.
Six GH adenomas and three prolactinomas were investigated by light- and electron-microscopic morphological and immunocytochemical methods and the effect of vasoactive intestinal polypeptide (VIP) on growth hormone (GH) and prolactin (PRL) secretion was tested in vitro. The tumour cells of the acromegalic patients revealed both GH and PRL immunoreactivity while prolactinomas showed only PRL activity. All the adenomas stained immunocytochemically also for VIP. By electron microscopy, the tumours included two densely and two sparsely granulated GH, two mixed GH/PRL, and three sparsely granulated PRL adenomas. The dissociated cells were explanted, and cultured in vitro. The cultures in micro test plates were treated with VIP at different concentrations between 10(-5)-10(-12) M. GH and PRL contents in the culture media were measured by radioimmunoassay. GH release was significantly stimulated by VIP in a dose-dependent manner over the whole concentration range, while VIP was effective on the PRL release only at 10(-6)-10(-7) M concentration. The cells of a mixed adenoma were grown in Petri dishes and used for ultrastructural and immunocytochemical studies. The cytoplasmic structure of the cells treated with VIP corresponded to that of active hormone-secreting cells with large ergastoplasmic fields and Golgi zones containing secretory granules. Massive exocytotic events were encountered mainly in the GH-type cells. GH and PRL double immunocytochemistry showed the predominance of GH cells, many of them containing low amounts of PRL as well. Cells predominantly containing PRL were spread among them, they also might contain GH as well. Some of the cells contained only a single immunoreactive hormone. The intensity of gold labelling of the secretory granules appeared higher in the VIP-treated cells than in the untreated control ones which showed a cytoplasmic structure characteristic of glandular cells with low secretory activity. As all the adenoma cells both contained and reacted to VIP, our results are in agreement with an autocrine or paracrine effect of this peptide. The fine structure of the cells in the cultures treated with VIP supply an additional argument to the assumption that VIP may serve as a growth factor for these cell types.  相似文献   

12.
We studied the cellular and subcellular localization of Galpha-subunits in pancreas by immunocytochemistry. Golfalpha and G11alpha were specifically localized in islet insulin B-cells and glucagon A-cells, respectively. Gsalpha and Gqalpha labeling was more abundant in B-cells. The presence of Golfalpha in B-cells was confirmed by in situ hybridization. In B-cells, Golfalpha and Gsalpha were found in the Golgi apparatus, plasma membrane (PM) and, remarkably, in mature and immature insulin secretory granules, mainly at the periphery of the insulin grains. Gqalpha was detected on the rough endoplasmic reticulum (RER) near the Golgi apparatus. In A-cells, the Galpha-subunits were mostly within the glucagon granules: G11alpha gave the strongest signal, Gsalpha less strong, Gq was scarce, and Golf was practically absent. Gqalpha and Gsalpha immunoreactivity was detected in acinar cells, although it was much weaker than that in islet cells. The cell-dependent distribution of the Galpha-subunits indicates that the stimulatory pathways for pancreatic function differ in acinar and in islet B- and A-cells. Furthermore, the G-protein subunits in islet cell secretory granules might be functional and participate in granule trafficking and hormone secretion.  相似文献   

13.
Mammotrophs or prolactin (PRL) cells were identified in the adenohypophysis of adult golden hamsters by immunocytochemical techniques with a polyclonal anti-PRL, that was proved to be specific to PRL by the dot immunoblotting test. Postembedding immunostaining was performed on Araldite thin sections by immunoperoxidase and immunogold methods. PRL cells were classified into three types according to the different size of the secretory granules. The Type A cells were usually small and angular or oval in shape, and had secretory granules ranging in diameter from 100-230 nm, and showed poorly developed organelles. The Type B and C cells were larger and round or ovoid in shape, contained larger granules, 230-280 nm and 280-570 nm, respectively, and displayed well developed organelles. Immunoreactive PRL cells in the male pituitaries were far less numerous than in the nonpregnant female glands, and were mostly of the Type A and B, whereas in the female the Type C and B cells predominated. In pregnant females, Type C cells became activated and increased in number, while the other two types decreased in proportion. In lactating females, Type A and B cells significantly increased in number at the expense of the Type C cells; meanwhile, the exocytosis of secretory granules was frequently found in all types of PRL cells. The present findings suggest that Type C and B PRL cells, especially the former, are potent in producing and releasing PRL and highly responsive to various physiological stimuli, while Type A cells are probably relatively inert in synthetic activity.  相似文献   

14.
Relaxin immunoreactivity was previously demonstrated in three cell types within the hamster placenta; fetal primary and secondary giant trophoblast cells (GTCs) and maternal endometrial granulocytes. The objectives of the present research were to examine the ultrastructure of the GTCs and identify the intracellular relaxin storage site. Primary GTCs, first present on day 8 of gestation, were characterized by numerous polyribosomes and large heterogeneous cytoplasmic inclusions suggesting phagocytic activity. Primary and secondary GTCs from days 10, 14, and 15 of gestation contained numerous polyribosomes, mitochondria with tubular cristae, and extensive Golgi complex, and abundant rough endoplasmic reticulum, all characteristics of a cell actively involved in protein synthesis. Membrane-bound secretory granules were not present. Relaxin was immunolocalized within the Golgi complex of primary and secondary GTCs using the avidin-biotin-peroxidase method. Following differential centrifugation of hamster placental homogenates and radioimmunoassay (RIA) of subcellular fractions, the majority of relaxin immunoactivity was detected in the postmicrosomal fraction; however, the majority of relaxin immunoactivity from similarly treated pig corpora lutea was present in the mitochondrial/granule fraction. These data indicate that hamster placental relaxin is not stored in membrane-bound secretory granules but is contained within the extensive Golgi complex of the GTC.  相似文献   

15.
GH4C1 cells are a rat pituitary tumor cell strain in which the level of cellular prolactin (PRL) and PRL-containing secretory granules can be regulated by hormone treatment. The chromogranins/secretogranins (Sg) are a family of secretory proteins which are widely distributed in the secretory granules of endocrine and neuronal cells. In the present study, we investigated in GH4C1 cell cultures the regulation of the cell content of the Sg by immunoblotting and the relationship between the storage of Sg I and Sg II and PRL by double immunocytochemistry. GH4C1 cells grown in the presence of gelded horse serum, a condition in which these cells contain a low level of secretory granules, contained low levels of PRL, Sg I, and Sg II. Treatment of GH4C1 cells with a combination of 17 beta-estradiol, insulin, and epidermal growth factor for 3 days, known to induce a marked increase in the number of secretory granules, increased the cell contents of PRL, Sg I, and Sg II. To determine whether the induction of PRL was morphologically associated with that of the Sg, the distribution of PRL and the Sg was determined by double immunofluorescence microscopy. After hormone treatment, 54% of cells showed positive PRL immunoreactivity, fluorescence being extranuclear and consistent with staining of the Golgi zone and secretory granules. Forty-six percent of PRL-positive cells stained coincidently for Sg I, while 72% of the PRL cells were also reactive with anti-Sg II. To determine whether PRL storage was associated with storage of at least one of the Sg, cells were stained with anti-PRL and anti-Sg I and anti-Sg II together. Eighty-six percent of PRL cells stained for one or the other of the Sg. Therefore, PRL storage in GH4C1 cell cultures is closely but not completely associated with the storage of Sg I and/or II.  相似文献   

16.
The distribution of three proteins discharged by regulated exocytosis--growth hormone (GH), prolactin (PRL), and secretogranin II (SgII)--was investigated by double immunolabeling of ultrathin frozen sections in the acidophilic cells of the bovine pituitary. In mammotrophs, heavy PRL labeling was observed over secretory granule matrices (including the immature matrices at the trans Golgi surface) and also over Golgi cisternae. In contrast, in somatotrophs heavy GH labeling was restricted to the granule matrices; vesicles and tubules at the trans Golgi region showed some and the Golgi cisternae only sparse labeling. All somatotrophs and mammotrophs were heavily positive for GH and PRL, respectively, and were found to contain small amounts of the other hormone as well, which, however, was almost completely absent from granules, and was more concentrated in the Golgi complex, admixed with the predominant hormone. Mixed somatomammotrophs (approximately 26% of the acidophilic cells) were heavily positive for both GH and PRL. Although admixed within Golgi cisternae, the two hormones were stored separately within distinct granule types. A third type of granule was found to contain SgII. Spillage of small amounts of each of the three secretory proteins into granules containing predominantly another protein was common, but true intermixing (i.e., coexistence within single granules of comparable amounts of two proteins) was very rare. It is concluded that in the regulated pathway of acidophilic pituitary, cell mechanisms exist that cause sorting of the three secretory proteins investigated. Such mechanisms operate beyond the Golgi cisternae, possibly at the sites where condensation of secretion products into granule matrices takes place.  相似文献   

17.
The time of appearance and distribution of substance P (SP)-like immunoreactivity in the granular convoluted tubule cells of the developing male mouse submandibular glands were examined, and the subcellular localization of SP-like immunoreactivity was investiagted by electron microscopy. At 25 days of age, SP-like immunoreactivity was first detected in the supranuclear cytoplasm of the granular convoluted tubule cells, which occurred either singly or in small clusters. At 30 and 35 days of age, granular convoluted tubule cells with SP-like immunoreactivity were more numerous than in the earlier stages, as the volume ratio of the cells increased. Not all granular convoluted tubule cells demonstrated SP-like immunoreactivity. The number of cells with SP-like immunoreactivity decreased at 60 days of age, and these cells had completely disappeared at 90 days of age. Most, but not all, secretory granules in the granular convoluted tubule cells were strongly labeled with gold particles, indicating that the subcellular site of SP-like substance is in the secretory granules within the cells. The findings suggest that the physiological role of the SP-like substance secreted from the GCT cells is restricted to the early postnatal stages, and that it may be involved in the development of the oral mucosa or digestive tract as a trophic factor.  相似文献   

18.
Homozygous little (lit/lit) mutant mice exhibit a growth lag which is manifested at approximately two weeks postnatally. Functional aspects of the development of pituitary growth hormone (GH) cells and prolactin (PRL) cells were thus analyzed by means of colloidal gold immunocytochemistry at the ultrastructural level in lit/lit mice and their normal counterparts ranging in age from 5 days postnatally to adulthood. In the adult normal and lit/lit pituitaries, secretory granules in GH cells and PRL cells showed a positive immunoreaction to their respective antisera, as did granules in both cell-types at 5 days postnatally. By 14 days some GH cells in lit/lit pituitaries appeared to be less densely populated with granules than GH cells in normal pituitaries, but a positive immunoreaction continued to occur even in sparsely granulated GH cells. PRL cells showed ultrastructural features in lit/lit pituitaries which were similar to those in normal mice, and immunoreactivity was present at all stages examined. The results indicate that since differences in granule reactivity were not evident between lit/lit and normal GH cells, despite ultrastructural morphologic differences which were present by 14 days postnatally, manifestations of the defect in lit/lit may be primarily quantitative in terms of numbers of granules and/or numbers of GH cells. With respect to PRL cells, neither morphologic nor functional aberrations could be observed; thus, a deficit in PRL hormone production might be the result of a more subtle defect than that in GH cells.  相似文献   

19.
Immunolabelling of prolactin (PRL) with protein A-colloidal gold complex and tissue fine structure were enhanced after postfixation of pituitary gland with osmium tetroxide and embedment in acrylic momers (LR White). Thin sections were treated with sodium metaperiodate before immunocytochemistry. An intense PRL labelling was detected in secretory granules, Golgi complexes and extracellular accumulation of the hormone. The use of osmium greatly improved the fine structure of the tissue and its stability during acrylic embedment.  相似文献   

20.
Using an antibody revealed by the protein A-gold technique, we have studied the distribution of clathrin antigenic sites in the Golgi area of pancreatic B-cells. Golgi compartments showing an immunolabelling comprised extensive segments of cisternae, typical coated vesicles, dilated extremities of cisternae with condensing secretory material, and newly formed secretory granules. Most of the labelled membranes were observed at the trans Golgi pole while little immunoreactivity was found on the cis pole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号