首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present study was carried out to establish porcine defined IVP. In Experiments 1 and 2, we investigated the efficacy of additional 0.6 mM cystine and/or 100 microM cysteamine (Cys) to a defined TCM199 maturation medium with regard to the intracellular glutathione (GSH) concentration and the developmental competence of in vitro matured porcine oocytes following intracytoplasmic sperm injection (ICSI). The control medium was a modified TCM199 containing 0.05% (w/v) polyvinyl alcohol (PVA). Cys and/or cystine were added to the control medium. The control group and immature oocytes (presumptive germinal vesicle oocytes; GV) were prepared for GSH assay. In Experiment 3, the efficacy of epidermal growth factor (EGF) addition to a modified porcine zygote medium (mPZM) for in vitro culture (IVC) medium was investigated on embryonic development and the mean cell number of blastocysts following ICSI. As a positive or negative control, 0.3% BSA (mPZM-3) or 0.3% PVA (mPZM-4), respectively, was added to the base medium. The defined IVC medium was supplemented with 5 or 10 ng/ml EGF. In Experiment 1, no significant difference was found in the rates of cleavage (31.4-64.3%) and blastocyst formation (6.5-22.9%) among the treatment and control groups. The mean cell numbers per blastocyst ranged from 30 to 48 among the groups without significant differences. However, in Experiment 2, the intracellular GSH concentrations in the oocytes cultured in the medium supplemented with 100 microM Cys (9.6 pmol/oocyte) or Cys + cystine (9.9 pmol/oocyte) were significantly (p < 0.05) higher than the control (2.5 pmol/oocyte) and 0.6 mM cystine (6.5 pmol/oocyte) groups, but not different from the GV group (9.0 pmol/oocyte). The GSH concentration in the cystine group was also significantly (p < 0.05) higher than that in the control group, but not different from the GV group. In Experiment 3, the rates of cleavage and blastocyst formation and the mean cell numbers of blastocysts were not significantly different among the groups. However, the addition of 5 ng/ml EGF into the mPZM-4 resulted in a significantly (p < 0.05) higher blastocyst rate per cleaved embryo than the other two defined groups (mPZM-4 + 5 ng/ml: 48.6%, mPZM-4 and mPZM-4 +10 ng/ml: 23.4% and 23.1%, respectively).The present results indicate that the addition of Cys to a defined medium for in vitro maturation (IVM) of porcine oocytes increases intracellular GSH concentration. Further addition of cystine into the IVM medium containing 100 microM Cys is not necessary and TCM199 plus Cys (100 microM) could be used as a defined IVM medium for porcine oocytes. The addition of 5 ng/ml EGF to a defined IVC medium has enhanced subsequent development after ICSI. This study shows that porcine blastocysts can be produced by defined media throughout the steps of IVP (IVM, ICSI and IVC).  相似文献   

2.
Supplementation of IVM medium with cysteamine, beta-mercaptoethanol, cysteine and cystine induced bovine oocyte glutathione (GSH) synthesis, but only the effect of cysteamine on the developmental competence of these oocytes was tested. During IVM of sheep oocytes, cysteamine but not beta-mercaptoethanol increased embryo development. However, it is not known how long the high intracellular oocyte GSH levels obtained after IVM with thiol compounds, can be maintained. Thus, the present study was carried out to evaluate the effects of supplementing maturation medium with 100 microM beta-mercaptoethanol, 0.6 mM cysteine and 0.6 mM cystine on 1) intracellular GSH level after IVM, 2) after IVF, 3) in 6 to 8-cell embryos and 4) on embryo development. In oocytes after IVM and in presumptive zygotes after IVF, intracellular GSH levels were significantly higher in the treated groups (P < 0.05). While, GSH content in 6 to 8-cell embryos was similar among treatment groups (P > 0.05). Differences in cleavage rates and the percentage of embryos that developed to morula and blastocyst stages were significantly higher (P < 0.05) for treated oocytes than for those matured in the control medium. We conclude from the results that the high intracellular GSH levels after induction of GSH synthesis in bovine IVM by thiol compounds remain during IVF and are still present at the beginning of IVC, improving developmental rates. Moreover, the results indicate that this metabolic pathway is an important component of the cytoplasmic maturation process that affects the subsequent steps of in vitro embryo production.  相似文献   

3.
Our previous studies have shown that the addition of 100 mircroM cysteamine to the in vitro maturation (IVM) medium increased the embryo development of prepubertal goat oocytes. The aim of the present study was to evaluate the effect of adding different concentrations of cysteamine to the IVM medium and to the in vitro embryo culture medium (IVC) on the embryo development of prepubertal goat oocytes selected by the brilliant cresyl blue (BCB) test. Oocytes were exposed to BCB and classified as: oocytes with a blue cytoplasm or grown oocytes (BCB+) or oocytes without blue cytoplasm or growing oocytes (BCB-). In Experiment 1, oocytes were matured in a conventional IVM medium supplemented with 100 microM, 200 microM or 400 microM cysteamine. In Experiment 2, oocytes were matured with 400 microM cysteamine and following in vitro fertilization (IVF) were cultured in SOF medium supplemented with 50 microM and 100 microM cysteamine. In Experiment 1, BCB+ oocytes matured with 100 microM and 200 microM cysteamine showed higher normal fertilization and embryo development rates than BCB- oocytes. Oocytes matured with 400 microM cysteamine did not present these differences between BCB+ and BCB- oocytes. In Experiment 2, the addition of 50 microM and 100 microM cysteamine to culture medium did not affect the proportion of total embryos obtained from BCB+ oocytes (35.89% and 38.29%, respectively) but was significantly different in BCB- oocytes (34.23% and 29.04%, respectively, P < 0.05). In conclusion, the addition of 400 microM cysteamine to the IVM improved normal fertilization and embryo development of BCB- oocytes at the same rates as those obtained from BCB+ oocytes. The proportions of morulae plus blastocyst development were not affected by the treatments.  相似文献   

4.
The present study was carried out to study de novo glutathione (GSH) synthesis and to evaluate the effect of stimulating GSH synthesis during in vitro maturation (IVM) of adult and prepubertal mouse oocytes on the embryo developmental rate. Adult (8 weeks old) and prepubertal mice (24-26 days old) were primed with 5 IU of PMSG and oocytes were retrieved from the ovary 48 hr later for IVM. After IVM (18 hr) Cumulus oocyte complexes (COC) were in vitro fertilized (IVF) and in vitro culture (IVC) in order to observe embryo development. The IVM medium was supplemented with: 0, 25, 50, 100, or 200 microM of cysteamine. To study the novo GSH synthesis, 5 mM BSO was added during IVM of adult or prepubertal oocyte. Developmental rates up to blastocyst were recorded for each group. Experiments also included a group of ovulated oocytes (in vivo matured) after priming with PMSG and HCG. After IVM of adult mice oocytes, an improvement was observed on embryo development in all the supplemented groups when compared with the untreated group (P < 0.05). No differences were observed in blastocyst rate among IVM oocytes with cysteamine and ovulated oocytes. Prepubertal IVM mouse oocytes had a lower cleavage rate compared with ovulated oocytes (P < 0.05). Cysteamine failed to improve prepubertal oocytes developmental rates (P > 0,05). 2-cell embryos, coming from IVM prepubertal oocytes and ovulated oocytes had the same preimplantation developmental rate up to the blastocyst stage. In prepubertal, and adult oocytes an inhibition of embryo development was observed when buthionine sulfoximide (BSO), a specific inhibitor of the gamma-glutamylcysteine synthetase, was added during oocyte maturation (P < 0.01). In conclusion, an improvement in mouse embryo development was observed when cysteamine was added to the IVM medium of adult mice oocytes. In prepubertal oocytes cysteamine addition during oocyte maturation failed to improve embryo developmental rates. The presence of BSO lowered or completely blocked blastocyst development. This proves that, de novo GSH synthesis during oocyte maturation of adult and prepubertal oocytes undoubtedly plays an important role in embryo development. The improvement on oocyte competence observed in adult mice oocytes is probably related to intracellular GSH synthesis stimulated by cysteamine. Nevertheless the reason why cysteamine failed to improve prepubertal oocytes competence remains as an open question.  相似文献   

5.
Various thiol compounds are known to improve cytoplasmic and/or nuclear maturation of oocytes in vitro. The present study examined the effects of two thiol compounds, cysteine (0.1, 0.5, and 1.0 mM) and cysteamine (50, 100, and 200 microM), on cytoplasmic and nuclear maturation of canine oocytes. Oocytes collected from different reproductive stages were cultured in TCM-199 supplemented with 10% fetal bovine serum, 2.2 mg/ml sodium carbonate, 2.0 microg/ml estrogen, 0.5 microg/ml FSH, 0.03 IU/ml hCG, and 1% penicillin-streptomycin solution for 72 h. Data were analyzed by two-way ANOVA after arcscine transformation and protected by Bonferroni post hoc test. The effects of cysteine and cysteamine on canine IVM were varied depending on the reproductive stage of oocyte donor bitches. In the follicular stage, significantly more oocytes reached the metaphase II (M II) stage when cultured with 0.5 or 1.0 mM cysteine (16.7% and 16.9%, respectively) compared to the control (6.2%). In the follicular stage, cysteamine increased oocyte maturation rate upto the M II stage (15.1% to 17.0%) compared to the control (4.4%). Both the 0.5 mM cysteine and 100 microM cysteamine, alone or together, increased the intracellular GSH level of canine oocytes compared to the control. Irrespective of reproductive stage, no further beneficial effects on nuclear or cytoplasmic maturation were observed when 0.5 mM cysteine and 100 microM cysteamine were supplemented together. In conclusion, addition of 0.5 mM cysteine and 100 microM cysteamine to the maturation medium improved IVM of canine oocytes.  相似文献   

6.
It was demonstrated that cysteamine supplementation during in vitro maturation (IVM) improves embryo development by increasing glutathione (GSH) synthesis in several species. An improved developmental competence of oocytes matured in the presence of cysteamine was also recorded in buffalo species. The purpose of this work was to investigate (1) if glutathione is de novo synthesized during in vitro maturation of buffalo oocytes, (2) if cysteamine improves buffalo embryo development via an increase in GSH synthesis, and (3) if the inhibition of glutathione synthesis by buthionine sulfoximide (BSO), in the presence or absence of cysteamine, affects subsequent embryo development and GSH synthesis.Cumulus-oocytes complexes (COCs), recovered from slaughtered animals, were matured in vitro in TCM199+10% fetal calf serum (FCS), 0.5 microg/ml FSH, 5 microg/ml LH and 1 microg/ml 17-beta-estradiol in the absence or presence of cysteamine (50 microM), with or without 5mM BSO. Glutathione content was measured by high-performance liquid chromatography (HPLC) and fluorimetric analysis in immature oocytes and in oocytes matured in the different experimental conditions.In a second experiment, the mature oocytes were in vitro fertilized and cultured for 7 days in order to assess development to blastocysts (BLs). It was demonstrated that buffalo oocytes synthesize glutathione during in vitro maturation and that cysteamine increases glutathione synthesis. Furthermore, the promoting effects of cysteamine on embryo development and GSH synthesis were neutralized by buthionine sulfoximide. These results indicate that glutathione plays a critical role on buffalo embryo development.  相似文献   

7.
Cysteamine and beta-mercaptoethanol supplementation of in vitro maturation (IVM) medium has been found to increase intracellular glutathione (GSH) content in oocytes and to improve embryo development and quality in several species. The objective of this experiment was to study the effect of cysteamine and beta-mercaptoethanol added during IVM of sheep oocytes on GSH synthesis and embryo development. Furthermore, we examined if cysteamine addition (hence GSH production) had an effect on the reduction of the intracellular peroxide content. We matured oocytes obtained from ovaries collected at a slaughterhouse in vitro in the presence of 0, 50, 100, and 200 microM cysteamine (Experiment 1) or with 0, 50, 100, and 200 microM beta-mercaptoethanol (Experiment 2). Following fertilization and embryo development, there was a increasing level of morula and blastocyst development in the presence of cysteamine, reaching significance in the presence of 200 microM (P < 0.05). However, beta-mercaptoethanol did not influence on the rate of embryo development. GSH levels were measured in oocytes matured in the presence or absence of 200 microM cysteamine (Experiment 3) or 50 microM beta-mercaptoethanol (Experiment 4), with or without buthionine sulfoximide (BSO), an inhibitor of GSH synthesis. Results demonstrated that for both cysteamine and beta-mercaptoethanol, intracellular GSH levels increased against control values (P < 0.01), which was abolished in the presence of BSO. Finally, we reduced intracellular peroxide levels, as measured by the relative fluorescence of the intracellular peroxide probe, carboxy-H2DCFDA, in the presence of either 200 microM cysteamine or 50 microM beta-mercaptoethanol (Experiment 5). These results demonstrate that cysteamine, but not beta-mercaptoethanol, when present during IVM, stimulates sheep embryo development; both cysteamine and beta-mercaptoethanol stimulate GSH synthesis; the increase in intracellular GSH is associated with a decrease in peroxide levels within oocytes.  相似文献   

8.
Effect of 17beta-estradiol on the in vitro maturation of bovine oocytes   总被引:2,自引:0,他引:2  
Although 1 microg/ml of 17beta-estradiol (E2) is often used in routine in vitro maturation (IVM) and in vitro fertilization (IVF), its effect remains controversial. The objective of our study was to investigate the effects of E2 on bovine oocyte IVM and subsequent embryo development, using a defined medium. Bovine cumulus oocyte complexes (COCs), aspirated from 2 to 8 mm follicles of slaughterhouse ovaries, were matured in TCM199 in the presence of 1 microg/ml E2 with or without 0.05 IU/ml recombinant hFSH. Cultures without E2, FSH or both served as controls. COCs were matured for 22 h at 39 degrees C in a humidified atmosphere of 5% CO2 in air. To investigate the effect of E2 with and without FSH on nuclear maturation, COCs were fixed after maturation and the nuclear stage was assessed following DAPI staining. Similarly, denuded oocytes (DO) were matured in the presence of E2 and the nuclear stage assessed after 22 h. To investigate the effect of E2 with and without FSH during IVM on subsequent embryo development, in vitro matured COCs were fertilized in vitro and after removal of the cumulus cells, the presumed zygotes were cocultured on BRL monolayer for 11 days. At Day 4, the number of cleaved embryos, and at Days 9 and 11, the number of blastocysts, were assessed. Addition of 1 microg/ml E2 to TCM199 significantly decreased the percentage of Metaphase II (MII) compared to control (56.3 and 74.0%, respectively), and increased the percentage of nuclear aberrations compared to control (13.3 and 2.1%, respectively). The negative effect of E2 on nuclear maturation was stronger when DO were matured; 25.1 and 60.0% of the oocytes reached MII stage for the E2 and control groups, respectively. When COCs were matured in TCM199 supplemented with FSH, the addition of 1 microg/ml E2 did not influence the proportion of MII oocytes, although a higher percentage of nuclear aberrations as compared to control was observed. Presence of E2 during IVM also decreased the blastocyst rate (14.4 and 10.0% for control and E2 groups, respectively). However, when FSH was present, the addition of E2 had no effect on the cleavage rate and blastocyst formation (20.3 and 21.7% for control and E2 groups, respectively). In conclusion, supplementation of 1 microg/ml E2 to a serum free maturation medium negatively affects bovine oocyte nuclear maturation and subsequent embryo development. Although these effects are attenuated in the presence of FSH, we strongly suggest omission of E2 in routine maturation protocols of bovine oocytes.  相似文献   

9.
10.
Glutathione (GSH) concentration increases in bovine oocytes during in vitro maturation (IVM). The constitutive amino acids involved in GSH synthesis are glycine (Gly), glutamate (Glu) and cysteine (Cys). The present study was conducted to investigate the effect of the availability of glucose, Cys, Gly and Glu on GSH synthesis during IVM. The effect of the amino acid serine (Ser) on intracellular reduced/oxidized glutathione (GSH/GSSG) content in both oocytes and cumulus cells was also studied. Cumulus-oocyte complexes (COC) of cattle obtained from ovaries collected from an abattoir were matured in synthetic oviduct fluid (SOF) medium containing 8 mg/ml bovine serum albumin-fatty acid-free (BSA-FAF), 10 microg/ml LH, 1 microg/ml porcine FSH (pFSH) and 1 microg/ml 17 beta-estradiol (17beta-E2). GSH/GSSG content was measured using a double-beam spectrophotometer. The COC were cultured in SOF supplemented with 1.5mM or 5.6mM glucose (Exp. 1); with or without Cys+Glu+Gly (Exp. 2); with the omission of one constitutive GSH amino acid (Exp. 3); with 0.6mM Cys or Cys+Ser (Exp. 4). The developmental capacity of oocytes matured in IVM medium supplemented with Cys and the cell number per blastocyst were determined (Exp. 5). The results reported here indicate (1) no differences in the intracellular GSH/GSSG content at any glucose concentrations. Also, cumulus cell number per COC did not differ either before or after IVM (Exp. 1). (2) Glutathione content in oocytes matured in SOF alone were significantly different from oocytes incubated with SOF supplemented with Cys+Glu+Gly (Exp. 2). (3) Addition of Cys to maturation medium, either with or without Gly and Glu supplementation resulted in an increase of GSH/GSSG content. However, when Cys was omitted from the IVM medium intracellular GSH in oocytes or cumulus cells was less but not significantly altered compared to SOF alone (Exp. 3). (4) Glutathione content in both oocytes and cumulus cells was significantly reduced by incubation with 5mM Ser (Exp.4). (5) There was a significant increase in cleavage and blastocyst rates when Cys was added to maturation medium. In contrast, the cleavage, morula and blastocyst rates were significantly different when 5mM Ser was added to maturation media. There was also a significant difference in mean cell number per blastocyst, obtained from oocytes matured with 5mM Ser (Exp. 5). This study provides evidence that optimal embryo development in vitro is partially dependent on the presence of precursor amino acids for intracellular GSH production. Moreover, the availability of Cys might be a critical factor for GSH synthesis during IVM in cattle oocytes. Greater Ser concentration in IVM medium altered "normal" intracellular GSH in both oocytes and cumulus cells with negative consequences for subsequent developmental capacity.  相似文献   

11.
The aim of this study was to assess the effect of oocyte selection using the brilliant cresyl blue (BCB) test plus the addition of cysteamine to the in vitro maturation (IVM) medium to improve the in vitro embryo development of prepubertal goat oocytes. The oocytes were exposed to 26 microM BCB and classified according to their cytoplasm coloration: BCB+ (oocytes with blue cytoplasm) and BCB- (unstained oocytes). The oocytes were matured in a conventional IVM medium supplemented with cysteamine 100 microM. The control group consisted of oocytes not exposed to BCB and matured without cysteamine. The IVM-oocytes were inseminated and cultured in synthetic oviductal fluid (SOF) for 7 days. The normal fertilisation rate (oocytes showing 2 pronuclei and 1 sperm tail) of BCB+ oocytes (40%) was higher than those of BCB- (21%) and control oocytes (22%). The percentage of morulae plus blastocysts was higher (P < 0.05) in the BCB+ group than in the BCB- group (23.8 vs. 5.1%, respectively). In conclusion, the integration of the BCB test and the addition of cysteamine in the protocol of in vitro embryo production from prepubertal goat oocytes has improved the developmental rates of embryo development.  相似文献   

12.
The low number of embryos produced from in vitro matured, fertilized, and cultured (IVM-IVF-IVC) oocytes of prepubertal goat is mainly due to a low incidence of sperm head decondensation at fertilization (Martino et al., 1995: Theriogenology 43:473-485; Mogas et al., 1997: Theriogenology 48:815-829). Thiol compounds stimulate glutathione (GSH) synthesis and improve the rates of male pronucleus (MPN) formation and embryo development. The present study was carried out to determine whether supplementation of the IVM medium with 100 microM of cysteamine, 100 microM of beta-mercaptoethanol, 0.57 mM of cysteine, and 0.57 mM cystine might improve the embryo development and intracellular GSH level of prepubertal goat oocytes. After 27 hr post IVM, a sample of oocytes was frozen and the intracytoplasmic GSH content was evaluated by spectrophotometry. IVM-oocytes were inseminated with fresh semen and cultured in SOF medium. Only the addition of cysteamine to IVM media significantly improved the percentage of the morula plus blastocyst yield compared to the control group (oocytes matured in absence of thiol compounds) (22.2 vs. 6.4%, respectively; P < 0.05). The percentage of expanded blastocysts in cysteamine and control groups was 13.0 and 2.6%, respectively, and the mean cell number per blastocyst was 86.8 and 60.5, respectively. None of the other thiol compounds studied significantly improved the percentage of embryos obtained. It has been demonstrated that prepubertal goat oocytes synthesize GSH during IVM and that thiol compounds increase this GSH synthesis. In conclusion, only the addition of 100 microM of cysteamine to the maturation medium improves embryo development from prepubertal goat oocytes although all the thiol compounds used in this study increased intracellular GSH content.  相似文献   

13.
The purpose of this study was to evaluate whether the addition of cysteamine during in vitro maturation (IVM) of buffalo oocytes enhances embryo development. Cumulus-oocyte complexes (COC) from slaughterhouse ovaries were matured in vitro in TCM 199 supplemented with 10% fetal calf serum (FCS), 0.5 microg mL(-1) FSH, 5 microg mL(-1) LH, 1 microg mL(-1) 17 beta estradiol and 0 (control), 50, 100 or 200 micromol L(-1) of cysteamine for 24 hours. The matured oocytes then were fertilized and cultured for 7 days. No beneficial effect on maturation and cleavage rate was related to the addition of cysteamine. However, the percentage of embryos that developed to compact morula and blastocyst stage was significantly higher (P < or = 0.01) for oocytes matured in medium containing 50 micromol L(-1) of cysteamine than it was for oocytes matured with 0, 100 and 200 micromol L(-1) cysteamine (22.6% vs 14.9%, 15.7% and 13% respectively); moreover, the addition of 50 micromol L(-1) of cysteamine during IVM significantly (P < or = 0.01) increased the proportion of transferable quality (Grades 1 and 2) embryos (19.3% vs 11.3%, 11.6% and 11.2% respectively). The present study showed that adding a thiol compound (such as cysteamine) to the IVM medium improves buffalo in vitro embryo production (IVEP) efficiency, which so far has been unsatisfactory.  相似文献   

14.
Culture of single oocytes throughout in vitro maturation (IVM), fertilization (IVF) and culture (IVC) provides detailed information on maturity, fertilizability and developmental capacity of individual bovine oocytes and embryos. In the present study, effects of sperm concentration (Experiment 1), microdrop size (Experiment 2), and the addition of hypotaurine (HT) or glutathione (GSH; Experiment 3) during IVF were investigated. In Experiment 4, in vitro maturity and developmental capacity of bovine oocytes cultured for IVM in a medium supplemented with fetal calf serum (FCS), bovine serum albumin (BSA) or polyvinyl alcohol (PVA) during IVM were investigated. In Experiments 1 to 3, the percentages of normal (2 pronuclei with a spermtail) and polyspermic fertilization in singly cultured oocytes were similar to those of group IVF culture (5 oocytes/drop). The addition of GSH during single oocyte IVF significantly increased the proportion of normal fertilization and decreased the polyspermic fertilization compared with addition of HT or of the control. The rates of mature oocytes (62.4 and 67.7%) and blastocyst development (12.9 and 15.2%) for single oocyte IVM cultures (Experiment 4) were also similar compared with the group culture; PVA supplementation significantly increased the matured oocyte rate, but decreased blastocyst development significantly (7.1%) as compared with FCS (19.5%) or BSA (15.6%). These results indicate that a single oocyte culture system throughout in vitro production of bovine embryos provides similar maturity, fertilizability and developmental capacity to oocytes cultured in groups.  相似文献   

15.
The present study was carried out to evaluate if the addition of cysteamine to the culture medium during in vitro maturation of bovine oocytes increased the glutathione (GSH) levels in the mature oocytes, and if these changes may promote an improvement on in vitro development to the blastocyst stage. Follicular oocytes from slaughterhouse ovaries were matured in TCM 199 supplemented with 10% (v/v) fetal calf serum, hormones, and 0 (control), 25, 50, or 100 μM of cysteamine for 24 hr. After in vitro maturation the oocytes were fertilized and cultured for 8 days. The percentage of embryos that developed to the blastocyst stage was significantly higher (P < 0.01) for oocytes matured in medium containing 100 μM of cysteamine than for those matured in control medium. Moreover, the intracellular GSH levels were increased (P < 0.05) in oocytes matured with 100 μM of cysteamine with respect to control. No differences were observed in maturation and cleavage rates, and in the mean cell numbers per blastocyst among treatments (P > 0.05). These results indicate that the addition of thiol compounds such as cysteamine to maturation medium increases the efficiency of in vitro blastocyst production from immature bovine oocytes. The higher levels of GSH in oocytes matured in the presence of cysteamine suggest that the beneficial effects of cysteamine on in vitro maturation and subsequent development after in vitro fertilization are mediated by GSH. © 1995 wiley-Liss, Inc.  相似文献   

16.
Cysteamine when added during in vitro maturation (IVM) or in vitro embryo culture (IVC) stimulates glutathione (GSH) synthesis and improves embryo developmental rates. This suggests that GSH synthesis is decreased in the in vitro produced embryo. The present study was carried out to evaluate if addition of cysteamine to culture medium at the same time, during IVM and IVC of bovine oocytes, may promote an overall improvement on the developmental rate and embryo quality. Oocytes were matured in TCM 199 supplemented with 10% (v/v) fetal calf serum, hormones, and 0 or 100 microM of cysteamine for 24 hr. After IVM, the oocytes were fertilized (day 0). Day 2 embryos (2-8 cell) were washed and transferred to fresh IVC medium supplemented with 0, 25, 50, or 100 microM of cysteamine and cultured for 48 hr. After this, embryos were cultured in IVC medium without cysteamine until day 8 of IVC. In the present study, we confirmed our previous results by demonstrating that the percentage of embryos that developed to the blastocyst stage was significantly higher (P < 0.05) when 100 microM of cysteamine was added during IVM, and this was further improved when 100 and 50 microM of cysteamine where present during IVM and IVC, respectively (P < 0.05). After cryopreservation, no differences were observed on embryo development, but a significant increase on embryo hatching was found between unsupplemented and supplemented oocytes with 100 and 50 microM of cysteamine during IVM and IVC, respectively (P < 0.05). We can conclude that GSH synthesis stimulation during bovine IVM with cysteamine, concomitant with GSH stimulation during IVC, will be a useful and simple tool for increasing the efficiency of in vitro bovine embryo production.  相似文献   

17.
This study examined the ability of epidermal growth factor (EGF) to improve the developmental competence of pig oocytes matured in a protein-free (PF) in vitro maturation (IVM) system. Oocyte maturation was done in one of three media: 1. PF-TCM: tissue culture medium (TCM) 199 + 0.1% polyvinylalcohol (PVA); 2. PF-TCM+EGF: PF-TCM + 10 ng/ml EGF; and 3. +ve CONT: North Carolina State University (NCSU) 23 medium + 10% porcine follicular fluid. All media contained 0.57 mM cysteine. Hormonal supplements, 0.5 microg/mL LH and 0.5 microg/mL FSH, were present only for the first half (20 to 22 h) of the culture period. After maturation, oocytes were co-incubated with frozen-thawed spermatozoa for 5 to 6 h and transferred to embryo culture medium, NCSU 23 containing 0.4% BSA, for 144 h. In Experiment 1, differences in cumulus expansion were observed for oocytes matured in +ve CONT (Category 4), PF-TCM (Category 2) and PF-TCM+EGF (Category 3). However, no significant differences in nuclear maturation to metaphase II stage were observed. In Experiment 2, no differences in fertilization parameters were observed. Significant (P < 0.01) differences in cleavage rates were observed among the three media for a proportion of the oocytes matured (52, 60 and 69% in PF-TCM, PF-TCM+EGF, and +ve CONT, respectively). Oocytes matured in PF-TCM showed the lowest (P < 0.01) blastocyst development (22%). However, the same rate of blastocyst development was obtained for +ve CONT (37%) and PF-TCM+EGF (37%). Blastocyst cell numbers were significantly higher when oocytes were matured in the presence of EGF (26 vs. 37 to 41). In Experiment 3, oocytes matured in PF-TCM+EGF had a significantly (P < 0.05) higher intracellular glutathione (GSH) concentration (5.9 vs. 11.4 pmol/oocyte) compared with PF-TCM. Twenty-two of 25 embryo transfer recipients became pregnant (Experiment 4). Four animals returned to estrus in within 60 days. Six pregnant animals slaughtered at 26 to 45 days had 43 fetuses (range: 4 to 12) and the remaining 12 animals farrowed 82 piglets (range: 3 to 12). These results indicate that EGF enhances the developmental competence of pig oocytes matured in a protein-free culture medium which is correlated with higher GSH level in oocytes. Birth of piglets indicate that embryos derived from oocytes matured in the presence of EGF are viable.  相似文献   

18.
Kishida R  Lee ES  Fukui Y 《Theriogenology》2004,62(9):1663-1676
To establish a defined in vitro maturation culture system for porcine oocytes, we examined the effects of adding cysteine (Cys) and epidermal growth factor (EGF) to the maturation medium. Furthermore, to evaluate cytoplasmic maturation, we investigated GSH concentrations and embryo development after intracytoplasmic sperm injection (ICSI). The basic media for IVM were modified TCM199 containing 10% newborn calf serum (NBCS) or 0.1% polyvinyl alcohol (PVA), supplemented with amino acids. Adding EGF (10 ng/ml) or EGF + Cys (0.57 mM) to the defined medium (0.1% PVA + amino acids) increased (P < 0.05) the rate of nuclear maturation relative to the defined medium (without these additives). After ICSI, oocytes matured in a medium supplemented with NBCS, Cys and EGF had a higher (P < 0.05) rate of pronuclear formation rate than oocytes matured in the defined IVM medium. Although there was no significant difference in cleavage rates between NBCS- and PVA-containing media supplemented with both Cys and EGF, the rate of blastocyst development was lower (P < 0.05) in the defined medium than in the NBCS-containing medium. Intracellular GSH concentrations of oocytes matured in the NBCS- and PVA-containing media supplemented with both Cys and EGF were higher (P < 0.05) than in oocytes matured in PVA alone or in oocytes before maturation. Adding Cys and EGF to a defined medium for porcine IVM improved rates of nuclear maturation and cleaved oocytes following ICSI, probably due to increased GSH concentrations. Also, embryos derived from oocytes matured in the defined medium (with the addition of Cys and EGF) developed into blastocysts after ICSI.  相似文献   

19.
We determined the effects of follicular fluid in the maturation medium on bovine oocyte maturation, fertilization and subsequent development, as well as on the number of cells in blastocysts following culture. Fluid and oocytes from bovine follicles less than 5 mm in diameter were collected from the ovaries of slaughtered cows. For the maturation medium, follicular fluid at concentrations of 10, 30 or 60% (v/v) was added to Medium 199 with Earle's salts supplemented with 0.1 microg/ml estradiol-17 beta (E(2), Experiment 1) or 0.1 microg/ml E2 and 100 IU/ml hCG (Experiment 2). The control medium contained polyvinylpyrrolidone (PVP; 3 mg/ml) instead of follicular fluid. After maturation for 24 h, oocytes were fertilized in vitro with bull frozen-thawed spermatozoa and cultured on a monolayer of granulosa cells for 9 d. There were no differences in maturation or fertilization rates of oocytes. In Experiment 1, maturation medium containing 10% follicular fluid did not affect the developmental rate of the oocytes to > 2-cell, 8 to 16-cell, blastocyst and hatched blastocyst stage embryos, respectively; whereas 60% decreased embryonic development (P < 0.05) compared with the control. Blastocysts and hatched blastocysts developed from fertilized oocytes which had been matured in medium containing 10 and 30% follicular fluid/E(2) had more cells than the controls (P < 0.01). In Experiment 2, maturation medium containing 10 or 30% follicular fluid did not affect the development fertilized oocytes to the blastocyst stage compared with the control, but decreased at 60% (P < 0.01). There were no differences in the number of cells from Day 9 blastocysts and hatched blastocysts from fertilized oocytes matured in maturation medium containing follicular fluid and E(2) + hCG. The results of these experiments suggest that the addition of bovine follicular fluid to the maturation medium enhances the cell numbers in blastocysts from bovine follicular oocytes matured in vitro.  相似文献   

20.
Glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) is a ubiquitous intracellular free thiol that improves development of the male pronucleus at fertilisation and has also been implicated in promoting the development of preimplantation embryos. The objective of this study was to evaluate the effects of adding GSH or cysteine to the in vitro maturation medium on intracellular GSH amounts after in vitro maturation and fertilisation of prepubertal goat oocytes. Oocytes were matured in TCM199 medium supplemented with 10% bovine fetal serum, 1 mg/ml 17beta-estradiol, 10 microg/ml o-FSH, 10 microg/ml LH and 50 mg/ml gentamicin. In vitro maturation medium was completed with two independent treatments: GSH at different concentrations (0, 0.25, 0.50 and 1.00 mM) and L-cysteine at different concentrations (0, 150, 300, 600 and 900 microM). After 27 h of culture at 38.5 degrees C in 5% CO2 in air, the nuclear stage was evaluated. Simultaneously, another sample of oocytes was frozen and the intracellular GSH level was evaluated with spectrophotometric methodology. Oocytes were inseminated with fresh semen (2-3 x 10(6) sperm/ml) in TALP medium supplemented with 1 mg/ml hypotaurine. Oocytes were fixed at 20 h post-insemination to evaluate the in vitro fertilisation. Oocytes matured in 1.00 mM GSH-supplemented medium exhibited higher amounts of intracellular GSH (3.23 pmol per oocyte). The percentage of normal fertilisation (17-27%) was similar for the treatment groups. In conclusion, the addition of 1.00 mM GSH to the maturation medium could be a useful method for increasing the intracellular GSH levels of prepubertal goat oocytes. However, this increase was not associated with a higher normal fertilisation rate of prepubertal goat oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号