首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genetic hybrids of the genus Xiphophorus have historically been useful models for study of the genetic aspects of tumor formation. In the most studied Xiphophorus tumor model, two-gene loci, XMRK and DIFF, are implicated as critical both to UV-induced and spontaneous melanoma formation in BC(1) hybrids of crosses between X. maculatus and X. helleri, with X. helleri as the recurrent backcross parent. In addition to UV, the direct-acting carcinogen N-methyl-N-nitrosourea (MNU) has been used to induce tumors in Xiphophorus BC(1) hybrids from several cross types. In the present study, we address the hypothesis that excess melanomas in MNU-treated BC(1) hybrids may have been generated by direct mutation of CDKN2AB, a candidate gene for DIFF. MNU treatment of F(1) and BC(1) hybrid fish significantly increased tumor incidence at 6 months; however, no association was found between MNU-induced tumor formation and zygosity of the candidate tumor tumor-suppressor CDKN2AB in BC(1) hybrids, consistent with previously reported results. Sequence analysis of the X. maculatus CDKN2AB locus of heterozygous individuals (both BC(1) and F(1) hybrids) did not reveal any mutations caused by MNU, suggesting that the mechanism of MNU-induced melanoma formation in this Xiphophorus model does not involve direct mutation of CDKN2AB but may result from mutation of other critical genes.  相似文献   

3.
A murine Ets2 target gene isolated by differential display cloning was identified as the phospholipase A2 activating protein (PLAA) gene. A 2.7-kb human cDNA demonstrating high homology to mouse and rat Plaa genes was then isolated and characterized. Human PLAA contains six WD-40 repeat motifs and three different protein kinase consensus domains. Fluorescence in situ hybridization (FISH) mapping placed PLAA on chromosome 9p21, a region frequently deleted in various cancers. A comprehensive mapping strategy was employed to define further the chromosomal localization of PLAA relative to CDKN2A within the 9p21 locus. Radiation hybrid mapping placed the gene 7.69 cR from WI-5735 (LOD >3.0), a marker in close proximity to CDKN2A and CDKN2B. Yeast artificial chromosome (YAC) mapping localized PLAA proximal to the CDKN2A/CDKN2B genes and to a region flanked by D9S171 and INFA commonly deleted in many neoplasms. Two YACs contained both PLAA and D9S259, a marker present in a second more proximal minimal deleted region observed in cutaneous melanoma and squamous cell lung carcinoma. Double-color fiber FISH mapping confirmed the location of PLAA centromeric to D9S171 and CDKN2A/CDKN2B. The mapping data suggest a possible tumor suppressor role for this gene.  相似文献   

4.
Cloning and gene map assignment of the Xiphophorus DNA ligase 1 gene   总被引:1,自引:0,他引:1  
Fishes represent the stem vertebrate condition and have maintained several gene arrangements common to mammalian genomes throughout the 450 Myr of divergence from a common ancestor. One such syntenic arrangement includes the GPI-PEPD enzyme association on Xiphophorus linkage group IV and human chromosome 19. Previously we assigned the Xiphophorus homologue of the human ERCC2 gene to linkage group U5 in tight association with the CKM locus. CKM is also tightly linked to the ERCC2 locus on human chromosome 19, leading to speculation that human chromosome 19 may have arisen by fusion of two ancestral linkage groups which have been maintained in fishes. To investigate this hypothesis further, we isolated and sequenced Xiphophorus fish genomic regions exhibiting considerable sequence similarity to the human DNA ligase 1 amino acid sequence. Comparison of the fish DNA ligase sequence with those of other species suggests several modes of amino acid conservation in this gene. A 2.2-kb restriction fragment containing part of an X. maculatus DNA ligase 1 exon was used in backcross hybrid mapping with 12 enzyme or RFLP loci. Significant linkage was observed between the nucleoside phosphorylase (NP2) and the DNA ligase (LIG1) loci on Xiphophorus linkage group VI. This assignment suggests that the association of four DNA repair-related genes on human chromosome 19 may be the result of chance chromosomal rearrangements.   相似文献   

5.
M. Schartl 《Genetics》1988,119(3):679-685
In Xiphophorus, the causative genetic information for melanoma formation has been assigned by classical genetics to chromosomal loci, which are located on the sex chromosomes. In our attempts to molecularly clone these melanoma-determining loci, named Tu, we have looked for restriction-fragment-length markers (RFLMs) linked to the Tu loci. These RFLMs should be useful in obtaining a physical map of a Tu locus, which will aid in the cloning of the corresponding sequences. DNA samples from various Xiphophorus strains and hybrids including those bearing different Tu wild-type, deletion and translocation chromosomes, were screened for the presence of random RFLMs using homologous or heterologous sequences as hybridization probes. We find an EcoRI restriction fragment which shows limited crosshybridization to the v-erb B gene--but not representing the authentic c-erb B gene of Xiphophorus--to be polymorphic with respect to different sex chromosomes. Linkage analysis revealed that a 5-kb fragment is linked to the Tu-Sd locus on the X chromosome, a 7-kb fragment is linked to the Tu-Sr locus on the Y chromosome, both of Xiphophorus maculatus, and that a 12-kb fragment is linked to the Tu-Li locus on the X chromosome of Xiphophorus variatus. Using different chromosomal mutants this RFLM has been mapped to a frequent deletion/translocation breakpoint of the X chromosome, less than 0.3 cM apart from the Tu locus.  相似文献   

6.
The Src family kinase/Focal Adhesion Kinase (FAK) complex is a signaling platform playing a crucial role in transformation downstream of oncogenic growth factor receptors. In the case of melanoma in Xiphophorus fish, the oncogenic EGF receptor orthologue Xiphophorus melanoma receptor kinase (Xmrk) effects continuous activation of the Src family kinase Fyn, but not of the other family members Src or Yes. Here, Fyn is strongly involved in promoting many tumorigenic events. Although Fyn is expressed in most mammalian tissues, there are only few reports of its involvement in the development of solid tumors. To find out whether the prominent role of Xiphophorus Fyn is based on an altered binding to its important binding partner FAK when compared to its mammalian Fyn counterparts, we performed yeast-two-hybrid analyses. We compared Xiphophorus and murine Fyn with respect to their binding to full-length and truncated FAK constructs. We found that interaction with FAK occurs similarly for Xiphophorus and mouse Fyn. Both phosphorylated FAK residue Y397 and FAK proline-rich domain are involved in Fyn binding. We also found interaction of FAK and Fyn in human melanoma cell lines. These data suggest a possible, yet unrecognized role of Fyn in the tumorigenesis of human melanoma, too.  相似文献   

7.
Variability of genetic sex determination in poeciliid fishes   总被引:13,自引:4,他引:9  
Volff JN  Schartl M 《Genetica》2001,111(1-3):101-110
Poeciliids are one of the best-studied groups of fishes with respect to sex determination. They present an amazing variety of mechanisms, which span from simple XX-XY or ZZ-ZW systems to polyfactorial sex determination. The gonosomes of poeciliids generally are homomorphic, but very early stages of sex chromosome differentiation have been occasionally detected in some species. In the platyfish Xiphophorus maculatus, gene loci involved in melanoma formation, in different pigmentation patterns and in sexual maturity are closely linked to the sex-determining locus in the subtelomeric region of the X- and Y- chromosomes. The majority of traits encoded by these loci are highly polymorphic. This phenomenon might be explained by the high level of genomic plasticity apparently affecting the sex-determining region, where frequent rearrangements such as duplications, deletions, amplifications, and transpositions frequently occur. We propose that the high plasticity of the sex-determining region might explain the variability of sex determination in Xiphophorus and otherbreak poeciliids.  相似文献   

8.
9.
The clade B serpins occupy a unique niche among a larger superfamily by predominantly regulating intracellular proteolysis. In humans, there are 13 family members that map to serpin gene clusters at either 6p25 or 18q21. While most of these serpins display a unique inhibitory profile and appear to be well conserved in mammals, the clade B loci of several species show evidence of relatively recent genomic amplification events. However, it is not clear whether these serpin gene amplification events yield paralogs with functional redundancy or, through selective pressure, inhibitors with more diverse biochemical activities. A recent comparative genomic analysis of the mouse clade B cluster at 1D found nearly complete conservation of gene number, order, and orientation relative to those of 18q21 in humans. The only exception was the squamous cell carcinoma antigen (SCCA) locus. The human SCCA locus contains two genes, SERPINB3 (SCCA1) and SERPINB4 (SCCA2), whereas the mouse locus contains four serpins and three pseudogenes. At least two of these genes encoded functional, dual cross-class proteinase inhibitors. Mouse Serpinb3a was shown previously to inhibit both chymotrypsin-like serine and papain-like cysteine proteinases. We now report that mouse Serpinb3b extends the inhibitory repertoire of the mouse SCCA locus to include a second cross-class inhibitor with activity against both papain-like cysteine and trypsin-like serine proteinases. These findings confirmed that the genomic expansion of the clade B serpins in the mouse was associated with a functional diversification of inhibitory activity.  相似文献   

10.
M. Schartl 《Genetics》1990,126(4):1083-1091
Several species of the genus Xiphophorus are polymorphic for specific pigment patterns. Some of these give rise to malignant melanoma following the appropriate crossings. For one of these pattern loci from the playfish Xiphophorus maculatus the melanoma-inducing gene has been cloned and found to encode a novel receptor tyrosine kinase, designated Xmrk. Using molecular probes from this gene in Southern blot analyses on single fish DNA preparations from 600 specimens of different populations of various species of the genus Xiphophorus and their hybrids, either with or without melanoma-predisposing pattern, it was shown that all individuals contain the Xmrk gene as a proto-oncogene. It is located on the sex chromosome. All fish that carry a melanoma-predisposing locus which has been identified by Mendelian genetics contain an additional copy of Xmrk, closely linked to a specific melanophore pattern locus on the sex chromosome. The melanoma-inducing loci of the different species and populations are homologous. The additional copy of Xmrk obviously arose by a gene-duplication event, thereby acquiring the oncogenic potential. The homology of the melanoma-inducing loci points to a similar mechanism of tumor suppression in all feral fish populations of the different species of the genus Xiphophorus.  相似文献   

11.
Despite the major importance of sex determination in aquaculture, no master sex-determining gene has been identified so far in teleost fish. In the platyfish Xiphophorus maculatus, this master gene is flanked by two receptor tyrosine kinase genes, the Xmrk oncogene responsible for melanoma formation in some Xiphophorus interspecific hybrids, and its proto-oncogenic counterpart. Both Xmrk genes, which have already been characterised at the molecular level, delimit a region of about 1 Mb that contains other gene loci involved in sexual maturity, pigmentation and melanoma formation. We have constructed a genomic bacterial artificial chromosome (BAC) library of X. maculatus with a tenfold coverage of the haploid genome and walked on both X and Y sex chromosomes starting from both Xmrk genes. This led to the assembly of BAC contigs from the sex-determining region covering approximately 950 kb of the X and 750 kb of the Y chromosome. To our knowledge, these are the largest contigs reported so far for sex chromosomes in fish. Molecular analysis suggests that the sex-determining region of X. maculatus frequently undergoes retrotranspositions and other kinds of rearrangements. This genomic plasticity might be related to the high genetic variability observed in Xiphophorus for sex determination, sexual maturity, pigmentation and melanoma formation, which are encoded by gene loci located in the sex-determining region.  相似文献   

12.
A microsatellite genetic linkage map for Xiphophorus   总被引:3,自引:0,他引:3  
Interspecies hybrids between distinct species of the genus Xiphophorus are often used in varied research investigations to identify genomic regions associated with the inheritance of complex traits. There are 24 described Xiphophorus species and a greater number of pedigreed strains; thus, the number of potential interspecies hybrid cross combinations is quite large. Previously, select Xiphophorus experimental crosses have been shown to exhibit differing characteristics between parental species and among the hybrid fishes derived from crossing them, such as widely differing susceptibilities to chemical or physical agents. For instance, genomic regions harboring tumor suppressor and oncogenes have been identified via linkage association of these loci with a small set of established genetic markers. The power of this experimental strategy is related to the number of genetic markers available in the Xiphophorus interspecies cross of interest. Thus, we have undertaken the task of expanding the suite of easily scored markers by characterization of Xiphophorus microsatellite sequences. Using a cross between Xiphophorus maculatus and X. andersi, we report a linkage map predominantly composed of microsatellite markers. All 24 acrocentric chromosome sets of Xiphophorus are represented in the assembled linkage map with an average intergenomic distance of 7.5 cM. Since both male and female F1 hybrids were used to produce backcross progeny, these recombination rates were compared between "male" and "female" maps. Although several genomic regions exhibit differences in map length, male- and female-derived maps are similar. Thus Xiphophorus, in contrast to zebrafish, Danio rerio, and several other vertebrate species, does not show sex-specific differences in recombination. The microsatellite markers we report can be easily adapted to any Xiphophorus interspecies and some intraspecies crosses, and thus provide a means to directly compare results derived from independent experiments.  相似文献   

13.
The linkage of loci coding for glucose-6-phosphate dehydrogenase (G6PD) and phosphogluconate dehydrogenase (PGD) is described in fish of the genus Poecilia (Teleostei:Poeciliidae) and designated Poecilia linkage group I. These two loci were shown to assort independently from six other informative markers (peptidase S, malate dehydrogenase 2 [soluble], mannose phosphate isomerase, parvalbumin 2, phosphoglucomutase, and glyceraldehyde-3-phosphate dehydrogenase 2) within the limits of the data obtained. Data for the linkage analyses were generated by scoring starch-gel electrophoretic phenotypes of the eight loci in reciprocal backcross hybrids obtained from matings between Poecilia perugiae and P. vittata. The linkage chi 2 for G6PD-PGD locus pairs was significant (P less than 0.001) in all reciprocal backcross hybrid broods (22.7% recombinants in the combined data), indicating linkage in both parental species. The linkage of G6PD and PGD in gene maps of the poeciliid genera Xiphophorus and Poeciliopsis documents homology of this linkage within the family. Linkages in salmonid and centrarchid fishes suggest conservation of this linkage group in most or all teleosts. The six additional indpendently assorting loci have been assigned to independent linkage groups in Xiphophorus; thus, no example of poeciliid linkage group divergence has yet been identified.  相似文献   

14.
The products of 49 protein-coding loci were examined by starch gel electrophoresis for populational variation in six species of Xiphophorus fishes and/or segregation in intra- and interspecific backcross and intercross hybrids. Electrophoretic variation was observed for 29 of the 35 locus products in a survey of 42 population samples. The highest frequency of polymorphic loci observed in noninbred populations was 0.143. After ten or more generations of inbreeding, all loci studied were monomorphic. Inbred strains generally exhibited the commonest electrophoretic alleles of the population from which they were derived. An assessment of genetic distances among Xiphophorus populations reflected classical systematic relationships and suggested incipient subspeciation between X. maculatus from different drainages as well as several species groups. Thirty-three loci were analyzed with respect to segregation in hybrids. The goodness of fit of segregations to Mendelian expectations at all loci analyzed (except loci in linkage group I) is interpreted as evidence for high genetic compatibility of the genomes of Xiphophorus species. It is anticipated that these data will result in a rapid expansion of the assignment of protein-coding loci to linkage groups in these lower vertebrate species.  相似文献   

15.
The INK4 family is an important family of cyclin-dependent kinase inhibitors (CDKIs) and consists of CDKN2A, CDKN2B, CDKN2, and CDKN2D. Abnormal expression of CDKN2A has been reported in hepatocellular carcinoma (HCC) and is associated with the prognosis of patients and infiltration of immune cells. However, there is a lack of systematic research on the roles of the other INK4 family members in the diagnosis, prognosis, and immune regulation of HCC. Using online public databases and clinical samples, we comprehensively analyzed the INK4 family in HCC. All four INK4 proteins were overexpressed in HCC and correlated with advanced cancer stage and poor prognosis. INK4 expression accurately distinguished tumor from normal tissue, particularly CDKN2A and CDKN2C. The INK4 family participated in cell-cycle regulation and the DNA damage repair pathway, which inhibited genotoxic-induced apoptosis in tumorigenesis. INK4 proteins were positively correlated with the infiltration of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells) and immune checkpoints (CTLA-4, PD1, and PD-L1). CDKN2D had the highest correlation (correlation coefficient >0.3) with all the above-mentioned infiltrating immune cells and immune checkpoints, indicating that it may be useful as an immunotherapy target. The INK4 family was valuable for diagnosis and predicting the prognosis of HCC and participated in the occurrence, progression, and immune regulation of HCC, demonstrating its potential as a diagnostic and prognostic biomarker and therapeutic target in HCC.  相似文献   

16.
Charcot-Marie-Tooth (CMT) disease is the most common inherited motor and sensory neuropathy. The axonal form of the disease is designated as "CMT type 2" (CMT2). Although four loci known to be implicated in autosomal dominant CMT2 have been mapped thus far (on 1p35-p36, 3q13. 1, 3q13-q22, and 7p14), no one causative gene is yet known. A large Russian family with CMT2 was found in the Mordovian Republic (Russia). Affected members had the typical CMT2 phenotype. Additionally, several patients suffered from hyperkeratosis, although the association, if any, between the two disorders is not clear. Linkage with the CMT loci already known (CMT1A, CMT1B, CMT2A, CMT2B, CMT2D, and a number of other CMT-related loci) was excluded. Genomewide screening pinpointed the disease locus in this family to chromosome 8p21, within a 16-cM interval between markers D8S136 and D8S1769. A maximum two-point LOD score of 5.93 was yielded by a microsatellite from the 5' region of the neurofilament-light gene (NF-L). Neurofilament proteins play an important role in axonal structure and are implicated in several neuronal disorders. Screening of affected family members for mutations in the NF-L gene and in the tightly linked neurofilament-medium gene (NF-M) revealed the only DNA alteration linked with the disease: a A998C transversion in the first exon of NF-L, which converts a conserved Gln333 amino acid to proline. This alteration was not found in 180 normal chromosomes. Twenty unrelated CMT2 patients, as well as 26 others with an undetermined form of CMT, also were screened for mutations in NF-L, but no additional mutations were found. It is suggested that Gln333Pro represents a rare disease-causing mutation, which results in the CMT2 phenotype.  相似文献   

17.
The three members of the mammalian fringe gene family, Manic fringe (Mfng), Radical fringe (Rfng), and Lunatic fringe (Lfng), were identified on the basis of their similarity to Drosophila fringe (fng) and their participation in the evolutionarily conserved Notch receptor signaling pathway. Fringe genes encode pioneer secretory proteins with weak similarity to glycosyltransferases. Both expression patterns and functional studies support an important role for Fringe genes in patterning during embryonic development and an association with cellular transformation. We have now further characterized the expression and determined the chromosomal localization and genomic structure of the mouse Mfng, Rfng, and Lfng genes; the genomic structure and conceptual open reading frame of the human RFNG gene; and the refined chromosomal localization of the three human fringe genes. The mouse Fringe genes are expressed in the embryo and in adult tissues. The mouse and human Fringe family members map to three different chromosomes in regions of conserved synteny: Mfng maps to mouse Chr 15, and MFNG maps to human Chr 22q13.1 in the region of two cancer-associated loci; Lfng maps to mouse Chr 5, and LFNG maps to human Chr 7p22; Rfng maps to mouse Chr 11, and RFNG maps to human Chr 17q25 in the minimal region for a familial psoriasis susceptibility locus. Characterization of the genomic loci of the Fringe gene family members reveals a conserved genomic organization of 8 exons. Comparative analysis of mammalian Fringe genomic organization suggests that the first exon is evolutionarily labile and that the Fringe genes have a genomic structure distinct from those of previously characterized glycosyltransferases. Received: 19 February 1999 / Accepted: 22 February 1999  相似文献   

18.
19.
This report describes the isolation and characterization of genomic and cDNA clones which define a subfamily of type I keratins in Xenopus laevis whose expression is restricted to embryonic and larval stages. The XK81 subfamily, named after the prototype cDNA clone DG81, contains four members arranged in two pairs of closely homologous loci; they were named 81A1, A2, B1, and B2. Genomic clones were obtained representing all of these regions. The A1 gene has been completely sequenced together with approximately 1 kb of flanking sequences at each end; this gene corresponds to the previously reported cDNA clone 8128 (Jonas, E., T. D. Sargent, and I. B. Dawid, 1985, Proc. Natl. Acad. Sci. USA, 82:5413-5417). The B2 gene is represented by a partial cDNA clone, DG118. Upstream sequences and about half of the coding regions have been sequenced for the B1 and B2 genes, whereas the A2 locus has been identified on the basis of hybridization data and could be a gene or pseudogene. Genomic Southern blotting indicates that all members of the subfamily have been isolated. The keratin proteins encoded by the B1 and B2 genes are 96% homologous in the central rod domain, whereas A/B gene homology in this region is 81%. During development mRNAs derived from A and B genes accumulate coordinately during gastrula and neurula stages; in the tadpole, 81A mRNA decays rapidly, whereas 81B mRNA shows a second abundance peak, persists for most of tadpole life, and decays by metamorphosis. RNAs derived from the XK81 keratin subfamily are undetectable in the adult, where different type I keratin genes are expressed.  相似文献   

20.
Constitutional epigenetic changes detected in blood or non-disease involving tissues have been associated with disease susceptibility. We measured promoter methylation of CDKN2A (p16 and p14ARF) and 13 melanoma-related genes using bisulfite pyrosequencing of blood DNA from 114 cases and 122 controls in 64 melanoma-prone families (26 segregating CDKN2A germline mutations). We also obtained gene expression data for these genes using microarrays from the same blood samples. We observed that CDKN2A epimutation is rare in melanoma families, and therefore is unlikely to cause major susceptibility in families without CDKN2A mutations. Although methylation levels for most gene promoters were very low (<5%), we observed a significantly reduced promoter methylation (odds ratio = 0.63, 95% confidence interval = 0.50, 0.80, P < 0.001) and increased expression (fold change = 1.27, P = 0.048) for TNFRSF10C in melanoma cases. Future research in large prospective studies using both normal and melanoma tissues is required to assess the significance of TNFRSF10C methylation and expression changes in melanoma susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号