首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using siRNA technology, we down-regulated in human B-lymphoblastoid TK6 cells the two major oxidative DNA glycosylases/AP lyases that repair free radical-induced base damages, hNTH1 and hOGG1. The down-regulation of hOGG1, the DNA glycosylase whose main substrate is the mutagenic but not cytotoxic 8-oxoguanine, resulted in reduced radiation cytotoxicity and decreased double strand break (DSB) formation post-irradiation. This supports the idea that the oxidative DNA glycosylases/AP lyases convert radiation-induced clustered DNA lesions into lethal DSBs and is in agreement with our previous finding that overexpression of hNTH1 and hOGG1 in TK6 cells increased radiation lethality, mutant frequency at the thymidine kinase locus and the enzymatic production of DSBs post-irradiation [N. Yang, H. Galick, S.S. Wallace, Attempted base excision repair of ionizing radiation damage in human lymphoblastoid cells produces lethal and mutagenic double strand breaks, DNA Repair (Amst) 3 (2004) 1323-1334]. Interestingly, cells deficient in hNTH1, the DNA glycosylase that repairs a major lethal single free radical damage, thymine glycol, were more radiosensitive but at the same time fewer DSBs were formed post-irradiation. These results indicate that hNTH1 plays two roles in the processing of radiation damages: repair of potentially lethal single lesions and generation of lethal DSBs at clustered damage sites. In contrast, in hydrogen peroxide-treated cells where the majority of free radical DNA damages are single lesions, the base excision repair pathway functioned to protect the cells. Here, overexpression of hNTH1 and hOGG1 resulted in reduced cell killing while suppression of glycosylase expression resulted in elevated cell death.  相似文献   

2.
Oxidative damage to mitochondrial DNA has been implicated in human degenerative diseases and aging. Although removal of oxidative lesions from mitochondrial DNA occurs, the responsible DNA repair enzymes are poorly understood. By expressing the epitope-tagged proteins in COS-7 cells, we examined subcellular localizations of gene products of human DNA glycosylases: hOGG1, hMYH and hNTH1. A gene encoding for hOGG1 which excises 7,8-dihydro-8-oxoguanine (8-oxoG) from DNA generates four isoforms by alternative splicing (types 1a, 1b, 1c and 2). Three tagged isoforms (types 1b, 1c and 2) were localized in the mitochondria. Type 1a protein, which exclusively contains a putative nuclear localization signal, was sorted to the nucleus and lesser amount to the mitochondria. hMYH, a human homolog gene product of Escherichia coli mutY was mainly transported into the mitochondria. hNTH1 protein excising several pyrimidine lesions was transported into both the nucleus and mitochondria. In contrast to the three DNA glycosylases, translocation of the human major AP endonuclease (hAPE) into the mitochondria was hardly observed in COS-7 cells. These results suggest that the previously observed removal of oxidative base lesions in mitochondrial DNA is initiated by the above DNA glycosylases.  相似文献   

3.
Yang N  Galick H  Wallace SS 《DNA Repair》2004,3(10):1323-1334
A significant proportion of cellular DNA damages induced by ionizing radiation are produced in clusters, also called multiply damaged sites. It has been demonstrated by in vitro studies and in bacteria that clustered damage sites can be converted to lethal double strand breaks by oxidative DNA glycosylases during attempted base excision repair. To determine whether DNA glycosylases could produce double strand breaks at radiation-induced clustered damages in human cells, stably transformed human lymphoblastoid TK6 cells that inducibly overexpress the oxidative DNA glycosylases/AP lyases, hNTH1 and hOGG1, were assessed for their radiation responses, including survival, mutation induction and the enzymatic production of double strand breaks post-irradiation. We found that additional double strand breaks were generated during post-irradiation incubation in uninduced TK6 control cells. Moreover, overproduction of either DNA glycosylase resulted in significantly increased double strand break formation, which correlated with an elevated sensitivity to the cytotoxic and mutagenic effects of ionizing radiation. These data show that attempted repair of radiation damage, presumably at clustered damage sites, by the oxidative DNA glycosylases can lead to the formation of potentially lethal and mutagenic double strand breaks in human cells.  相似文献   

4.
5.
5,6-Dihydroxy-5,6-dihydrothymine (thymine glycol) and 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) are major DNA damage lesions produced by endogenous oxidative stress, as well as inflicted by carcinogens and ionizing radiation. The processing of Tg:G mismatch and 8-oxodG in close proximity of each other in a bistranded clustered environment in DNA oligomer duplexes as well as in a nucleosome core particle (NCP) model are reported here. The processing of the lesions was evaluated by purified enzyme cocktails of hNTH1 and hOGG1 as well as with a HeLa cell extract. Interestingly, the yield of double-strand breaks (DSBs) resulting from the processing of the bistranded lesions are appreciably lower when the DNA is treated with the HeLa cell extract compared with the relevant purified enzyme cocktail in both models. Clustered bistranded lesions become more repair refractive when reconstituted as an NCP. This indicates a complex interplay between the repair enzymes that influence the processing of the bistranded cluster damage positively to avoid the formation of DSBs under cellular conditions. In addition to position and orientation of the lesions, the type of the lesions in the cluster environment in DNA along with the relative abundance of the lesion-specific enzymes in the cells strongly prevents the processing of the oxidized nucleobases.  相似文献   

6.
Although DNA in eukaryotes is packaged in nucleosomes, it remains vulnerable to oxidative damage that can result from normal cellular metabolism, ionizing radiation, and various chemical agents. Oxidatively damaged DNA is repaired in a stepwise fashion via the base excision repair (BER) pathway, which begins with the excision of damaged bases by DNA glycosylases. We reported recently that the human DNA glycosylase hNTH1 (human Endonuclease III), a member of the HhH GpG superfamily of glycosylases, can excise thymine glycol lesions from nucleosomes without requiring or inducing nucleosome disruption; optimally oriented lesions are excised with an efficiency approaching that seen for naked DNA [1]. To determine if this property is shared by human DNA glycoylases in the Fpg/Nei family, we investigated the activity of NEIL1 on defined nucleosome substrates. We report here that the cellular concentrations and apparent kcat/KM ratios for hNTH1 and NEIL1 are similar. Additionally, after adjustment for non-specific DNA binding, hNTH1 and NEIL1 proved to have similar intrinsic activities toward nucleosome substrates. However, NEIL1 and hNTH1 differ in that NEIL1 binds undamaged DNA far more avidly than hNTH1. As a result, hNTH1 is able to excise both accessible and sterically occluded lesions from nucleosomes at physiological concentrations, while the high non-specific DNA affinity of NEIL1 would likely hinder its ability to process sterically occluded lesions in cells. These results suggest that, in vivo, NEIL1 functions either at nucleosome-free regions (such as those near replication forks) or with cofactors that limit its non-specific binding to DNA.  相似文献   

7.
Base excision repair (BER) is the primary pathway by which eukaryotic cells resolve single base damage. One common example of single base damage is 8-oxo-7,8-dihydro-2ʹ-deoxoguanine (8-oxoG). High incidence and mutagenic potential of 8-oxoG necessitate rapid and efficient DNA repair. How BER enzymes coordinate their activities to resolve 8-oxoG damage while limiting cytotoxic BER intermediates from propagating genomic instability remains unclear. Here we use single-molecule Förster resonance energy transfer (smFRET) and ensemble-level techniques to characterize the activities and interactions of consecutive BER enzymes important for repair of 8-oxoG. In addition to characterizing the damage searching and processing mechanisms of human 8-oxoguanine glycosylase 1 (hOGG1), our data support the existence of a ternary complex between hOGG1, the damaged DNA substrate, and human AP endonuclease 1 (APE1). Our results indicate that hOGG1 is actively displaced from its abasic site containing product by protein–protein interactions with APE1 to ensure timely repair of damaged DNA.  相似文献   

8.
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.

Key Words:

RB phosphorylation, Ionizing radiation, DNA damage, G2 checkpoint, Mouse embryo fibroblasts  相似文献   

9.
10.
Elevated level of DNA damage was observed in patients with depression. Furthermore, single nucleotide polymorphisms (SNPs) of base excision repair (BER) genes may modulate the risk of this disease. Therefore, the aim of this study was to delineate the association between DNA damage, DNA repair, the presence of polymorphic variants of BER genes, and occurrence of depression. The study was conducted on peripheral blood mononuclear cells of 43 patients diagnosed with depression and 59 controls without mental disorders. Comet assay was used to assess endogenous (oxidative) DNA damage and efficiency of DNA damage repair (DRE). TaqMan probes were employed to genotype 12 SNPs of BER genes. Endogenous DNA damage was higher in the patients than in the controls, but none of the SNPs affected its levels. DRE was significantly higher in the controls and was modulated by BER SNPs, particularly by c.977C>G–hOGG1, c.972G>C–MUTYH, c.2285T>C–PARP1, c.580C>T–XRCC1, c.1196A>G–XRCC1, c.444T>G–APEX1, c.-468T>G–APEX1, or c.*50C>T–LIG3. Our study suggests that both oxidative stress and disorders in DNA damage repair mechanisms contribute to elevated levels of DNA lesions observed in depression. Lower DRE can be partly attributed to the presence of specific SNP variants.  相似文献   

11.
Lesions in the DNA arise under ionizing irradiation conditions or various chemical oxidants as a single damage or as part of a multiply damaged site within 1–2 helical turns (clustered lesion). Here, we explored the repair opportunity of the apurinic/apyrimidinic site (AP site) composed of the clustered lesion with 5-formyluracil (5-foU) by the base excision repair (BER) proteins. We found, that if the AP site is shifted relative to the 5-foU of the opposite strand, it could be repaired primarily via the short-patch BER pathway. In this case, the cleavage efficiency of the AP site-containing DNA strand catalyzed by human apurinic/apyrimidinic endonuclease 1 (hAPE1) decreased under AP site excursion to the 3''-side relative to the lesion in the other DNA strand. DNA synthesis catalyzed by DNA polymerase lambda was more accurate in comparison to the one catalyzed by DNA polymerase beta. If the AP site was located exactly opposite 5-foU it was expected to switch the repair to the long-patch BER pathway. In this situation, human processivity factor hPCNA stimulates the process.  相似文献   

12.
13.
5-Formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. The elucidation of repair mechanisms for 5-foU will yield important insights into the biological consequences of the lesion. Recently, we reported that 5-foU is recognized and removed from DNA by Escherichia coli enzymes Nth (endonuclease III), Nei (endonuclease VIII) and MutM (formamidopyrimidine DNA glycosylase). Human cells have been shown to have enzymatic activities that release 5-foU from X-ray-irradiated DNA, but the molecular identities of these activities are not yet known. In this study, we demonstrate that human hNTH1 (endonuclease III homolog) has a DNA glycosylase/AP lyase activity that recognizes 5-foU in DNA and removes it. hNTH1 cleaved 5-foU-containing duplex oligonucleotides via a β-elimination reaction. It formed Schiff base intermediates with 5-foU-containing oligonucleotides. Furthermore, hNTH1 cleaved duplex oligonucleotides containing all of the 5-foU/N pairs (N = G, A, T or C). The specific activities of hNTH1 for cleavage of oligonucleotides containing 5-foU and thymine glycol were 0.011 and 0.045 nM/min/ng protein, respectively. These results indicate that hNTH1 has DNA glycosylase activity with the potential to recognize 5-foU in DNA and remove it in human cells.  相似文献   

14.
Base excision repair (BER) is carried out by two distinct pathways in mammalian cells, one dependent on DNA polymerase beta (Polb) and the other on proliferating cell nuclear antigen (Pcna). We studied whether the Polb-dependent pathway plays an important role in BER in vivo after exposure to ionizing radiation. For this purpose, we used mouse embryo fibroblasts derived from wild-type and Polb gene knockout littermates. Both cell lines had essentially the same clonogenic cell survival and low levels of apoptosis as determined by a colony formation assay and by a change in mitochondrial membrane potential, respectively. No significant cleavage of protein kinase C delta (Pkcd) in vivo, which is a substrate for caspase 3, was detected, and intact Pkcd was retained in both cell lines for at least 72 h after irradiation. Similar significant increases in caspase 3-like activities as measured by Asp-Glu-Val-Asp (DEVD) cleaving activity in vitro were observed in both cell lines after irradiation. Radiation induced cell cycle arrest in the form of a G(2)-phase block, and G(2)/M-phase fractions reached a peak approximately 10 h after irradiation and decreased thereafter with a similar time course in both cell lines. Similar levels of chromatin-bound Pcna were observed immediately after irradiation in non-S-phase cells of both cell lines and disappeared by 4 h after irradiation. We conclude that the deficiency in Polb does not have a significant influence on the radiation responses of these cells. Together with evidence accumulated in vitro, these results strongly support the idea that the Pcna-dependent pathway predominantly acts in BER of radiation-induced DNA damage in vivo.  相似文献   

15.
Cellular response to ionizing radiation-induced damage depends on the cell type and the ability to repair DNA damage. Some types of cells undergo apoptosis, whereas others induce a permanent cell cycle arrest and do not proliferate. Our study demonstrates two types of response of embryonic diploid fibroblasts WI-38 to ionizing radiation. In the WI-38 cells p53 is activated, protein p21 increases, but the cells are arrested in G2 phase of cell cycle. Some of the cells die by apoptosis, but in remaining viable cells p16 increases, senescence associated DNA-damage foci occur, and senescence-associated beta-galactosidase activity increases, which indicate stress-induced premature senescence.  相似文献   

16.
DNA repair status plays a major role in mutagenesis, carcinogenesis and resistance to genotoxic agents. Because DNA repair processes involve multiple enzymatic steps, understanding cellular DNA repair status has required several assay procedures. We have developed a novel in vitro assay that allows quantitative measurement of alkylation repair via O6-methylguanine DNA methyltransferase (MGMT) and base excision repair (BER) involving methylpurine DNA glycosylase (MPG), human 8-oxoguanine DNA glycosylase (hOGG1) and yeast and human abasic endonuclease (APN1 and APE/ref-1, respectively) from a single cell extract. This approach involves preparation of cell extracts in a common buffer in which all of the DNA repair proteins are active and the use of fluorometrically labeled oligonucleotide substrates containing DNA lesions specific to each repair protein. This method enables methylation and BER capacities to be determined rapidly from a small amount of starting sample. In addition, the stability of the fluorometric oligonucleotides precludes the substrate variability caused by continual radiolabeling. In this report this technique was applied to human breast carcinoma MDA-MB231 cells overexpressing human MPG in order to assess whether up-regulation of the initial step in BER alters the activity of selected other BER (hOGG1 and APE/ref-1) or direct reversal (MGMT) repair activities.  相似文献   

17.
Efficient S phase entry is essential for development, tissue repair, and immune defences. However, hyperactive or expedited S phase entry causes replication stress, DNA damage and oncogenesis, highlighting the need for strict regulation. Recent paradigm shifts and conflicting reports demonstrate the requirement for a discussion of the G1/S transition literature. Here, we review the recent studies, and propose a unified model for the S phase entry decision. In this model, competition between mitogen and DNA damage signalling over the course of the mother cell cycle constitutes the predominant control mechanism for S phase entry of daughter cells. Mitogens and DNA damage have distinct sensing periods, giving rise to three Commitment Points for S phase entry (CP1-3). S phase entry is mitogen-independent in the daughter G1 phase, but remains sensitive to DNA damage, such as single strand breaks, the most frequently-occurring lesions that uniquely threaten DNA replication. To control CP1-3, dedicated hubs integrate the antagonistic mitogenic and DNA damage signals, regulating the stoichiometric cyclin: CDK inhibitor ratio for ultrasensitive control of CDK4/6 and CDK2. This unified model for the G1/S cell cycle transition combines the findings of decades of study, and provides an updated foundation for cell cycle research.  相似文献   

18.
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.  相似文献   

19.
Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in multi-pathways to respond to DNA damage. Lack of or inhibition of PARP-1 activity leads to slow progress of cell cycle and sensitization of cells to different stresses. Recently, it was reported that besides the Ku- dependent main non-homologous end joining (NHEJ) pathway, there is a PARP-1-dependent complementary NHEJ pathway to repair DNA double strand break (DSB). Here we show that compared with PARP-1+/+ cells, PARP-1-/- cells display a much stronger G2 checkpoint response following ionizing radiation (IR). Treatment with Chk1 siRNA abolishes the stronger G2 checkpoint response and sensitizes PARP-1-/- cells to IR. These data indicate that the stronger G2 checkpoint response in PARP-1-/- cells is CHK1-dependent, which protects cells from IR-induced killing. We also show that 4-Amino-1,8-naphthalimide (4-AN, inhibitor of PARP) but not methoxyamine (inhibitor of base excision repair (BER)), affects IR-induced G2 arrest and cell sensitivity in PARP-1+/+ cells, resulting in the phenotypes similar to those of PARP-1-/- cells. These results indicate that DSB repair from the complementary NHEJ pathway of PARP-1, but not single strand break (SSB) repair from the BER function of PARP-1, may play an essential role in the over-activated CHK1 regulated G2 checkpoint response and radiosensitivity in PARP-1-/- cells.  相似文献   

20.
Ali MM  Hazra TK  Hong D  Kow YW 《DNA Repair》2005,4(6):679-686
We have shown previously that endonuclease III from Escherichia coli, its yeast homolog Ntg1p and E. coli endonuclease VIII recognize single dihydrouracil (DHU) lesions efficiently. However, these enzymes have limited capacities for completely removing DHU, when the lesion is present on duplex DNA as a tandem lesion. A duplex 30-mer (duplex1920) containing tandem DHU lesions at positions 19 and 20 from the 5' terminus was used as a substrate for human endonuclease III (hNTH) and endonuclease VIII (NEIL1). Two cleavage products, 18beta and 19beta were formed, when duplex1920 was treated with hNTH. The 18beta corresponded to the expected beta-elimination product generated from duplex1920, when the 5'-DHU of the tandem DHU was processed by hNTH. Similarly, 19beta is the beta-elimination product generated, when the 3'-DHU of the tandem DHU was processed by hNTH; 19beta thus still contained a DHU lesion at the 3' terminus. When these hNTH reaction products were further treated with human APE1, a single new product that corresponded to an 18mer was observed. These data suggested that human APE1 can help to process the 3' terminals following the action of hNTH on DHU lesions. Similarly, when duplex1920 was treated with NEIL1, two cleavage products, 18p and 19p were observed. The 18p and 19p corresponded to the expected beta,delta-elimination products derived from NEIL1 induced cleavage at the 5'-DHU and 3'-DHU of the tandem DHU, respectively. The 3'-phosphoryl group present in 18p can be readily removed by T4 polynucleotide kinase (PNK) to yield an 18mer that is suitable for repair synthesis. However, 19p required the participation of both PNK and APE1 to generate the 18mer. Together, we suggest that the processing of DNA-containing tandem DHU lesions, initiated by hNTH and NEIL1 can be channeled into two sub-pathways, the PNK-independent, APE1-dependent and the PNK, APE1-dependent pathways, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号