首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Heart type fatty acid binding protein (H-FABP) has been closely associated with acute coronary syndrome, cardiac abnormalities, stroke, and obstructive sleep disorder in previous studies. The aim of this study was to evaluate and compare the serum H-FABP levels and carotid artery intima-media thickness (CIMT) between patients with prediabetes and control subjects.

Research design and methods

We measured serum H-FABP levels in 58 prediabetic patients, 29 with impaired fasting glucose (IFG) and 29 with impaired glucose tolerance (IGT) and 28 age-, sex- and body mass index-matched control subjects using a sandwich enzyme-linked immunosorbent assay (ELISA), and in order to measure CIMT, all participants underwent high-resolution B-mode ultrasonography.

Results

Serum H-FABP levels were significantly elevated in pre-diabetic patients when compared with that of control subjects (IFG: 32.5 ± 34.2 ng/dL, IGT: 45.4 ± 45.8 ng/dL, control: 16.8 ± 14.9 ng/dL; p = 0.011). The difference in means of H-FABP levels between patients with IGT or IFG and control subjects was significant (p = 0.010 and p = 0.009, respectively). CIMT was higher in the pre-diabetic groups compared with the control group (IFG: 0.6 ± 0.1, IGT: 0.6 ± 0.1, control: 0.5 ± 0.1; p < 0.001), and H-FABP level was positively correlated with CIMT (p < 0.001, rho = 0.626).

Conclusion

Our results indicate that patients with pre-diabetes are at increased risk for cardiovascular disease. In addition, serum H-FABP levels could represent a useful marker for myocardial performance in patients with IFG and IGT.  相似文献   

2.

Aims

Calculation of net ion uptake rate (F) from hydroponic solutions relies on balanced equations where F is equal to the initial minus the final ion content, plus fertilization. Knowledge is thus required of both volume (V), concentration (C) and of their temporal variations. The literature, however, proposes simplified equations that disregard variations in V and are thus strictly inaccurate. This paper studies the bias arising from such simplified formulae and also from deviations in V and C measurements.

Methods

We used our experimental data and simulation to analyse the impact of different bias sources on F calculation, and to compare setups where C is regulated, or left to drift in order to study F = f(C).

Results

This paper reports two major findings, the first being that simplified equations distort F diurnal dynamics and ion uptake isotherms, yielding underestimated Michaelis-Menten parameters. The second shows the advantage of using C-regulated over unregulated systems to determine F when biased V and C measurements cannot be avoided.

Conclusions

Regulated systems are able to minimize the biases on F, but the measurement of water uptake rate is compulsory. Therefore, simplified formulae should not be used.  相似文献   

3.

Rationale

Accurate measurement of subsolid pulmonary nodules (SSN) is becoming increasingly important in the management of these nodules. SSNs were previously quantified with time-consuming manual measurements. The aim of the present study is to test the feasibility of semi-automatic SSNs measurements and to compare the results to the manual measurements.

Methods

In 33 lung cancer screening participants with 33 SSNs, the nodules were previously quantified by two observers manually. In the present study two observers quantified these nodules by using semi-automated nodule volumetry software. Nodules were quantified for effective diameter, volume and mass. The manual and semi-automatic measurements were compared using Bland-Altman plots and paired T tests. Observer agreement was calculated as an intraclass correlation coefficient. Data are presented as mean (SD).

Results

Semi-automated measurements were feasible in all 33 nodules. Nodule diameter, volume and mass were 11.2 (3.3) mm, 935 (691) ml and 379 (311) milligrams for observer 1 and 11.1 (3.7) mm, 986 (797) ml and 399 (344) milligrams for observer 2, respectively. Agreement between observers and within observer 1 for the semi-automatic measurements was good with an intraclass correlation coefficient >0.89. For observer 1 and observer 2, measured diameter was 8.8% and 10.3% larger (p<0.001), measured volume was 24.3% and 26.5% larger (p<0.001) and measured mass was 10.6% and 12.0% larger (p<0.001) with the semi-automatic program compared to the manual measurements.

Conclusion

Semi-automated measurement of the diameter, volume and mass of SSNs is feasible with good observer agreement. Semi-automated measurement makes quantification of mass and volume feasible in daily practice.  相似文献   

4.

Background

The use of mass spectrometry to investigate disease-associated proteins among thousands of candidates simultaneously creates challenges with the evaluation of operational and biological variation. Traditional statistical methods, which evaluate reproducibility of a single feature, are likely to provide an inadequate assessment of reproducibility. This paper proposes a systematic approach for the evaluation of the global reproducibility of multidimensional mass spectral data at the post-identification stage.

Methods

The proposed systematic approach combines dimensional reduction and permutation to test and summarize the reproducibility. First, principal component analysis is applied to the mean quantities from identified features of paired replicated samples. An eigenvalue test is used to identify the number of significant principal components which reflect the underlying correlation pattern of the multiple features. Second, a simulation-based permutation test is applied to the derived paired principal components. Third, a modified form of Bland Altman or MA plot is produced to visualize agreement between the replicates. Last, a discordance index is used to summarize the agreement.

Results

Application of this method to data from both a cardiac liquid chromatography tandem mass spectrometry experiment with iTRAQ labeling and simulation experiments derived from an ovarian cancer SELDI-MS experiment demonstrate that the proposed global reproducibility test is sensitive to the simulated systematic bias when the sample size is above 15. The two proposed test statistics (max t statistics and a sign score statistic) for the permutation tests are shown to be reliable.

Conclusion

The methodology presented in this paper provides a systematic approach for the global measurement of reproducibility in clinical proteomic studies.  相似文献   

5.

Background

Experimental and epidemiological evidence suggests that homocysteine (tHcy) may be a causal risk factor for atherosclerosis. B-vitamin supplements reduce tHcy and improve endothelial function in short term trials, but the long-term effects of the treatment on vascular structure and function are unknown.

Methods

We conducted a sub-study of VITATOPS, a randomised, double-blind, placebo-controlled intervention trial designed to test the efficacy of long term B-vitamin supplementation (folic acid 2 mg, vitamin B6 25 mg and vitamin B12 0.5 mg) in the prevention of vascular events in patients with a history of stroke. We measured carotid intima-medial thickness (CIMT) and flow-mediated dilation (FMD) at least two years after randomisation in 162 VITATOPS participants. We also conducted a systematic review and meta-analysis of studies designed to test the effect of B-vitamin treatment on CIMT and FMD.

Results

After a mean treatment period of 3.9 ± 0.9 years, the vitamin-treated group had a significantly lower mean plasma homocysteine concentration than the placebo-treated group (7.9 μmol/L, 95% CI 7.5 to 8.4 versus 11.8 μmol/L, 95% CI 10.9 to 12.8, p < 0.001). Post-treatment CIMT (0.84 ± 0.17 mm vitamins versus 0.83 ± 0.18 mm placebo, p = 0.74) and FMD (median of 4.0%, IQR 0.9 to 7.2 vitamins versus 3.0%, IQR 0.6 to 6.6 placebo, p = 0.48) did not differ significantly between groups. A meta-analysis of published randomised data, including those from the current study, suggested that B-vitamin supplements should reduce CIMT (-0.10 mm, 95% CI -0.20 to -0.01 mm) and increase FMD (1.4%, 95% CI 0.7 to 2.1%). However, the improvement in endothelial function associated with homocysteine-lowering treatment was significant in short-term studies but not in longer trials.

Conclusion

Although short-term treatment with B-vitamins is associated with increased FMD, long-term homocysteine-lowering did not significantly improve FMD or CIMT in people with a history of stroke.

Trial Registration

Clinical Trial Registration URL: http://www.actr.org.au/ Trial Registration number: 12605000005651  相似文献   

6.

Introduction

Serial monitoring of patients participating in clinical trials of carotid artery therapy requires noninvasive precision methods that are inexpensive, safe and widely available. Noninvasive ultrasonic duplex Doppler velocimetry provides a precision method that can be used for recruitment qualification, pre-treatment classification and post treatment surveillance for remodeling and restenosis. The University of Washington Ultrasound Reading Center (UWURC) provides a uniform examination protocol and interpretation of duplex Doppler velocity measurements.

Methods

Doppler waveforms from 6 locations along the common carotid and internal carotid artery path to the brain plus the external carotid and vertebral arteries on each side using a Doppler examination angle of 60 degrees are evaluated. The UWURC verifies all measurements against the images and waveforms for the database, which includes pre-procedure, post-procedure and annual follow-up examinations. Doppler angle alignment errors greater than 3 degrees and Doppler velocity measurement errors greater than 0.05 m/s are corrected.

Results

Angle adjusted Doppler velocity measurements produce higher values when higher Doppler examination angles are used. The definition of peak systolic velocity varies between examiners when spectral broadening due to turbulence is present. Examples of measurements are shown.

Discussion

Although ultrasonic duplex Doppler methods are widely used in carotid artery diagnosis, there is disagreement about how the examinations should be performed and how the results should be validated. In clinical trails, a centralized reading center can unify the methods. Because the goals of research examinations are different from those of clinical examinations, screening and diagnostic clinical examinations may require fewer velocity measurements.  相似文献   

7.

Purpose

To evaluate the scan-rescan reproducibility of high-resolution magnetic resonance imaging (MRI) of middle cerebral artery (MCA) plaque, and calculate the number of subjects needed for future longitudinal clinical studies.

Material and Methods

Twenty two patients with MCA plaque were scanned twice by a T2-weighted fast-spin-echo sequence at 3T. Areas and volumes of MCA lumen, total vessel and plaque were quantified and compared between two repeated scans. Agreement and measurement error was quantified by intraclass correlation coefficient (ICC) and coefficient of variance (CV) as defined by standard deviation (SD) of pair wise difference / mean. Sample size needed to detect 5% to 20% changes in area/volume was calculated using 80% power and 5% significance level.

Results

There was no significant different between the area and volume measurements of two repeated scans (p>0.05) with good agreement (ICC range 0.97–0.98 for area and 0.99 for volume). Relatively small measurement errors were observed with CVs range 6.1%-11.8% for area quantification and 4.9%-8.0% for volume quantification. Volume measurements tended to have 19.7% to 32.2% smaller CVs compared with area measurements. Sample size calculation showed a group of 47 patients was sufficient to detect 5% to 10% changes in MCA area/volume.

Conclusion

High resolution MRI is feasible for quantifying intracranial plaque area and volume in longitudinal clinical studies with low scan-rescan variability. Volume measurement tends to be more reproducible compared with area measurements.  相似文献   

8.

Background

Most studies of microRNA (miRNA) and disease have examined tissue-specific expression in limited numbers of samples. The presence of circulating miRNAs in plasma samples provides the opportunity to examine prospective associations between miRNA expression and disease in initially healthy individuals. However, little data exist on the reproducibility of miRNAs in stored plasma.

Methods

We used Real-Time PCR to measure 61 pre-selected microRNA candidates in stored plasma. Coefficients of variation (CVs) were used to assess inter-assay reliability (n = 15) and within-person stability over one year (n = 80). Intraclass correlation coefficients (ICCs) and polychoric correlation coefficients were used to assess within-person stability and delayed processing reproducibility (whole blood stored at 4°C for 0, 24 and 48 hours; n = 12 samples).

Results

Of 61 selected miRNAs, 23 were detected in at least 50% of samples and had average CVs below 20% for inter-assay reproducibility and 31 for delayed processing reproducibility. Ten miRNAs were detected in at least 50% of samples, had average CVs below 20% and had ICCs above 0.4 for within-person stability over 1–2 years, six of which satisfied criteria for both interassay reproducibility and short-term within-person stability (miR-17-5p, -191-5p, -26a-5p, -27b-3p, -320a, and -375) and two all three types of reproducibility (miR-27b-3p and -26a-5p). However, many miRNAs with acceptable average CVs had high maximum CVs, most had low expression levels, and several had low ICCs with delayed processing.

Conclusions

About a tenth of miRNAs plausibly related to chronic disease were reliably detected in stored samples of healthy adults.  相似文献   

9.

Background

Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF) results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients.

Methods

We studied 36 subjects (PEF range 80–570 l/min). All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique) or a forced maximal expiration to residual volume (FVC technique). Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer.

Results

The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p < 0.0001). The mean PEF recorded with the turbine spirometer was 5.5% lower than the Wright meter reading. The Fleisch spirometer result was 19.5% lower than the Wright reading. However, adjustment of the Wrights measurements from the traditional Wright's scale to the new EU Peak Flow scale produced results that were only 7.2% higher than the Fleisch pneumotachograph measurements.

Conclusion

Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.  相似文献   

10.

Aims

Root tissue density (RTD, the ratio of root dry mass to root volume) is a fundamental trait in comparative root ecology, being increasingly used as an indicator of plant species’ resource use strategy. However, the lack of standardized method to measure this trait makes comparisons tricky. This study aims to compare three methods commonly used for determining fine RTD and to test whether root dry matter content (RDMC, the ratio between root dry mass and root fresh mass) could be used as a surrogate of fine root tissue density.

Methods

RTD of 163 fine root samples was determined using (i) Archimedes’ method, (ii) image analysis (WinRHIZO software), and (iii) using the root dry matter content as a proxy. Root samples belonged to different herbaceous species grown in different conditions.

Results

RTD measured with Archimedes’ method was positively correlated with RTD estimated with image analysis and with RDMC. However we demonstrated that RTD measured with Archimedes’ method was better predicted by RDMC (R2?=?0.90) than by RTD measured with image analysis (R2?=?0.56). The performance and limitations of each method were discussed.

Conclusion

RDMC is a quick, cheap and relatively easy measurable root attribute; we thus recommended its measurement as a proxy of fine root tissue density.  相似文献   

11.
12.
13.

Background

Real time three dimensional (RT3D) echocardiography is an accurate and reproducible method for assessing left ventricular shape and function.

Aim

assess the feasibility and reproducibility of RT3D stress echocardiography (SE) (exercise and pharmacological) in the evaluation of left ventricular function compared to 2D.

Methods and results

One hundred eleven patients with known or suspected coronary artery disease underwent 2D and RT3DSE. The agreement in WMSI, EDV, ESV measurements was made off-line. The feasibility of RT-3DSE was 67%. The inter-observer variability for WMSI by RT3D echo was higher during exercise and with suboptimal quality images (good: k = 0.88; bad: k = 0.69); and with high heart rate both for pharmacological (HR < 100 bpm, k = 0.83; HR ≥ 100 bpm, k = 0.49) and exercise SE (HR < 120 bpm, k = 0.88; HR ≥ 120 bpm, k = 0.78). The RT3D reproducibility was high for ESV volumes (0.3 ± 14 ml; CI 95%: -27 to 27 ml; p = n.s.).

Conclusions

RT3DSE is more vulnerable than 2D due to tachycardia, signal quality, patient decubitus and suboptimal resting image quality, making exercise RT3DSE less attractive than pharmacological stress.  相似文献   

14.

Background

Accurate measures of health professionals' clinical practice are critically important to guide health policy decisions, as well as for professional self-evaluation and for research-based investigation of clinical practice and process of care. It is often not feasible or ethical to measure behaviour through direct observation, and rigorous behavioural measures are difficult and costly to use. The aim of this review was to identify the current evidence relating to the relationships between proxy measures and direct measures of clinical behaviour. In particular, the accuracy of medical record review, clinician self-reported and patient-reported behaviour was assessed relative to directly observed behaviour.

Methods

We searched: PsycINFO; MEDLINE; EMBASE; CINAHL; Cochrane Central Register of Controlled Trials; science/social science citation index; Current contents (social & behavioural med/clinical med); ISI conference proceedings; and Index to Theses. Inclusion criteria: empirical, quantitative studies; and examining clinical behaviours. An independent, direct measure of behaviour (by standardised patient, other trained observer or by video/audio recording) was considered the 'gold standard' for comparison. Proxy measures of behaviour included: retrospective self-report; patient-report; or chart-review. All titles, abstracts, and full text articles retrieved by electronic searching were screened for inclusion and abstracted independently by two reviewers. Disagreements were resolved by discussion with a third reviewer where necessary.

Results

Fifteen reports originating from 11 studies met the inclusion criteria. The method of direct measurement was by standardised patient in six reports, trained observer in three reports, and audio/video recording in six reports. Multiple proxy measures of behaviour were compared in five of 15 reports. Only four of 15 reports used appropriate statistical methods to compare measures. Some direct measures failed to meet our validity criteria. The accuracy of patient report and chart review as proxy measures varied considerably across a wide range of clinical actions. The evidence for clinician self-report was inconclusive.

Conclusion

Valid measures of clinical behaviour are of fundamental importance to accurately identify gaps in care delivery, improve quality of care, and ultimately to improve patient care. However, the evidence base for three commonly used proxy measures of clinicians' behaviour is very limited. Further research is needed to better establish the methods of development, application, and analysis for a range of both direct and proxy measures of behaviour.  相似文献   

15.

Background

To assess the reliability of fetal heart volume measurement by three-dimensional sonography (3DUS) using the eXtended Imaging Virtual Organ Computer-aided AnaLysis (XI VOCAL) method.

Methods

This reliability study enrolled 30 pregnant women with singleton healthy pregnancies between 19 and 34 weeks of gestation. All volume acquirements were performed with a convex volumetric transducer (C3-7ED) coupled to an Accuvix XQ sonography device (Medison, Korea). The XI VOCAL 10 planes was the method of choice for volumetric measurement. 3D datasets were analyzed by two observers (EQSB and HJFM); fetal heart volume was measured twice by the first and once by the second observer to calculate intra and interobserver reproducibility. Statistical analysis used pareated Student's t test (p) and calculated Intraclass correlation coefficients (ICC). Bland-Altman plots were also constructed.

Results

We observed an excellent intra- and interobserver reliability for fetal cardiac volume assessed by XI VOCAL. For the intraobserver the ICC was 0.998 (95% CI: 0.997; 0.999), with mean of differences of 0.12 cm3 (95% limits of agreement: -0.84; +0.84; p = 0.130). For interobserver the ICC was 0.899 (95%CI: 0.996; 0.998), mean of differences 0.05 cm3 (95% limits of agreement: -0.84; +0.84; p = 0.175).

Conclusion

Fetal cardiac volume assessed by 3DUS using XI VOCAL method is highly reproducible between 19 to 34 gestational weeks.  相似文献   

16.

Background

Expectation maximizing (EM) is one of the common approaches for image segmentation.

Methods

an improvement of the EM algorithm is proposed and its effectiveness for MRI brain image segmentation is investigated. In order to improve EM performance, the proposed algorithms incorporates neighbourhood information into the clustering process. At first, average image is obtained as neighbourhood information and then it is incorporated in clustering process. Also, as an option, user-interaction is used to improve segmentation results. Simulated and real MR volumes are used to compare the efficiency of the proposed improvement with the existing neighbourhood based extension for EM and FCM.

Results

the findings show that the proposed algorithm produces higher similarity index.

Conclusions

experiments demonstrate the effectiveness of the proposed algorithm in compare to other existing algorithms on various noise levels.  相似文献   

17.

Purpose

The analysis of uncertainty in life cycle assessment (LCA) studies has been a topic for more than 10 years, and many commercial LCA programs now feature a sampling approach called Monte Carlo analysis. Yet, a full Monte Carlo analysis of a large LCA system, for instance containing the 4,000 unit processes of ecoinvent v2.2, is rarely carried out by LCA practitioners. One reason for this is computation time. An alternative faster than Monte Carlo method is analytical error propagation by means of a Taylor series expansion; however, this approach suffers from being explained in the literature in conflicting ways, hampering implementation in most software packages for LCA. The purpose of this paper is to compare the two different approaches from a theoretical and practical perspective.

Methods

In this paper, we compare the analytical and sampling approaches in terms of their theoretical background and their mathematical formulation. Using three case studies—one stylized, one real-sized, and one input–output (IO)-based—we approach these techniques from a practical perspective and compare them in terms of speed and results.

Results

Depending on the precise question, a sampling or an analytical approach provides more useful information. Whenever they provide the same indicators, an analytical approach is much faster but less reliable when the uncertainties are large.

Conclusions

For a good analysis, analytical and sampling approaches are equally important, and we recommend practitioners to use both whenever available, and we recommend software suppliers to implement both.  相似文献   

18.

Background and aims

Accurate data on the standing crop, production, and turnover of fine roots is essential to our understanding of major terrestrial ecological processes. Minirhizotrons offer a unique opportunity to study the dynamic processes of root systems, but are susceptible to several measurement biases.

Methods

We use roots extracted from minirhizotron tube surfaces to calculate the depth of field of a minirhizotron image and present a model to correct for the underestimation of root diameters obscured by soil in minirhizotron images.

Results

Non-linear regression analysis resulted in an estimated depth of field of 0.78 mm for minirhizotron images. Unadjusted minirhizotron data underestimated root net primary production and fine root standing crop by 61 % when compared to adjusted data using our depth of field and root diameter corrections. Changes in depth of field accounted for >99 % of standing crop adjustments with root diameter corrections accounting for <1 %.

Conclusions

Our results represent the first effort to empirically derive depth of field for minirhizotron images. This work may explain the commonly reported underestimation of fine roots using minirhizotrons, and stands to improve the ability of researchers to accurately scale minirhizotron data to large soil volumes.  相似文献   

19.

Introduction

The assessment of joints with active arthritis is a core component of widely used outcome measures. However, substantial variability exists within and across examiners in assessment of these active joint counts. Swelling and temperature changes, two qualities estimated during active joint counts, are amenable to quantification using noncontact digital imaging technologies. We sought to explore the ability of three dimensional (3D) and thermal imaging to reliably measure joint shape and temperature.

Methods

A Minolta 910 Vivid non-contact 3D laser scanner and a Meditherm med2000 Pro Infrared camera were used to create digital representations of wrist and metacarpalphalangeal (MCP) joints. Specialized software generated 3 quantitative measures for each joint region: 1) Volume; 2) Surface Distribution Index (SDI), a marker of joint shape representing the standard deviation of vertical distances from points on the skin surface to a fixed reference plane; 3) Heat Distribution Index (HDI), representing the standard error of temperatures. Seven wrists and 6 MCP regions from 5 subjects with arthritis were used to develop and validate 3D image acquisition and processing techniques. HDI values from 18 wrist and 9 MCP regions were obtained from 17 patients with active arthritis and compared to data from 10 wrist and MCP regions from 5 controls. Standard deviation (SD), coefficient of variation (CV), and intraclass correlation coefficients (ICC) were calculated for each quantitative measure to establish their reliability. CVs for volume and SDI were <1.3% and ICCs were greater than 0.99.

Results

Thermal measures were less reliable than 3D measures. However, significant differences were observed between control and arthritis HDI values. Two case studies of arthritic joints demonstrated quantifiable changes in swelling and temperature corresponding with changes in symptoms and physical exam findings.

Conclusion

3D and thermal imaging provide reliable measures of joint volume, shape, and thermal patterns. Further refinement may lead to the use of these technologies to improve the assessment of disease activity in arthritis.  相似文献   

20.

Background

Abnormal blood glucose (BG) concentrations have been associated with increased morbidity and mortality in both critically ill adults and infants. Furthermore, hypoglycaemia and glycaemic variability have both been independently linked to mortality in these patients. Continuous Glucose Monitoring (CGM) devices have the potential to improve detection and diagnosis of these glycaemic abnormalities. However, sensor noise is a trade-off of the high measurement rate and must be managed effectively if CGMs are going to be used to monitor, diagnose and potentially help treat glycaemic abnormalities.

Aim

To develop a tool that will aid clinicians in identifying unusual CGM behaviour and highlight CGM data that potentially need to be interpreted with care.

Methods

CGM data and BG measurements from 50 infants at risk of hypoglycaemia were used. Unusual CGM measurements were classified using a stochastic model based on the kernel density method and historical CGM measurements from the cohort. CGM traces were colour coded with very unusual measurements coloured red, highlighting areas to be interpreted with care. A 5-fold validation of the model was Monte Carlo simulated 25 times to ensure an adequate model fit.

Results

The stochastic model was generated using ~67,000 CGM measurements, spread across the glycaemic range ~2-10?mmol/L. A 5-fold validation showed a good model fit: the model 80% confidence interval (CI) captured 83% of clinical CGM data, the model 90% CI captured 91% of clinical CGM data, and the model 99% CI captured 99% of clinical CGM data. Three patient examples show the stochastic classification method in use with 1) A stable, low variability patient which shows no unusual CGM measurements, 2) A patient with a very sudden, short hypoglycaemic event (classified as unusual), and, 3) A patient with very high, potentially un-physiological, glycaemic variability after day 3 of monitoring (classified as very unusual).

Conclusions

This study has produced a stochastic model and classification method capable of highlighting unusual CGM behaviour. This method has the potential to classify important glycaemic events (e.g. hypoglycaemia) as true clinical events or sensor noise, and to help identify possible sensor degradation. Colour coded CGM traces convey the information quickly and efficiently, while remaining computationally light enough to be used retrospectively or in real-time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号