首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-analytical treatments of bacteria are crucial steps in bacterial metabolomics studies. In order to achieve reliable samples that can best represent the global metabolic profile in vivo both qualitatively and quantitatively, many sample treatment procedures have been developed. The use of different methods makes it difficult to compare the results among different groups. In this work, E. coli samples were tested by using NMR spectroscopy. Both liquid N2 and cold methanol quenching procedures reduce the cell membrane integrity and cause metabolites leakage. However, liquid N2 quenching affected the cell viability and the NMR metabolites’ profile less than cold methanol procedure. Samples obtained by metabolite extraction were significantly superior over cell suspensions and cell lysates, with a higher number of detectable metabolites. Methanol/chloroform extraction proved most efficient at extraction of intracellular metabolites from both qualitative and quantitative points of view. Finally, standard operating procedures of bacterial sample treatments for NMR metabolomics study are presented.  相似文献   

2.
The first step of many metabolomics studies is quenching, a technique vital for rapidly halting metabolism and ensuring that the metabolite profile remains unchanging during sample processing. The most widely used approach is to plunge the sample into prechilled cold methanol; however, this led to significant metabolite loss in Synecheococcus sp. PCC 7002. Here we describe our analysis of the impacts of cold methanol quenching on the model marine cyanobacterium Synechococcus sp. PCC 7002, as well as our brief investigation of alternative quenching methods. We tested several methods including cold methanol, cold saline, and two filtration approaches. Targeted central metabolites were extracted and metabolomic profiles were generated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results indicate that cold methanol quenching induces dramatic metabolite leakage in Synechococcus, resulting in a majority of central metabolites being lost prior to extraction. Alternatively, usage of a chilled saline quenching solution mitigates metabolite leakage and improves sample recovery without sacrificing rapid quenching of cellular metabolism. Finally, we illustrate that metabolite leakage can be assessed, and subsequently accounted for, in order to determine absolute metabolite pool sizes; however, our results show that metabolite leakage is inconsistent across various metabolite pools and therefore must be determined for each individually measured metabolite.  相似文献   

3.

Background

Lactobacillus plantarum, a versatile lactic acid-fermenting bacterium, isolated from the traditional pickles in Ningbo of China, was chosen for grass carp fermentation, which could also improve the flavor of grass carp. We here explored the central metabolic pathways of L. plantarum by using metabolomic approach, and further proved the potential for metabolomics combined with proteomics approaches for the basic research on the changes of metabolites and the corresponding fermentation mechanism of L. plantarum fermentation.

Results

This study provides a cellular material footprinting of more than 77 metabolites and 27 proteins in L. plantarum during the grass carp fermentation. Compared to control group, cells displayed higher levels of proteins associated with glycolysis and nucleotide synthesis, whereas increased levels of serine, ornithine, aspartic acid, 2-piperidinecarboxylic acid, and fumarate, along with decreased levels of alanine, glycine, threonine, tryptophan, and lysine.

Conclusions

Our results may provide a deeper understanding of L. plantarum fermentation mechanism based on metabolomics and proteomic analysis and facilitate future investigations into the characterization of L. plantarum during the grass carp fermentation.
  相似文献   

4.
The sediment-dwelling polychaete, Hediste diversicolor, is commonly found in Northern temperate estuaries. Its limited mobility and tolerance to polluted conditions makes it a good candidate for biological monitoring. Moreover, its importance in the functioning of the sediment ecosystem has caused it to be described as a keystone species. Here we present the development of analytical methodology that will enable the use of H. diversicolor in environmental metabolomics studies for the biomonitoring of estuarine ecosystems. Polar and non-polar extraction solvents have been used to solubilise a wide range of metabolites. Extraction solvents assessed include: aqueous phosphate buffer solution, methanol:chloroform:water (1:1:0.9), methanol:water (1:1 and 2:1) and chloroform. The metabolites were analysed using 1-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectroscopy. Using the methanol:water (1:1) method, previous freezing to aid cell rupture did not result in an enhanced extraction. Removal of methanol with a speed vacuum resulted in reduction in yield. Methanol:water (1:1) and chloroform extractions proved to be the most appropriate techniques based on the sample yield and repeatability. NMR-based metabolomics in the ragworm can now be used to understand the ecophysiology of this important estuarine organism and has applications in biomonitoring, biomarker development and ecotoxicological studies.  相似文献   

5.

Introduction

Global metabolomics analyses using body fluids provide valuable results for the understanding and prediction of diseases. However, the mechanism of a disease is often tissue-based and it is advantageous to analyze metabolomic changes directly in the tissue. Metabolomics from tissue samples faces many challenges like tissue collection, homogenization, and metabolite extraction.

Objectives

We aimed to establish a metabolite extraction protocol optimized for tissue metabolite quantification by the targeted metabolomics AbsoluteIDQ? p180 Kit (Biocrates). The extraction method should be non-selective, applicable to different kinds and amounts of tissues, monophasic, reproducible, and amenable to high throughput.

Methods

We quantified metabolites in samples of eleven murine tissues after extraction with three solvents (methanol, phosphate buffer, ethanol/phosphate buffer mixture) in two tissue to solvent ratios and analyzed the extraction yield, ionization efficiency, and reproducibility.

Results

We found methanol and ethanol/phosphate buffer to be superior to phosphate buffer in regard to extraction yield, reproducibility, and ionization efficiency for all metabolites measured. Phosphate buffer, however, outperformed both organic solvents for amino acids and biogenic amines but yielded unsatisfactory results for lipids. The observed matrix effects of tissue extracts were smaller or in a similar range compared to those of human plasma.

Conclusion

We provide for each murine tissue type an optimized high-throughput metabolite extraction protocol, which yields the best results for extraction, reproducibility, and quantification of metabolites in the p180 kit. Although the performance of the extraction protocol was monitored by the p180 kit, the protocol can be applicable to other targeted metabolomics assays.
  相似文献   

6.
7.

Introduction

Acidithiobacillus ferrooxidans has a central role in the microbial community metabolism that drives production of acid mine drainage (AMD), a major environmental concern. Metabolomic profiling can offer insight into how At. ferrooxidans contributes to these processes.

Objective

The unique biology of some organisms means that protocols for metabolomic profiling need to be species-specific. Current protocols have largely been optimized for neutrophilic model organisms and, presently, no protocol exists for studying acidophilic extremophiles such as At. ferrooxidans. An appropriate protocol was developed and applied to investigate At. ferrooxidans’ metabolomic capabilities in relation to the colonization of AMD sites.

Methods

We quantified the overall effectiveness of three quenching solutions in combination with three extraction solutions, quantifying the amount of metabolite leakage, number of metabolites extracted and degradation of C13 labeled standards. We then used this method to quantify how the At. ferrooxidans metabolome differed between early and late stages in the logarithmic growth phase to investigate infer how the metabolism of the organism changes as it colonizes the AMD environment.

Results and discussion

An acidic methanol:water based quenching solution with ammonium formate salt used in conjunction with an isopropanol:methanol:water extraction solution produced the smallest amount of leakage, extracted the largest number of metabolites, and was most effective in recovering known standards. When this protocol was applied to the metabolomic fingerprinting of At. ferrooxidans in the beginning and end of its logarithmic growth phase, there was a clear separation in the metabolome at each growth point. Overall, 3% of the metabolome differed significantly.
  相似文献   

8.
Functional metabolomics of skeletal muscle involves the simultaneous identification and quantification of a large number of metabolites. For this purpose, the extraction of metabolites from animal tissues is a crucial technical step that needs to be optimized. In this work, five extraction methods for skeletal muscle metabolome analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS) were tested. Bird skeletal muscles sampled postmortem and quenched in liquid nitrogen were used. Three replicates of the same sample were extracted using the following solvent systems of varying polarity: boiling water (BW, +100 °C), cold pure methanol (CPM, −80 °C), methanol/chloroform/water (MCW, −20 °C), boiling ethanol (BE, +80 °C), and perchloric acid (PCA, −20 °C). Three injections by extraction were performed. The BW extraction showed the highest recovery of metabolites with the lowest variability (<10%) except for creatine-phosphate (creatine-P). Considering yield (area of the peaks), reproducibility, and ease, the current experiment drew a scale for the muscle metabolome extraction starting from the best to the least convenient: BW > MCW > CPM > PCA ? BE. In addition, the semiquantification of metabolites in two muscles showing different metabolic and contractile properties was carried out after BW extraction and showed expected differences in metabolite contents, thereby validating the technique for biological investigations. In conclusion, the BW extraction is recommended for analysis of skeletal muscle metabolome except for creatine-P, which was poorly recovered with this technique.  相似文献   

9.
10.

Background

The hypothalamus plays a pivotal role in numerous mechanisms highly relevant to the maintenance of body homeostasis, such as the control of food intake and energy expenditure. Impairment of these mechanisms has been associated with the metabolic disturbances involved in the pathogenesis of obesity. Since rodent species constitute important models for metabolism studies and the rat hypothalamus is poorly characterized by proteomic strategies, we performed experiments aimed at constructing a two-dimensional gel electrophoresis (2-DE) profile of rat hypothalamus proteins.

Results

As a first step, we established the best conditions for tissue collection and protein extraction, quantification and separation. The extraction buffer composition selected for proteome characterization of rat hypothalamus was urea 7?M, thiourea 2?M, CHAPS 4%, Triton X-100 0.5%, followed by a precipitation step with chloroform/methanol. Two-dimensional (2-D) gels of hypothalamic extracts from four-month-old rats were analyzed; the protein spots were digested and identified by using tandem mass spectrometry and database query using the protein search engine MASCOT. Eighty-six hypothalamic proteins were identified, the majority of which were classified as participating in metabolic processes, consistent with the finding of a large number of proteins with catalytic activity. Genes encoding proteins identified in this study have been related to obesity development.

Conclusion

The present results indicate that the 2-DE technique will be useful for nutritional studies focusing on hypothalamic proteins. The data presented herein will serve as a reference database for studies testing the effects of dietary manipulations on hypothalamic proteome. We trust that these experiments will lead to important knowledge on protein targets of nutritional variables potentially able to affect the complex central nervous system control of energy homeostasis.  相似文献   

11.
Metabolomic analysis of tissue samples can be applied across multiple fields including medicine, toxicology, and environmental sciences. A thorough evaluation of several metabolite extraction procedures from tissues is therefore warranted. This has been achieved at two research laboratories using muscle and liver tissues from fish. Multiple replicates of homogenous tissues were extracted using the following solvent systems of varying polarities: perchloric acid, acetonitrile/water, methanol/water, and methanol/chloroform/water. Extraction of metabolites from ground wet tissue, ground dry tissue, and homogenized wet tissue was also compared. The hydrophilic metabolites were analyzed using 1-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectroscopy and projections of 2-dimensional J-resolved (p-JRES) NMR, and the spectra evaluated using principal components analysis. Yield, reproducibility, ease, and speed were the criteria for assessing the quality of an extraction protocol for metabolomics. Both laboratories observed that the yields of low molecular weight metabolites were similar among the solvent extractions; however, acetonitrile-based extractions provided poorer fractionation and extracted lipids and macromolecules into the polar solvent. Extraction using perchloric acid produced the greatest variation between replicates due to peak shifts in the spectra, while acetonitrile-based extraction produced highest reproducibility. Spectra from extraction of ground wet tissues generated more macromolecules and lower reproducibility compared with other tissue disruption methods. The p-JRES NMR approach reduced peak congestion and yielded flatter baselines, and subsequently separated the metabolic fingerprints of different samples more clearly than by 1D NMR. Overall, single organic solvent extractions are quick and easy and produce reasonable results. However, considering both yield and reproducibility of the hydrophilic metabolites as well as recovery of the hydrophobic metabolites, we conclude that the methanol/chloroform/water extraction is the preferred method. C. Y. Lin and H. Wu contributed equally.  相似文献   

12.

Introduction

Lactic acid bacteria (LAB) play an important role in the food industry as starter cultures to manufacture fermented food, and as probiotics. In recent years, there has been an increasing interest in using LAB cultures for biopreservation of food products. It is therefore of great interest to study the detailed metabolism of these bacteria.

Objectives

This study aimed at developing an efficient analytical protocol for real-time in vitro NMR measurements of LAB fermentations, from sample preparation, over data acquisition and preprocessing, to the extraction of the kinetic metabolic profiles.

Method

The developed analytical protocol is applied to an experimental design with two LAB strains (Lactobacillus rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 20174), two initial pH levels (pHi 6.5 and 5.5), two levels of glucose concentration (2.5 and 0.25 g/l), and two batch fermentation replicates.

Results

The design factors proved to be strongly significant and led to interesting biological information. The protocol allowed for detailed real-time kinetic analysis of 11 major metabolites involved in the glycolysis, pyruvate catabolism, amino acid catabolism and cell energy metabolism. New biological knowledge was obtained about the different patterns of glutamine and aspartic acid consumption by the two strains. It was observed that L. plantarum consumes more glutamine at low pH (pH 5.5) whereas the opposite applies to L. rhamnosus. Regarding aspartic acid, both of the strains consume it higher at low pH, and overall L. plantarum consumes it more. L. rhamnosus did not consume aspartic acid at pH 6.5.

Conclusion

The developed analytical protocol for real-time in vitro NMR measurements of bacterial metabolism allows a relatively easy investigation of different fermentation factors such as new strains, new substrates, cohabitations, temperature, and pH and has a great potential in biopreservation studies to discover new efficient bioprotective cultures.
  相似文献   

13.
14.

Introduction

Metabolomics is a promising approach for discovery of relevant biomarkers in cells, tissues, organs, and biofluids for disease identification and prediction. The field has mostly relied on blood-based biofluids (serum, plasma, urine) as non-invasive sources of samples as surrogates of tissue or organ-specific conditions. However, the tissue specificity of metabolites pose challenges in translating blood metabolic profiles to organ-specific pathophysiological changes, and require further downstream analysis of the metabolites.

Objectives

As part of this project, we aim to develop and optimize an efficient extraction protocol for the analysis of kidney tissue metabolites representative of key primate metabolic pathways.

Methods

Kidney cortex and medulla tissues of a baboon were homogenized and extracted using eight different extraction protocols including methanol/water, dichloromethane/methanol, pure methanol, pure water, water/methanol/chloroform, methanol/chloroform, methanol/acetonitrile/water, and acetonitrile/isopropanol/water. The extracts were analyzed by a two-dimensional gas chromatography time-of-flight mass-spectrometer (2D GC–ToF-MS) platform after methoximation and silylation.

Results

Our analysis quantified 110 shared metabolites in kidney cortex and medulla tissues from hundreds of metabolites found among the eight different solvent extractions spanning low to high polarities. The results revealed that medulla is metabolically richer compared to the cortex. Dichloromethane and methanol mixture (3:1) yielded highest number of metabolites across both the tissue types. Depending on the metabolites of interest, tissue type, and the biological question, different solvents can be used to extract specific groups of metabolites.

Conclusion

This investigation provides insights into selection of extraction solvents for detection of classes of metabolites in renal cortex and medulla, which is fundamentally important for identification of prognostic and diagnostic metabolic kidney biomarkers for future therapeutic applications.
  相似文献   

15.

Key message

Our study shows that the expression of AtCBF3 and AtCOR15A improved the chilling tolerance in transgenic eggplant.

Abstract

In an attempt to improve chilling tolerance of eggplant (Solanum melongena L) plants, Arabidopsis C-repeat binding factor 3 (AtCBF3) and cold-regulated 15A (AtCOR15A) genes both driven by an Arabidopsis RESPONSIVE TO DESSICATION 29A promoter (AtRD29A) were transferred into the plants of eggplant cultivar Sanyueqie. Two independent homozygous transgenic lines were tested for their cold tolerance. The leaves of the transgenic plants in both lines withered much slower and slighter than the wild-type plants after exposure to cold stress treatment at 2 ± 1 °C. The gene expression of AtCBF3 and AtCOR15A was significantly increased as well as the proline content and the levels of catalase and peroxidase activities, while the relative electrical conductivity and the malondialdehyde content were remarkably decreased in the transgenic plants compared with the wild type at 4 ± 0.5 °C. The results showed that the expression of the exogenous AtCBF3 and AtCOR15A could promote the cold adaptation process to protect eggplant plants from chilling stress.  相似文献   

16.
17.
This study aimed to disclose the acid tolerance mechanism of Lactobacillus plantarum by comparing L. plantarum ZDY 2013 with the type strain L. plantarum ATCC 8014 in terms of cell membrane, energy metabolism, and amino acid metabolism. L. plantarum ZDY 2013 had a superior growth performance under acidic condition with 100-fold higher survival rate than that of L. plantarum ATCC 8014 at pH 2.5. To determine the acid tolerance physiological mechanism, cell integrity was investigated through scanning electron microscopy. The study revealed that L. plantarum ZDY 2013 maintained cell morphology and integrity, which is much better than L. plantarum ATCC 8014 under acid stress. Analysis of energy metabolism showed that, at pH 5.0, L. plantarum ZDY 2013 enhanced the activity of Na+/K+-ATPase and decreased the ratio of NAD+/NADH in comparison with L. plantarum ATCC 8014. Similarly, amino acid metabolism of intracellular arginine, glutamate, and alanine was improved in L. plantarum ZDY 2013. Correspondingly, the activity of arginine deiminase and glutamate decarboxylase of L. plantarum ZDY 2013 increased by 1.2-fold and 1.3-fold compared with L. plantarum ATCC 8014 in acid stress. In summary, it is demonstrated that the special physiological behaviors (integrity of cell membrane, enhanced energy metabolism, increased amino acid and enzyme level) of L. plantarum ZDY 2013 can protect the cells from acid stress.  相似文献   

18.

Background

Light-dependent activities against enveloped viruses in St. John's Wort (Hypericum perforatum) extracts have been extensively studied. In contrast, light-independent antiviral activity from this species has not been investigated.

Results

Here, we identify the light-independent inhibition of human immunodeficiency virus-1 (HIV-1) by highly purified fractions of chloroform extracts of H. perforatum. Both cytotoxicity and antiviral activity were evident in initial chloroform extracts, but bioassay-guided fractionation produced fractions that inhibited HIV-1 with little to no cytotoxicity. Separation of these two biological activities has not been reported for constituents responsible for the light-dependent antiviral activities. Antiviral activity was associated with more polar subfractions. GC/MS analysis of the two most active subfractions identified 3-hydroxy lauric acid as predominant in one fraction and 3-hydroxy myristic acid as predominant in the other. Synthetic 3-hydroxy lauric acid inhibited HIV infectivity without cytotoxicity, suggesting that this modified fatty acid is likely responsible for observed antiviral activity present in that fraction. As production of 3-hydroxy fatty acids by plants remains controversial, H. perforatum seedlings were grown sterilely and evaluated for presence of 3-hydroxy fatty acids by GC/MS. Small quantities of some 3-hydroxy fatty acids were detected in sterile plants, whereas different 3-hydroxy fatty acids were detected in our chloroform extracts or field-grown material.

Conclusion

Through bioguided fractionation, we have identified that 3-hydroxy lauric acid found in field grown Hypericum perforatum has anti-HIV activity. This novel anti-HIV activity can be potentially developed into inexpensive therapies, expanding the current arsenal of anti-retroviral agents.  相似文献   

19.

Background

Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies.

Methods

The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide.

Results

Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol.

Conclusions

The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.  相似文献   

20.
Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at −27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号