首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Agaricus blazei Murill (AbM) is an edible Brazilian mushroom that has been used in traditional medicine for a range of diseases. It has been shown to have anti-infection and anti-tumor properties in the mouse, which are due to induction of Th1 responses. On the other hand, IgE-mediated allergy is induced by a Th2 response.

Objective

Since according to the Th1/Th2 paradigm an increased Th1 response may promote a reduced Th2 response, the aim was to examine whether AbM had anti-allergy effects.

Methods

A mouse model for allergy was employed, in which the mice were immunized s.c. with the model allergen ovalbumin (OVA). Additionally, the animals were given a mushroom extract, AndoSan?, mainly (82%) containing AbM, but also Hericium erinaceum (15%) and Grifola frondosa (3%), or PBS p.o. either a day before or 19 days after the immunization. The mice were sacrificed on day 26, and anti-OVA IgE (Th2 response) and IgG2a (Th1 response) antibodies were examined in serum and Th1, Th2 and Treg cytokines in spleen cells cultures.

Results

It was found that the AndoSan? extract both when given either before or after OVA immunization reduced the levels of anti-OVA IgE, but not IgG2a, in the mice. There was a tendency to reduced Th2 relative to Th1 cytokine levels in the AndoSan? groups.

Conclusion

This particular AbM extract may both prevent allergy development and be used as a therapeutical substance against established allergy.  相似文献   

2.

Background

Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.

Methods

To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.

Results

We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.

Conclusion

We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2.  相似文献   

3.

Background

Cow's milk allergy is one of the most common food allergies among younger children. We investigated IgE antibodies to milk, and IgE and IgG4 antibodies to casein, ??-lactalbumin and ??-lactoglobulin in cow's milk allergic (CMA) and non-allergic (non-CMA) children in order to study their clinical usefulness.

Methods

Eighty-three children with suspected milk allergy (median age: 3.5 years, range: 0.8-15.8 years) were diagnosed as CMA (n = 61) or non-CMA (n = 22) based on an open milk challenge or convincing clinical history. Their serum concentrations of allergen-specific (s) IgE and IgG4 antibodies were measured using ImmunoCAP?. For the sIgG4 analysis, 28 atopic and 31 non-atopic control children were additionally included (all non-milk sensitized).

Results

The CMA group had significantly higher levels of milk-, casein- and ??-lactoglobulin-sIgE antibodies as compared to the non-CMA group. The casein test showed the best discriminating performance with a clinical decision point of 6.6 kUA/L corresponding to 100% specificity. All but one of the CMA children aged > 5 years had casein-sIgE levels > 6.6 kUA/L. The non-CMA group had significantly higher sIgG4 levels against all three milk allergens compared to the CMA group. This was most pronounced for casein-sIgG4 in non-CMA children without history of previous milk allergy. These children had significantly higher casein-sIgG4 levels compared to any other group, including the non-milk sensitized control children.

Conclusions

High levels of casein-sIgE antibodies are strongly associated with milk allergy in children and might be associated with prolonged allergy. Elevated casein-sIgG4 levels in milk-sensitized individuals on normal diet indicate a modified Th2 response. However, the protective role of IgG4 antibodies in milk allergy is unclear.  相似文献   

4.

Background

IgE sensitization to storage proteins from nuts and seed is often related to severe allergic symptoms. There is a risk of immunological IgE cross-reactivity between storage proteins from different species. The potential clinical implication of such cross-reactivity is that allergens other than the known sensitizer can cause allergic symptoms. Previous studies have suggested that kiwi seed storage proteins may constitute hidden food allergens causing cross-reactive IgE-binding with peanut and other tree nut homologs, thereby mediating a potential risk of causing allergy symptoms among peanut ant tree nut allergic individuals. The objective of this study was to investigate the degree of sensitization towards kiwi fruit seed storage proteins in a cohort of peanut allergic individuals.

Methods

A cohort of 59 adolescents and adults with peanut allergy was studied, and self reported allergies to a number of additional foods were collected. Quantitative IgE measurements to seed storage proteins from kiwi and peanut were performed.

Results

In the cohort, 23 out of the 59 individuals were reporting kiwi fruit allergy (39%). The frequency of IgE sensitization to kiwi fruit and to any kiwi seed storage protein was higher among peanut allergic individuals also reporting kiwi fruit allergy (P = 0.0001 and P = 0.01). A positive relationship was found between IgE levels to 11S globulin (r = 0.65) and 7S globulin (r = 0.48) allergens from kiwi and peanut, but IgE levels to 2S albumin homologs did not correlate. Patients reporting kiwi fruit allergy also reported allergy to hazelnut (P = 0.015), soy (P < 0.0001), pea (P = 0.0002) and almond (P = 0.016) to a higher extent than peanut allergic individuals without kiwi allergy.

Conclusions

Thirty-nine percent of the peanut allergic patients in this cohort also reported kiwi fruit allergy, they displayed a higher degree of sensitization to kiwi storage proteins from both kiwi and peanut, and they also reported a higher extent of allergy to other nuts and legumes. On the molecular level, there was a correlation between IgE levels to 11S and 7S storage proteins from kiwi and peanut. Taken together, reported symptoms and serological findings to kiwi in this cohort of patients with concurrent allergy to peanut and kiwi fruit, could be explained by a combination of cross-reactivity between the 11S and 7S globulins and co-sensitization to the 2S albumin Act d 13.
  相似文献   

5.
6.

Background

Endotoxins are ubiquitously present in the environment and constitute a significant component of ambient air. These substances have been shown to modulate the allergic response, however a consensus has yet to be reached whether they attenuate or exacerbate asthmatic responses. The current investigation examined whether reducing the concentration of lipopolysaccharide (LPS) in a house dust extract (HDE) containing high concentrations of both cockroach allergens [1] and LPS would attenuate asthma-like pulmonary inflammation.

Methods

Mice were sensitized with CRA and challenged with the intact HDE, containing 182 ng of LPS, or an LPS-reduced HDE containing 3 ng LPS, but an equivalent amount of CRA. Multiple parameters of asthma-like pulmonary inflammation were measured.

Results

Compared to HDE challenged mice, the LPS-reduced HDE challenged mice had significantly reduced TNFα levels in the bronchoalveolar lavage fluid. Plasma levels of IgE and IgG1 were significantly reduced, however no change in CRA-specific IgE was detected. In HDE mice, plasma IgG2a levels were similar to naïve mice, while LPS-reduced HDE mice had significantly greater concentrations. Reduced levels of LPS in the HDE did not decrease eosinophil or neutrophil recruitment into the alveolar space. Equivalent inflammatory cell recruitment occurred despite having generally higher pulmonary concentrations of eotaxins and CXC chemokines in the LPS-reduced HDE group. LPS-reduced HDE challenge induced significantly higher concentrations of IFNγ, and IL-5 and IL-13 in the BAL fluid, but did not decrease airways hyperresponsiveness or airway resistance to methacholine challenge. Conclusion: These data show that reduction of LPS levels in the HDE does not significantly protect against the severity of asthma-like pulmonary inflammation.  相似文献   

7.

Background

Interleukin (IL)-9 is a Th2-derived cytokine with pleiotropic biological effects, which recently has been proposed as a candidate gene for asthma and allergy. We aimed to evaluate the therapeutic effect of a neutralizing anti-IL-9 antibody in a mouse model of airway eosinophilic inflammation and compared any such effect with anti-IL-5 treatment.

Methods

OVA-sensitized Balb/c mice were intraperitoneally pretreated with a single dose (100 μg) of an anti-mouse IL-9 monoclonal antibody (clone D9302C12) or its vehicle. A third group was given 50 μg of a monoclonal anti-mouse IL-5 antibody (TRFK-5) or its vehicle. Animals were subsequently exposed to OVA on five days via airways. Newly produced eosinophils were labelled using 5-bromo-2'-deoxyuridine (BrdU). BrdU+ eosinophils and CD34+ cell numbers were examined by immunocytochemistry. After culture and stimulation with OVA or PMA+IC, intracellular staining of IL-9 in bone marrow cells from OVA-exposed animals was measured by Flow Cytometry. The Mann-Whitney U-test was used to determine significant differences between groups.

Results

Anti-IL-9 significantly reduced bone marrow eosinophilia, primarily by decrease of newly produced (BrdU+) and mature eosinophils. Anti-IL-9 treatment also reduced blood neutrophil counts, but did not affect BAL neutrophils. Anti-IL-5 was able to reduce eosinophil numbers in all tissue compartments, as well as BrdU+ eosinophils and CD34+ progenitor cells, and in all instances to a greater extent than anti-IL-9. Also, FACS analysis showed that IL-9 is over-expressed in bone marrow CD4+ cells after allergen exposure.

Conclusions

Our data shows that a single dose of a neutralizing IL-9 antibody is not sufficient to reduce allergen-induced influx of newly produced cells from bone marrow to airways. However, in response to allergen, bone marrow cells over-express IL-9. This data suggest that IL-9 may participate in the regulation of granulocytopoiesis in allergic inflammation.  相似文献   

8.

Background

CD4+ T-cell epitope immunodominance is not adequately explained by peptide selectivity in class II major histocompatibility proteins, but it has been correlated with adjacent segments of conformational flexibility in several antigens.

Methods

The published T-cell responses to two venom allergens and two aeroallergens were used to construct profiles of epitope dominance, which were correlated with the distribution of conformational flexibility, as measured by crystallographic B factors, solvent-accessible surface, COREX residue stability, and sequence entropy.

Results

Epitopes associated with allergy tended to be excluded from and lie adjacent to flexible segments of the allergen.

Conclusion

During the initiation of allergy, the N- and/or C-terminal ends of proteolytic processing intermediates were preferentially loaded into antigen presenting proteins for the priming of CD4+ T cells.  相似文献   

9.

Background

Avoidance of allergens is still recommended as the first and best way to prevent allergic illnesses and their comorbid diseases. Despite a variety of attempts there has been very limited success in the area of environmental control of allergic disease. Our objective was to identify a non-invasive, non-pharmacological method to reduce indoor allergen loads in atopic persons' homes and public environments. We employed a novel in vivo approach to examine the possibility of using aluminum sulfate to control environmental allergens.

Methods

Fifty skin test reactive patients were simultaneously skin tested with conventional test materials and the actions of the protein/glycoprotein modifier, aluminum sulfate. Common allergens, dog, cat, dust mite, Alternaria, and cockroach were used in the study.

Results

Skin test reactivity was significantly reduced by the modifier aluminum sulfate. Our studies demonstrate that the effects of histamine were not affected by the presence of aluminum sulfate. In fact, skin test reactivity was reduced independent of whether aluminum sulfate was present in the allergen test material or removed prior to testing, indicating that the allergens had in some way been inactivated.

Conclusion

Aluminum sulfate was found to reduce the in vivo allergic reaction cascade induced by skin testing with common allergens. The exact mechanism is not clear but appears to involve the alteration of IgE-binding epitopes on the allergen. Our results indicate that it may be possible to diminish the allergenicity of an environment by application of the active agent aluminum sulfate, thus producing environmental control without complete removal of the allergen.  相似文献   

10.

Background

Nitrogen dioxide (NO2) is an air pollutant associated with poor respiratory health, asthma exacerbation, and an increased likelihood of inhalational allergies. NO2 is also produced endogenously in the lung during acute inflammatory responses. NO2 can function as an adjuvant, allowing for allergic sensitization to an innocuous inhaled antigen and the generation of an antigen-specific Th2 immune response manifesting in an allergic asthma phenotype. As CD11c+ antigen presenting cells are considered critical for naïve T cell activation, we investigated the role of CD11c+ cells in NO2-promoted allergic sensitization.

Methods

We systemically depleted CD11c+ cells from transgenic mice expressing a simian diphtheria toxin (DT) receptor under of control of the CD11c promoter by administration of DT. Mice were then exposed to 15 ppm NO2 followed by aerosolized ovalbumin to promote allergic sensitization to ovalbumin and were studied after subsequent inhaled ovalbumin challenges for manifestation of allergic airway disease. In addition, pulmonary CD11c+ cells from wildtype mice were studied after exposure to NO2 and ovalbumin for cellular phenotype by flow cytometry and in vitro cytokine production.

Results

Transient depletion of CD11c+ cells during sensitization attenuated airway eosinophilia during allergen challenge and reduced Th2 and Th17 cytokine production. Lung CD11c+ cells from wildtype mice exhibited a significant increase in MHCII, CD40, and OX40L expression 2 hours following NO2 exposure. By 48 hours, CD11c+MHCII+ DCs within the mediastinal lymph node (MLN) expressed maturation markers, including CD80, CD86, and OX40L. CD11c+CD11b- and CD11c+CD11b+ pulmonary cells exposed to NO2 in vivo increased uptake of antigen 2 hours post exposure, with increased ova-Alexa 647+ CD11c+MHCII+ DCs present in MLN from NO2-exposed mice by 48 hours. Co-cultures of ova-specific CD4+ T cells from naïve mice and CD11c+ pulmonary cells from NO2-exposed mice produced IL-1, IL-12p70, and IL-6 in vitro and augmented antigen-induced IL-5 production.

Conclusions

CD11c+ cells are critical for NO2-promoted allergic sensitization. NO2 exposure causes pulmonary CD11c+ cells to acquire a phenotype capable of increased antigen uptake, migration to the draining lymph node, expression of MHCII and co-stimulatory molecules required to activate naïve T cells, and secretion of polarizing cytokines to shape a Th2/Th17 response.  相似文献   

11.
Cho SH  Oh SY  Zhu Z  Lee J  Lane AP 《PloS one》2012,7(4):e35114

Background

Eosinophilic inflammation is a hallmark of chronic rhinosinusitis with nasal polyps. To model this disease process experimentally, nasal sensitization of mice with ovalbumin or aspergillus has been described. Here, we describe a genetically mutant mouse that develops robust spontaneous nasal eosinophilic inflammation. These mice lack the enzyme SHP-1 that down-regulates the IL-4Rα/stat6 signaling pathway. We compared nasal inflammation and inflammatory mediators in SHP-1 deficient mice (mev) and an ovalbumin-induced nasal allergy model.

Methods

A novel technique of trans-pharyngeal nasal lavage was developed to obtain samples of inflammatory cells from the nasal passages of allergic and mev mice. Total and differential cell counts were performed on cytospin preparations. Expression of tissue mRNA for IL-4, IL-13, and mouse beta-defensin-1 (MBD-1) was determined by quantitative PCR. Eotaxin in the lavage fluid was assessed by ELISA.

Results

Allergic and mev mice had increased total cells and eosinophils compared with controls. Expression of IL-4 was similarly increased in both allergic and mev mice, but expression of IL-13 and eotaxin was significantly greater in the allergic mice than mev mice. Eotaxin was significantly up-regulated in both allergic rhinitis and mev mice. In both models of eosinophilic inflammation, down-regulation of the innate immune marker MBD-1 was observed.

Conclusions

The mev mice display spontaneous chronic nasal eosinophilic inflammation with potential utility for chronic rhinosinusitis with nasal polyps research. The eosinophilic infiltrate is more robust in the mev mice than allergic mice, but Th2 cytokine expression is not as pronounced. Decreased MBD-1 expression in both models supports the concept that Th2-cytokines down-regulate sinonasal innate immunity in humans, and suggests a role for mouse models in investigating the interaction between adaptive and innate immunity in the sinonasal mucosa.  相似文献   

12.

Background/Objective

The Indianmeal moth Plodia interpunctella is a highly prevalent food pest in human dwellings, and has been shown to contain a number of allergens. So far, only one of these, the arginine kinase (Plo i 1) has been identified.

Objective

The aim of this study was to identify further allergens and characterise these in comparison to Plo i 1.

Method

A cDNA library from whole adult P. interpunctella was screened with the serum of a patient with indoor allergy and IgE to moths, and thioredoxin was identified as an IgE-binding protein. Recombinant thioredoxin was generated in E. coli, and tested together with Plo i 1 and whole moth extracts in IgE immunoblots against a large panel of indoor allergic patients'' sera. BALB/c mice were immunised with recombinant thioredoxin and Plo i 1, and antibody production, mediator release from RBL cells, T-cell proliferation and cytokine production were measured.

Result

For the first time a thioredoxin from an animal species was identified as allergen. About 8% of the sera from patients with IgE against moth extracts reacted with recombinant P. interpunctella thioredoxin, compared to 25% reacting with recombinant Plo i 1. In immunised BALB/c mice, the recombinant allergens both induced classical Th2-biased immune responses such as induction IgE and IgG1 antibodies, upregulation of IL-5 and IL-4 and basophil degranulation.

Conclusion

Thioredoxin from moths like Plo i 1 acts like a classical Type I allergen as do the thioredoxins from wheat or corn. This clearly supports the pan-allergen nature of thioredoxin. The designation Plo i 2 is suggested for the new P. interpunctella allergen.  相似文献   

13.

Background

Respiratory syncytial virus (RSV) is the most common cause of acute bronchiolitis in infants and the elderly. Furthermore, epidemiological data suggest that RSV infection during infancy is a potent trigger of subsequent wheeze and asthma development. However, the mechanism by which RSV contributes to asthma is complex and remains largely unknown. A recent study indicates that the age of initial RSV infection is a key factor in determining airway response to RSV rechallenge. We hypothesized that severe RSV infection during neonatal development significantly alters lung structure and the pulmonary immune micro-environment; and thus, neonatal RSV infection is crucial in the development of or predisposition to allergic inflammatory diseases such as asthma.

Methods

To investigate this hypothesis the present study was conducted in a neonatal mouse model of RSV-induced pulmonary inflammation and airway dysfunction. Seven-day-old mice were infected with RSV (2 × 105 TCID50/g body weight) and allowed to mature to adulthood. To determine if neonatal RSV infection predisposed adult animals to enhanced pathophysiological responses to allergens, these mice were then sensitized and challenged with ovalbumin. Various endpoints including lung function, histopathology, cytokine production, and cellularity in bronchoalveolar lavage were examined.

Results

RSV infection in neonates alone led to inflammatory airway disease characterized by airway hyperreactivity, peribronchial and perivascular inflammation, and subepithelial fibrosis in adults. If early RSV infection was followed by allergen exposure, this pulmonary phenotype was exacerbated. The initial response to neonatal RSV infection resulted in increased TNF-α levels in bronchoalveolar lavage. Interestingly, increased levels of IL-13 and mucus hyperproduction were observed almost three months after the initial infection with RSV.

Conclusion

Neonatal RSV exposure results in long term pulmonary inflammation and exacerbates allergic airways disease. The early increase in TNF-α in the bronchoalveolar lavage implicates this inflammatory cytokine in orchestrating these events. Finally, the data presented emphasize IL-13 and TNF-α as potential therapeutic targets for treating RSV induced-asthma.  相似文献   

14.

Background

Transglutaminase 2 (TG2) is a post-translational protein-modifying enzyme that catalyzes the transamidation reaction, producing crosslinked or polyaminated proteins. Increased TG2 expression and activity have been reported in various inflammatory conditions, such as rheumatoid arthritis, inflammation-associated pulmonary fibrosis, and autoimmune encephalitis. In particular, TG2 from epithelial cells is important during the initial inflammatory response in the lung. In this study, we evaluated the role of TG2 in the pathogenesis of allergic asthma, particularly whether TG2 affects initial activation signaling leading to Th2 differentiation against antigens.

Methods

We induced allergic asthma by ovalbumin sensitization and intranasal challenge in wild-type (WT) BALB/c and TG2-deficient mice. Broncheoalveolar lavage fluid cells and intracellular cytokine production were analyzed by flow cytometry. Interleukin (IL)-33 and TG2 expression in lung epithelial cells was detected by confocal microscopy.

Results

Airway responsiveness was attenuated in TG2-deficient mice compared to that in the WT control. In addition, recruitment of eosinophils and Th2 and Th17 differentiation decreased in TG2-deficient mice. Treatment with cysteamine, a transglutaminase inhibitor, also reduced airway hypersensitivity, inflammatory cell recruitment, and T helper cell differentiation. TG2-deficient mice showed reduced IL-33 expression following induction of allergic asthma compared to those in the WT control.

Conclusions

We found that pulmonary epithelial cells damaged by allergens triggered TG2-mediated IL-33 expression leading to type 2 responses by recruiting both innate and adaptive arms of the immune system.  相似文献   

15.

Background

Epicutaneous sensitization with protein allergen that induces predominant Th2 responses is an important sensitization route in atopic dermatitis. Fungal components have been shown to modulate Th cell differentiation. However, the effects of fungal components on epicutaneous sensitization are unclear.

Results

In this study, we showed that co-administration of curdlan, a dectin-1 agonist, during epicutaneous ovalbumin sensitization of BALB/c mice decreased the IL-5 and IL-13 levels in supernatants of lymph node cell ovalbumin reactivation cultures. Mechanistically, curdlan co-administration decreased IL-4 and IL-1β expressions in draining lymph nodes. Curdlan co-administration also lower the migration of langerin+ CD103- epidermal Langerhans cells into draining lymph nodes at 96 hours post-sensitization which might be attributed to decreased expressions of IL-18 and IL-1β in patched skin. Moreover, adoptive transfer of CFSE-labeled transgenic CD4 T cells confirmed that curdlan co-administration decreased the proliferation and IL-4-production of ovalbumin -specific T cells primed by epidermal Langerhans cells.

Conclusions

These results indicated that concurrent exposure to a dectin-1 agonist suppresses the epicutaneously induced Th2 response by modulating the cytokine expression profiles in draining LNs and the migration of epidermal Langerhans cells. These results highlight the effects of fungal components on epicutaneous allergen sensitization in atopic diseases.  相似文献   

16.
Hamalainen H  Zhou H  Chou W  Hashizume H  Heller R  Lahesmaa R 《Genome biology》2001,2(7):research0022.1-research002211

Background

The development and activation of CD4+ helper T cell (Th) subsets with distinct patterns of unbalanced production of cytokines play an important part in infectious, allergic and autoimmune diseases. Human neonatal cord blood CD4+ Th cells can be polarized into type 1 or type 2-like effector cells in vitro by culturing them in the presence of interleukin (IL)-12 or IL-4, respectively. We have exploited this experimental system to identify marker genes that are differentially expressed by polarized Th1 and Th2 cells. An oligonucleotide microarray specifically designed to screen for inflammation-related candidate genes was used and the differential expression was further validated with a quantitative real-time RT-PCR method.

Results

In addition to the previously described marker genes of Th cells, we report subtle changes in the expression of several other genes that represent growth factors, receptors and other signaling molecules in polarized Th1 and Th2 cell subsets. Additionally, we describe a novel set of genes as Th1/Th2 differentiation markers for cells activated by anti-CD3 and anti-CD28 antibodies.

Conclusions

This study demonstrates the power of the targeted use of microarrays in combination with quantitative real-time RT-PCR in identifying and validating new marker genes for gene expression studies.  相似文献   

17.

Background

During production of sugar beet (Beta vulgaris) seeds in greenhouses, workers frequently develop allergic symptoms. The aim of this study was to identify and characterize possible allergens in sugar beet pollen.

Methods

Sera from individuals at a local sugar beet seed producing company, having positive SPT and specific IgE to sugar beet pollen extract, were used for immunoblotting. Proteins in sugar beet pollen extracts were separated by 1- and 2-dimensional electrophoresis, and IgE-reactive proteins analyzed by liquid chromatography tandem mass spectrometry.

Results

A 14 kDa protein was identified as an allergen, since IgE-binding was inhibited by the well-characterized allergen Che a 2, profilin, from the related species Chenopodium album. The presence of 17 kDa and 14 kDa protein homologues to both the allergens Che a 1 and Che a 2 were detected in an extract from sugar beet pollen, and partial amino acid sequences were determined, using inclusion lists for tandem mass spectrometry based on homologous sequences.

Conclusion

Two occupational allergens were identified in sugar beet pollen showing sequence similarity with Chenopodium allergens. Sequence data were obtained by mass spectrometry (70 and 25%, respectively for Beta v 1 and Beta v 2), and can be used for cloning and recombinant expression of the allergens. As for treatment of Chenopodium pollinosis, immunotherapy with sugar beet pollen extracts may be feasible.  相似文献   

18.

Background

Aspergillus fumigatus, a widely distributed fungus, has been implicated in causing life threatening infections as well as severe asthma and allergic diseases in man. Allergic affliction like allergic bronchopulmonary aspergillosis (ABPA) is a disabling lung disease frequently seen in patients with asthma and cystic fibrosis. Immunodiagnosis of the former is comparatively easier due to the availability of purified antigens and sensitive methods. However, this is not true with cystic fibrosis patients where the prevalence of ABPA is fairly high and the morbidity and mortality are significant.

Methods

In the present study, we have evaluated purified recombinant allergens from A. fumigatus, namely Asp f 1, f 2, f 3, f 4, and f 6 using ELISA and a semi-automated method (ImmunoCAP). We studied 17 patients each from cystic fibrosis with ABPA, and cystic fibrosis with asthma, 22 cystic fibrosis with no ABPA or asthma, and 11 age matched controls.

Results

The results indicate that no antigen, antibody or method is capable of differentiating cystic fibrosis (CF) with ABPA from other CF patients, although some allergens showed strong reaction or showed more prevalence among the patients studied.

Conclusion

When results of several allergens such as Asp f 1, f 2, f 3, f 4, and f 6 in their binding to IgA, IgG, and IgE antibodies were analyzed, a more strong discrimination of CF patients with ABPA was possible from the other groups studied.  相似文献   

19.

Background

Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated.

Methods

Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA.

Results

This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life.

Conclusion

These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.  相似文献   

20.

Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by sustained synovitis. Recently, several studies have proposed neutrophils and Th17 cells as key players in the onset and perpetuation of this disease. The main goal of this work was to determine whether cytokines driving neutrophil and Th17 activation are dysregulated in very early rheumatoid arthritis patients with less than 6 weeks of disease duration and before treatment (VERA).

Methods

Cytokines related to neutrophil and Th17 activation were quantified in the serum of VERA and established RA patients and compared with other very early arthritis (VEA) and healthy controls. Synovial fluid (SF) from RA and osteoarthritis (OA) patients was also analyzed.

Results

VERA patients had increased serum levels of cytokines promoting Th17 polarization (IL-1β and IL-6), as well as IL-8 and Th17-derived cytokines (IL-17A and IL-22) known to induce neutrophil-mediated inflammation. In established RA this pattern is more evident within the SF. Early treatment with methotrexate or corticosteroids led to clinical improvement but without an impact on the cytokine pattern.

Conclusions

VERA patients already display increased levels of cytokines related with Th17 polarization and neutrophil recruitment and activation, a dysregulation also found in SF of established RA. 0 Thus, our data suggest that a cytokine-milieu favoring Th17 and neutrophil activity is an early event in RA pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号