首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Src-like adaptor protein 2 (SLAP-2) is a hematopoietic adaptor protein previously implicated as a negative regulator of T-cell antigen receptor (TCR)-mediated signaling. SLAP-2 contains an SH3 and an SH2 domain, followed by a unique carboxyl-terminal tail, which is important for c-Cbl binding. Here we describe a novel role for SLAP-2 in regulation of the colony-stimulating factor 1 receptor (CSF-1R), a receptor tyrosine kinase important for growth and differentiation of myeloid cells. SLAP-2 co-immunoprecipitates with c-Cbl and CSF-1R in primary bone marrow-derived macrophages. Using murine myeloid cells expressing CSF-1R (FD-Fms cells), we show that SLAP-2 is tyrosine-phosphorylated upon stimulation with CSF-1 and associates constitutively with both c-Cbl and CSF-1R. In addition, we show that expression of a dominant negative form of SLAP-2 impairs c-Cbl association with the CSF-1R and receptor ubiquitination. Impaired c-Cbl recruitment also correlated with changes in the kinetics of CSF-1R down-regulation and trafficking. CSF-1-mediated differentiation of FD-Fms cells and activation of downstream signaling events was also enhanced in cells stably expressing dominant negative SLAP-2. Together, these results demonstrate that SLAP-2 plays a role in c-Cbl-dependent down-regulation of CSF-1R signaling.  相似文献   

2.
Mice null for the T-cell protein tyrosine phosphatase (Tcptp-/-) die shortly after birth due to complications arising from the development of a systemic inflammatory disease. It was originally reported that Tcptp-/- mice have increased numbers of macrophages in the spleen; however, the mechanism underlying the aberrant growth and differentiation of macrophages in Tcptp-/- mice is not known. We have identified Tcptp as an important regulator of colony-stimulating factor 1 (CSF-1) signaling and mononuclear phagocyte development. The number of CSF-1-dependent CFU is increased in Tcptp-/- bone marrow. Tcptp-/- mice also have increased numbers of granulocyte-macrophage precursors (GMP), and these Tcptp-/- GMP yield more macrophage colonies in response to CSF-1 relative to wild-type cells. Furthermore, we have identified the CSF-1 receptor (CSF-1R) as a physiological target of Tcptp through substrate-trapping experiments and its hyperphosphorylation in Tcptp-/- macrophages. Tcptp-/- macrophages also have increased tyrosine phosphorylation and recruitment of a Grb2/Gab2/Shp2 complex to the CSF-1R and enhanced activation of Erk after CSF-1 stimulation, which are important molecular events in CSF-1-induced differentiation. These data implicate Tcptp as a critical regulator of CSF-1 signaling and mononuclear phagocyte development in hematopoiesis.  相似文献   

3.
SHP-1 plays key roles in the modulation of hematopoietic cell signaling. To ascertain the impact of SHP-1 on colony-stimulating factor-1 (CSF-1)-mediated survival and proliferative signaling, we compared the CSF-1 responses of primary bone marrow macrophages (BMM) from wild-type and SHP-1-deficient motheaten (me/me) mice. CSF-1-induced protein tyrosine phosphorylation levels were similar in wild-type and me/me BMM, except for the constitutive hyperphosphorylation of a 62-kDa phosphoprotein (pp62) in me/me macrophages. pp62 was identified as the RASGAP-associated p62(DOK) and was shown to be the major CSF-1R-associated tyrosine-phosphorylated protein in CSF-1-treated BMM. p62(DOK) was found to be constitutively associated with SHP-1 in BMM and in 293T cells, co-expressing p62(dok) and either wild-type or catalytically inert SHP-1 (SHP-1 C453S). In both cell types, the interaction of SHP-1 with p62(DOK) occurred independently of p62(DOK) tyrosine phosphorylation, but only the tyrosine-phosphorylated p62(DOK) was bound by SHP-1 C453S in a far Western analysis. These findings suggest a constitutive association of SHP-1 and p62(DOK) that is either conformation-dependent or indirect as well as a direct, inducible association of the SHP-1 catalytic domain with tyrosine-phosphorylated p62(DOK). p62(DOK) hyperphosphorylation is not associated with altered CSF-1-induced RAS signaling or proliferation. However, whereas wild-type macrophages undergo cell death following CSF-1 removal, me/me macrophages exhibit prolonged survival in the absence of growth factor. Thus, p62(DOK) is a major SHP-1 substrate whose tyrosine phosphorylation correlates with growth factor-independent survival in macrophages.  相似文献   

4.
Receptor tyrosine kinase (RTK) activation involves ligand-induced receptor dimerization and transphosphorylation on tyrosine residues. Colony-stimulating factor-1 (CSF-1)-induced CSF-1 receptor (CSF-1R) tyrosine phosphorylation and ubiquitination were studied in mouse macrophages. Phosphorylation of CSF-1R Tyr-559, required for the binding of Src family kinases (SFKs), was both necessary and sufficient for these responses and for c-Cbl tyrosine phosphorylation and all three responses were inhibited by SFK inhibitors. In c-Cbl-deficient macrophages, CSF-1R ubiquitination and tyrosine phosphorylation were substantially inhibited. Reconstitution with wild-type, but not ubiquitin ligase-defective C381A c-Cbl rescued these responses, while expression of C381A c-Cbl in wild-type macrophages suppressed them. Analysis of site-directed mutations in the CSF-1R further suggests that activated c-Cbl-mediated CSF-1R ubiquitination is required for a conformational change in the major kinase domain that allows amplification of receptor tyrosine phosphorylation and full receptor activation. Thus the results indicate that CSF-1-mediated receptor dimerization leads to a Tyr-559/SFK/c-Cbl pathway resulting in receptor ubiquitination that permits full receptor tyrosine phosphorylation of this class III RTK in macrophages.  相似文献   

5.
Activation of the high affinity neurotrophin receptor tropomyosin-related kinase A (TrkA) by nerve growth factor (NGF) leads to phosphorylation of intracellular tyrosine residues of the receptor with subsequent activation of signaling pathways involved in neuronal survival such as the phosphoinositide-3-kinase (PI3-K)/protein kinase B (PKB/Akt) pathway and the mitogen-activated protein kinase (MAPK) cascade. In the present study, we tested whether inhibition of protein-tyrosine phosphatases (PTP) by orthovanadate could enhance tyrosine phosphorylation of TrkA thereby stimulating NGF-like survival signaling in embryonic hippocampal neurons. We found that the PTP inhibitor orthovanadate (1 microM) enhanced TrkA phosphorylation and protected neurons against staurosporine (STS)-induced apoptosis in a time-and concentration-dependent manner. Inhibition of PTP enhanced TrkA phosphorylation also in the presence of NGF antibodies indicating that NGF binding to TrkA was not required for the effects of orthovanadate. Moreover, orthovanadate enhanced phosphorylation of Akt and the MAPK Erk1/2 suggesting that the signaling pathways involved in the protective effect were similar to those activated by NGF. Accordingly, inhibition of PI3-K by wortmannin and MAPK-kinase (MEK) inhibition by UO126 abolished the neuroprotective effects. In conclusion, the results indicate that orthovanadate mimics the effect of NGF on survival signaling pathways in hippocampal neurons. Thus, PTP inhibition appears to be an appropriate strategy to trigger neuroprotective signaling pathways downstream of neurotrophin receptors.  相似文献   

6.
Colony stimulating factor-1 (CSF-1) mediates its pleiotropic effects on macrophages through the CSF-1 receptor (CSF-1R), a receptor tyrosine kinase. Current models of CSF-1 signalling imply that the CSF-1R activates signalling pathways exclusively at the plasma membrane and the subsequent internalisation of the CSF-1R simply facilitates its lysosomal degradation in order to prevent on-going signalling. Here, we sought to establish if the CSF-1R may in fact continue to signal following its internalisation. Erk1/2, Akt and Stat3 activation were abrogated when the internalisation of the CSF-1R was impaired, with the effects on Stat3 distinct from those for Erk1/2 and Akt. Pharmacologic inhibition of the CSF-1R following its internalisation resulted in less sustained Erk1/2 and Akt activity, whereas Stat3 activity was unaffected. Significantly, the suppressive effects of the CSF-1R inhibitor on the up-regulation of gene expression by CSF-1 (e.g. cyclin D1 and Bcl-xL gene expression) were comparable irrespective of whether the inhibitor was added prior to CSF-1 stimulation or following the internalisation of the CSF-1R. Similarly, pharmacologic inhibition of Erk1/2 (or Akt) activity either prior to CSF-1 stimulation or subsequent to CSF-1R internalisation had comparable effects on the regulation of gene expression by CSF-1. Together, our data argue that key signalling responses to CSF-1 depend on the ability of the CSF-1R to signal from endosomes following its internalisation, thus adding an important spatiotemporal aspect to CSF-1R signalling.  相似文献   

7.
8.
Inhibitory immunoreceptors downregulate signaling by recruiting Src homology 2 (SH2) domain-containing tyrosine and/or lipid phosphatases to activating receptor complexes [1]. There are indications that some inhibitory receptors might also perform other functions [2] [3]. In adherent macrophages, two inhibitory receptors, SHPS-1 and PIR-B, are the major proteins binding to the tyrosine phosphatase SHP-1. SHPS-1 also associates with two tyrosine-phosphorylated proteins (pp55 and pp130) and a protein tyrosine kinase [4]. Here, we have identified pp55 and pp130 as the adaptor molecules SKAP55hom/R (Src-kinase-associated protein of 55 kDa homologue) and FYB/SLAP-130 (Fyn-binding protein/SLP-76-associated protein of 130 kDa), respectively, and the tyrosine kinase activity as PYK2. Two distinct SHPS-1 complexes were formed, one containing SKAP55hom/R and FYB/SLAP-130, and the other containing PYK2. Recruitment of FYB/SLAP-130 to SHPS-1 required SKAP55hom/R, whereas PYK2 associated with SHPS-1 independently. Formation of both complexes was independent of SHP-1 and tyrosine phosphorylation of SHPS-1. Finally, tyrosine phosphorylation of members of the SHPS-1 complexes was regulated by integrin-mediated adhesion. Thus, SHPS-1 provides a scaffold for the assembly of multi-protein complexes that might both transmit adhesion-regulated signals and help terminate such signals through SHP-1-directed dephosphorylation. Other inhibitory immunoreceptors might have similar scaffold-like functions.  相似文献   

9.
Macrophage colony stimulating factor (M-CSF) or CSF-1 controls the development of the macrophage lineage through its receptor tyrosine kinase, c-Fms. cAMP has been shown to influence proliferation and differentiation in many cell types, including macrophages. In addition, modulation of cellular ERK activity often occurs when cAMP levels are raised. We have shown previously that agents that increase cellular cAMP inhibited CSF-1-dependent proliferation in murine bone marrow-derived macrophages (BMM) which was associated with an enhanced extracellular signal-regulated kinase (ERK) activity. We report here that increasing cAMP levels, by addition of either 8-bromo cAMP (8BrcAMP) or prostaglandin E(1) (PGE1), can induce macrophage differentiation in M1 myeloid cells engineered to express the CSF-1 receptor (M1/WT cells) and can potentiate CSF-1-induced differentiation in the same cells. The enhanced CSF-1-dependent differentiation induced by raising cAMP levels correlated with enhanced ERK activity. Thus, elevated cAMP can promote either CSF-1-induced differentiation or inhibit CSF-1-induced proliferation depending on the cellular context. The mitogen-activated protein kinase/extracellular signal-related protein kinase kinase (MEK) inhibitor, PD98059, inhibited both the cAMP- and the CSF-1R-dependent macrophage differentiation of M1/WT cells suggesting that ERK activity might be important for differentiation in the M1/WT cells. Surprisingly, addition of 8BrcAMP or PGE1 to either CSF-1-treated M1/WT or BMM cells suppressed the CSF-1R-dependent tyrosine phosphorylation of cellular substrates, including that of the CSF-1R itself. It appears that there are at least two CSF-1-dependent pathway(s), one MEK/ERK dependent pathway and another controlling the bulk of the tyrosine phosphorylation, and that cAMP can modulate signalling through both of these pathways.  相似文献   

10.
Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R, or macrophage CSF receptor [M-CSFR]) is the primary regulator of the proliferation, survival, and differentiation of mononuclear phagocytes (MNPs), but the critical CSF-1 signals for these functions are unclear. The scaffold protein Gab2 is a major tyrosyl phosphoprotein in the CSF-1R signaling network. Here we demonstrate that Gab2 deficiency results in profoundly defective expansion of CSF-1R-dependent MNP progenitors in the bone marrow, through decreased proliferation and survival. Reconstitution and phospho-flow studies show that downstream of CSF-1R, Gab2 uses phosphatidylinositol 3-kinase (PI3K)-Akt and extracellular signal-regulated kinase (Erk) to regulate MNP progenitor expansion. Unexpectedly, Gab2 ablation enhances Jun N-terminal protein kinase 1 (JNK1) phosphorylation in differentiated MNPs but reduces their proliferation; inhibition of JNK signaling or reduction of JNK1 levels restores proliferation. MNP recruitment to inflammatory sites and the corresponding bone marrow response is strongly impaired in Gab2-deficient mice. Our data provide genetic and biochemical evidence that CSF-1R, through Gab2, utilizes different effectors at different stages of MNP development to promote their expansion.  相似文献   

11.
12.
Lee AW 《PloS one》2011,6(10):e25580
Colony stimulating factor-1 (CSF-1 or M-CSF) is the major physiological regulator of the proliferation, differentiation and survival of cells of the mononuclear phagocyte lineage. CSF-1 binds to a receptor tyrosine kinase, the CSF-1 receptor (CSF-1R). Multiple pathways are activated downstream of the CSF-1R; however, it is not clear which pathways regulate proliferation and survival. Here, we investigated the role of atypical protein kinase Cs (PKCζ) in a myeloid progenitor cell line that expressed CSF-1R (32D.R) and in primary murine bone marrow derived macrophages (BMMs). In 32D.R cells, CSF-1 induced the phosphorylation of PKCζ and increased its kinase activity. PKC inhibitors and transfections with mutant PKCs showed that optimal CSF-1-dependent Erk activation and proliferation depended on the activity of PKCζ. We previously reported that CSF-1 activated the Erk pathway through an A-Raf-dependent and an A-Raf independent pathway (Lee and States, Mol. Cell. Biol.18, 6779). PKC inhibitors did not affect CSF-1 induced Ras and A-Raf activity but markedly reduced MEK and Erk activity, implying that PKCζ regulated the CSF-1-Erk pathway at the level of MEK. PKCζ has been implicated in activating the NF-κB pathway. However, CSF-1 promoted proliferation in an NF-κB independent manner. We established stable 32D.R cell lines that overexpressed PKCζ. Overexpression of PKCζ increased the intensity and duration of CSF-1 induced Erk activity and rendered cells more responsive to CSF-1 mediated proliferation. In contrast to 32D.R cells, PKCζ inhibition in BMMs had only a modest effect on proliferation. Moreover, PKCζ -specific and pan-PKC inhibitors induced a paradoxical increase in MEK-Erk phosphorylation suggesting that PKCs targeted a common negative regulatory step upstream of MEK. Our results demonstrated that CSF-1 dependent Erk activation and proliferation are regulated differentially in progenitors and differentiated cells.  相似文献   

13.
Colony-stimulating factor 1 (CSF-1) is the main growth factor controlling the development of macrophages from myeloid progenitor cells. However, CSF-1 also regulates some of the key effector functions of macrophages (e.g., phagocytosis and cytokine secretion). The endosomal SNARE protein syntaxin 7 (Stx7) regulates vesicle trafficking events involved in phagocytosis and cytokine secretion. Therefore, we investigated the ability of CSF-1 to regulate Stx7. CSF-1 upregulated Stx7 expression in primary mouse macrophages; it also upregulated expression of its SNARE partners Vti1b and VAMP8 but not Stx8. Additionally, CSF-1 induced the rapid serine phosphorylation of Stx7 and enhanced its binding to Vti1b, Stx8, and VAMP8. Bioinformatics analysis and results from experiments with kinase inhibitors suggested the CSF-1-induced phosphorylation of Stx7 was mediated by protein kinase C and Akt in response to phosphatidylinositol 3-kinase activation. Based on mutagenesis studies, CSF-1 appeared to increase the binding of Stx7 to its SNARE partners by inducing the phosphorylation of serine residues in the Habc domain and/or “linker” region of Stx7. Thus, CSF-1 is a key regulator of Stx7 expression and function in macrophages. Furthermore, the effects of CSF-1 on Stx7 may provide a mechanism for the regulation of macrophage effector functions by CSF-1.  相似文献   

14.
Recent literature implicates a regulatory function of the juxtamembrane domain (JMD) in receptor tyrosine kinases. Mutations in the JMD of c-Kit and Flt3 are associated with gastrointestinal stromal tumors and acute myeloid leukemias, respectively. Additionally, autophosphorylated Tyr559 in the JMD of the colony stimulating factor-1 (CSF-1) receptor (CSF-1R) binds to Src family kinases (SFKs). To investigate SFK function in CSF-1 signaling we established stable 32D myeloid cell lines expressing CSF-1Rs with mutated SFK binding sites (Tyr559-TFI). Whereas binding to I562S was not significantly perturbed, Y559F and Y559D exhibited markedly decreased CSF-1-dependent SFK association. All JMD mutants retained intrinsic kinase activity, but Y559F, and less so Y559D, showed dramatically reduced CSF-1-induced autophosphorylation. CSF-1-mediated wild-type (WT)-CSF-1R phosphorylation was not markedly affected by SFK inhibition, indicating that lack of SFK binding is not responsible for diminished Y559F phosphorylation. Unexpectedly, cells expressing Y559F were hyperproliferative in response to CSF-1. Hyperproliferation correlated with prolonged activation of Akt, ERK, and Stat5 in the Y559F mutant. Consistent with a defect in receptor negative regulation, c-Cbl tyrosine phosphorylation and CSF-1R/c-Cbl co-association were almost undetectable in the Y559F mutant. Furthermore, Y559F underwent reduced multiubiquitination and delayed receptor internalization and degradation. In conclusion, we propose that Tyr559 is a switch residue that functions in kinase regulation, signal transduction and, indirectly, receptor down-regulation. These findings may have implications for the oncogenic conversion of c-Kit and Flt3 with JMD mutations.  相似文献   

15.
16.
CSF-1, by binding to its high-affinity receptor CSF-1R, sustains the survival and proliferation of monocyte/macrophages, which are central cells of innate immunity and inflammation. The MAPK ERK5 (also known as big MAPK-1, BMK1, or MAPK7) is a 98-kDa molecule sharing high homology with ERK1/2. ERK5 is activated by oxidative stress or growth factor stimulation. This study was undertaken to characterize ERK5 involvement in macrophage signaling that is elicited by CSF-1. Exposure to the CSF-1 of primary human macrophages or murine macrophage cell lines, as well as murine fibroblasts expressing ectopic CSF-1R, resulted in a rapid and sustained increase of ERK5 phosphorylation on activation-specific residues. In the BAC1.2F5 macrophage cell line, ERK5 was also activated by another mitogen, GM-CSF, while macrophage activators such as LPS or IFN-gamma and a number of nonproliferative cytokines failed. Src family kinases were found to link the activation of CSF-1R to that of ERK5, whereas protein kinase C or the serine phosphatases PP1 and PP2A seem not to be involved in the process. Treatment of macrophages with ERK5-specific small interfering RNA markedly reduced CSF-1-induced DNA synthesis and total c-Jun phosphorylation and expression, while increasing the expression of the cyclin-dependent kinase inhibitor p27. Following CSF-1 treatment, the active form of ERK5 rapidly translocated from cytosol to nucleus. Taken together, the results reported in this study show that ERK5 is indispensable for optimal CSF-1-induced proliferation and indicate a novel target for its control.  相似文献   

17.
The Tie2 receptor tyrosine kinase plays a pivotal role in vascular and hematopoietic development. The major intracellular signaling systems activated by Tie2 in response to Angiopoietin-1 (Ang1) include the Akt and Erk1/2 pathways. Here, we investigated the role of cholesterol-rich plasma membrane microdomains (lipid rafts) in Tie2 regulation. Tie2 could not be detected in the lipid raft fraction of human umbilical vein endothelial cells (HUVECs) unless they were first stimulated with Ang1. After stimulation, a minor fraction of Tie2 associated tightly with the lipid rafts. Treatment of HUVECs with the lipid raft disrupting agent methyl-β-cyclodextrin selectively inhibited Ang1-induced Akt phosphorylation, but not Erk1/2 phosphorylation. It has been reported that inhibition of FoxO activity is an important mechanism for Ang1-stimulated Tie2-mediated endothelial function. Consistent with this, we found that phosphorylation of FoxO mediated by Tie2 activation was attenuated by lipid raft disruption. Therefore, we propose that lipid rafts serve as signaling platforms for Tie2 receptor tyrosine kinase in vascular endothelial cells, especially for the Akt pathway.  相似文献   

18.
The exposure of cells to growth factors leads to the rapid tyrosine phosphorylation of proteins that play critical roles in initiating cellular responses. These proteins are associated with other nontyrosine-phosphorylated proteins. Together, they represent less than 0.02% of the total cellular protein. To study their functions in growth factor signaling it is necessary to establish their identity, post-translational modifications, and interactions. We have focused on the characterization of this group of proteins during the early response of macrophages to the macrophage growth factor, colony-stimulating factor-1 (CSF-1). We review here the development of approaches to analysis of the rapid CSF-1-induced changes in the CSF-1 receptor tyrosine kinase and phosphotyrosyl signaling complexes. Recent advances in mass spectrometry technology are greatly facilitating the characterization of such complexes. These methods strongly support and enhance genetic approaches that are being used to analyze the function of individual signaling components and pathways.  相似文献   

19.
c-fps/fes encodes a 92-kDa protein-tyrosine kinase (NCP92) that is expressed at the highest levels in macrophages. To determine if c-fps/fes can mediate the action of the colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) and to identify potential targets of c-fps/fes in macrophages, we have overexpressed c-fps/fes in a CSF-1-dependent macrophage cell line. A 30- to 50-fold overexpression of c-fps/fes partially released these cells from their factor dependence by a nonautocrine mechanism, and this correlated with the tyrosine phosphorylation of two proteins of 130 and 75 kDa (P130 and P75). c-fps/fes did not cause tyrosine phosphorylation or activation of CSF-1 dependent targets, including CSF-1R, Shc, and phosphatidylinositol 3-kinase, and conversely, CSF-1 did not induce tyrosine phosphorylation of P130 and P75. P75 appears to be a novel phosphotyrosyl protein, whereas P130 cross-reacts with a known substrate of v-src. P130 and P75 may be direct substrates of c-fps/fes: P130 was tightly associated with NCP92, and the src homology 2 domain of NCP92 specifically bound phosphorylated P130 and P75 but not the CSF-1-induced phosphotyrosyl proteins, consistent with the possibility that P130 and P75 are physiological targets of c-fps/fes. We conclude that although c-fps/fes can functionally substitute for CSF-1R to a certain extent, these tyrosine kinases act largely independently of each other and that P130 and P75 are novel targets whose mechanisms of action may be unrelated to the signalling pathways utilized by receptor tyrosine kinases.  相似文献   

20.
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号