首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in structure-based rational drug design   总被引:5,自引:0,他引:5  
Two approaches to structure-based drug design, that is, the docking of known compounds into a target protein and molecular assembly in situ, are seen to be merging technologies. The need for structural information about drug-protein complexes is now fundamental for drug discovery.  相似文献   

2.
We have applied pharmacophore generation, database searching, docking methodologies, and experimental enzyme kinetics to discover new structures for design of di-zinc metallo-beta-lactamase inhibitors. Based on crystal structures of class B1 metallo-beta-lactamases with a succinic acid and a mercapto-carboxylic acid inhibitor bound to the enzyme, two pharmacophore models were constructed. With the Catalyst program, these pharmacophores were used to search the ACD database, which provided a total of 74 hits representing four different chemical classes of compounds: Dicarboxylic acids, phosphonic and sulfonic acid derivatives, and mercapto-carboxylic acids. All hits were docked into different metallo-beta-lactamases (from classes B1 and B3) using the GOLD docking program. A selection scheme based on the GOLD scores, the Catalyst fit and shape values, and the size of the compounds (molecular weight, surface area, and number of rotatable bonds) was developed and thirteen compounds representing all four chemical classes were selected for experimental studies. Three compounds with new scaffolds hitherto not present in metallo-beta-lactamase inhibitors have IC50 values less than 15 microM and may serve as starting points in the design of metallo-beta-lactamase inhibitors.  相似文献   

3.
Aldose reductase, a monomeric NADPH-dependent oxidoreductase, catalyzes the reduction of a wide variety of aldehydes and ketones to their corresponding alcohols. The X-ray structure of human aldose reductase holoenzyme in complex with statil was determined at a resolution of 2.1 A. The carboxylate group of statil interacted with the conserved anion binding site located between the nicotinamide ring of the coenzyme and active site residues Tyr48, His110, and Trp111. Statil's hydrophobic phthalazinyl ring was bound in an adjacent pocket lined by residues Trp20, Phe122, and Trp219, with the bromo-fluorobenzyl group penetrating the "specificity" pocket. The interactions between the inhibitor's bromo-fluorobenzyl group and the enzyme include the stacking against the side-chain of Trp111 as well as hydrogen bonding to residues Leu300 and Thr113. Based on the model of the ternary complex, the program GRID was used in an attempt to design novel potential inhibitors of human aldose reductase with enhanced binding energies of the complex. Molecular modeling calculations suggested that the replacement of the fluorine atom of statil with a carboxylate functional group may enhance the binding energies of the complex by 33%.  相似文献   

4.
Nearly 30 years have passed since purine salvage enzymes were first proposed as targets of drugs in the chemotherapeutic treatment of diseases caused by parasites. The rationale behind a structure-based approach to the design of chemotherapeutic agents involves the use of information about substrate preference and the three-dimensional structure of a target enzyme to design potent selective inhibitors of that enzyme. This approach is outlined here by Syd Craig and Ann Eakin, as it applies to the possible design of inhibitors of a purine salvage enzyme, the hypoxanthine phosphoribosyltransferase.  相似文献   

5.
Combinatorial and structure-based medicinal chemistry strategies were used together to advance a lead compound with an activity of K(i) = 58 microM via a potency enhancement of >70 000-fold to an analogue with an activity of K(i) = 0.8 nM against influenza neuraminidase (A/Tokyo/67). Lead optimization was initiated using molecular modeling and combinatorial chemistry. Protein crystal structures revealed that inconsistent structure-activity relationship (SAR) data resulted from different binding orientations of the inhibitor core five-membered rings from one series to another. Binding modes for a series of compounds showed up to a 180 degrees variation in orientation of the five-membered ring within the active site. Potent analogues were only achieved with chemical series that were observed to bind in the same orientation and yielded consistent SAR. In one series, consistent binding was obtained by an unprecedented occupation of a negatively charged binding pocket by a neutral methyl ester unit. The structural rationale for this novel SAR variation, based on protein crystallographic data, is given.  相似文献   

6.
Background: Colicin E7 (ColE7) is one of the bacterial toxins classified as a DNase-type E-group colicin. The cytotoxic activity of a colicin in a colicin-producing cell can be counteracted by binding of the colicin to a highly specific immunity protein. This biological event is a good model system for the investigation of protein recognition.Results: The crystal structure of a one-to-one complex between the DNase domain of colicin E7 and its cognate immunity protein Im7 has been determined at 2.3 Å resolution. Im7 in the complex is a varied four-helix bundle that is identical to the structure previously determined for uncomplexed Im7. The structure of the DNase domain of ColE7 displays a novel α/β fold and contains a Zn2+ ion bound to three histidine residues and one water molecule in a distorted tetrahedron geometry. Im7 has a V-shaped structure, extending two arms to clamp the DNase domain of ColE7. One arm (α11–loop12–α21; where 1 represents helices in Im7) is located in the region that displays the greatest sequence variation among members of the immunity proteins in the same subfamily. This arm mainly uses acidic sidechains to interact with the basic sidechains in the DNase domain of ColE7. The other arm (loop 23–α31–loop 34) is more conserved and it interacts not only with the sidechain but also with the mainchain atoms of the DNase domain of ColE7.Conclusions: The protein interfaces between the DNase domain of ColE7 and Im7 are charge-complementary and charge interactions contribute significantly to the tight and specific binding between the two proteins. The more variable arm in Im7 dominates the binding specificity of the immunity protein to its cognate colicin. Biological and structural data suggest that the DNase active site for ColE7 is probably near the metal-binding site.  相似文献   

7.
Urease, the enzyme that catalyses the hydrolysis of urea, is a virulence factor for a large number of ureolytic bacterial human pathogens. The increasing resistance of these pathogens to common antibiotics as well as the need to control urease activity to improve the yield of soil nitrogen fertilization in agricultural applications has stimulated the development of novel classes of molecules that target urease as enzyme inhibitors. We report on the crystal structure at 1.50-Å resolution of a complex formed between citrate and urease from Sporosarcina pasteurii, a widespread and highly ureolytic soil bacterium. The fit of the ligand to the active site involves stabilizing interactions, such as a carboxylate group that binds the nickel ions at the active site and several hydrogen bonds with the surrounding residues. The citrate ligand has a significantly extended structure compared with previously reported ligands co-crystallized with urease and thus represents a unique and promising scaffold for the design of new, highly active, stable, selective inhibitors.  相似文献   

8.
On the basis of the active site of lanosterol 14α-demethylase from Candida albicans (CACYP51), a series of new azoles were designed and synthesized. All the new azoles show excellent in vitro activity against most of the tested pathogenic fungi, which represent a class of promising leads for the development of novel antifungal agents. The MIC80 value of compounds 8c, 8i and 8n against C. albicans is 0.001 μg/mL, indicating that these compounds are more potent than fluconazole, itraconazole and voriconazole. Flexible molecular docking was used to analyze the structure–activity relationships (SARs) of the compounds. The designed compounds interact with CACYP51 through hydrophobic, van der Waals and hydrogen-bonding interactions.  相似文献   

9.
10.
Nucleoside analogue prodrugs are dependent on efficient intracellular stepwise phosphorylation to their triphosphate form to become therapeutically active. In many cases it is this activation pathway that largely determines the efficacy of the drug. To gain further understanding of the determinants for efficient conversion by the enzyme thymidylate kinase (TMPK) of clinically important thymidine monophosphate analogues to the corresponding diphosphates, we solved the crystal structures of the enzyme, with either ADP or the ATP analogue AppNHp at the phosphoryl donor site, in complex with TMP, AZTMP (previous work), NH2TMP, d4TMP, ddTMP, and FLTMP (this work) at the phosphoryl acceptor site. In conjunction with steady-state kinetic data, our structures shed light on the effect of 3'-substitutions in the nucleoside monophosphate (NMP) sugar moiety on the catalytic rate. We observe a direct correlation between the rate of phosphorylation of an NMP and its ability to induce a closing of the enzyme's phosphate-binding loop (P-loop). Our results show the drastic effects that slight modifications of the substrates exert on the enzyme's conformation and, hence, activity and suggest the type of substitutions that are compatible with efficient phosphorylation by TMPK.  相似文献   

11.
Three peptides modelling a highly potent, 35-residue chymotrypsin inhibitor (Schistocerca gregaria chymotrypsin inhibitor) were designed and synthesized by convergent peptide synthesis. For each model peptide, the inhibitory constant (Ki) on chymotrypsin and the solution structure were determined. In addition, molecular dynamics calculations were performed for all of them. Two models containing approximately half of the parent inhibitor (17 of 35 residues) were designed and subsequently found to have no substantial inhibitory activity (Ki values in the mM range). The third model composed of 24 amino acid residues proved to be an effective (Ki approximately 10(-7)) inhibitor of bovine chymotrypsin. Both the solution structure properties determined by NMR spectroscopy and the dynamic behaviour of the latter model system are comparable to the native inhibitor. In contrast, the structure and dynamics of the first two related model peptides show characteristic differences. We suggest that the conformation and flexibility of the modelled protease inhibitor are crucial for its biological efficiency. Moreover, the structural and dynamic features of the binding loop (28-33) and those of the rest of the molecule appear to be interdependent. Most importantly, these structural characteristics can be rationally modified, at least partially, by peptide design.  相似文献   

12.
The crystal structure of ribonuclease A (RNase A) in complex with pdUppA-3'-p [5'-phospho-2'-deoxyuridine-3'-pyrophosphate (P'-->5') adenosine 3'-phosphate] has been determined at 1.7 A resolution. This dinucleotide is the most potent low molecular weight inhibitor of RNase A reported to date (K(i) = 27 nM) and is also effective against two major nonpancreatic RNases: eosinophil-derived neurotoxin and RNase-4; in all cases, tight binding in large part derives from the unusual 3',5'-pyrophosphate internucleotide linkage [Russo, N., and Shapiro, R. (1999) J. Biol. Chem. 274, 14902-14908]. The design of pdUppA-3'-p was based on the crystal structure of RNase A complexed with 5'-diphosphoadenosine 3'-phosphate (ppA-3'-p) [Leonidas, D. D., Shapiro, R., Irons, L. I., Russo, N., and Acharya, K. R. (1997) Biochemistry 36, 5578-5588]. The adenosine of pdUppA-3'-p adopts an atypical syn conformation not observed for standard adenosine nucleotides bound to RNase A. This conformation, which allows extensive interactions with Asn 67, Gln 69, Asn 71, and His 119, is associated with the placement of the 5'-beta-phosphate of the adenylate, rather than alpha-phosphate, at the site where substrate phosphodiester bond cleavage occurs. The contacts of the deoxyuridine 5'-phosphate portion of pdUppA-3'-p appear to be responsible for the 9-fold increased affinity of this compound as compared to ppA-3'-p: the uracil base binds to Thr 45 in the same manner as previous pyrimidine inhibitors, and the terminal 5'-phosphate is positioned to form medium-range Coulombic interactions with Lys 66. The full potential benefit of these added interactions is not realized because of compensatory losses of hydrogen bonds of Lys 7 and Gln 11 with the terminal 3'-phosphate and the adenylate 5'-alpha-phosphate, which were not predicted by modeling. The results reported here have important implications for the design of improved inhibitors of RNase A and for the development of therapeutic agents to control the activities of RNase homologues such as eosinophil-derived neurotoxin and angiogenin that have roles in human pathologies.  相似文献   

13.
Malaria is a major threat to world health. The identification of parasite targets for drug development is a priority and parasitic protein kinases suggest themselves as suitable targets as many display profound structural and functional divergences from their host counterparts. In this paper, we describe the structure of the orphan protein kinase, Plasmodium falciparum protein kinase 7 (PFPK7). Several Plasmodium protein kinases contain extensive insertions, and the structure of PFPK7 reveals how these may be accommodated as excursions from the canonical eukaryotic protein kinase fold. The constitutively active conformation of PFPK7 is stabilized by a structural motif in which the role of the conserved phosphorylated residue that assists in structuring the activation loop of many protein kinases is played by an arginine residue. We identify two series of PFPK7 ATP-competitive inhibitors and suggest further developments for the design of selective and potent PFPK7 lead compounds as potential antimalarials.  相似文献   

14.
Trans-sialidase (TS), a virulence factor from Trypanosoma cruzi, is an enzyme playing key roles in the biology of this protozoan parasite. Absent from the mammalian host, it constitutes a potential target for the development of novel chemotherapeutic drugs, an urgent need to combat Chagas'' disease. TS is involved in host cell invasion and parasite survival in the bloodstream. However, TS is also actively shed by the parasite to the bloodstream, inducing systemic effects readily detected during the acute phase of the disease, in particular, hematological alterations and triggering of immune cells apoptosis, until specific neutralizing antibodies are elicited. These antibodies constitute the only known submicromolar inhibitor of TS''s catalytic activity. We now report the identification and detailed characterization of a neutralizing mouse monoclonal antibody (mAb 13G9), recognizing T. cruzi TS with high specificity and subnanomolar affinity. This mAb displays undetectable association with the T. cruzi superfamily of TS-like proteins or yet with the TS-related enzymes from Trypanosoma brucei or Trypanosoma rangeli. In immunofluorescence assays, mAb 13G9 labeled 100% of the parasites from the infective trypomastigote stage. This mAb also reduces parasite invasion of cultured cells and strongly inhibits parasite surface sialylation. The crystal structure of the mAb 13G9 antigen-binding fragment in complex with the globular region of T. cruzi TS was determined, revealing detailed molecular insights of the inhibition mechanism. Not occluding the enzyme''s catalytic site, the antibody performs a subtle action by inhibiting the movement of an assisting tyrosine (Y119), whose mobility is known to play a key role in the trans-glycosidase mechanism. As an example of enzymatic inhibition involving non-catalytic residues that occupy sites distal from the substrate-binding pocket, this first near atomic characterization of a high affinity inhibitory molecule for TS provides a rational framework for novel strategies in the design of chemotherapeutic compounds.  相似文献   

15.
Histone deacetylases (HDACs) are enzymes, which catalyze the removal of acetyl moiety from acetyl-lysine within the histone proteins and promote gene repression and silencing resulting in several types of cancer. HDACs are important therapeutic targets for the treatment of cancer and related diseases. Hydroxamic acid inhibitors show promising results in clinical trials against carcinogenesis. 120 hydroxamic acid derivatives were designed as inhibitors based on hydrophobic pocket and the Zn (II) catalytic site of HDAC8 active site using Structure Based Drug Design (SBDD) approach. High Throughput Virtual screening (HTVs) was used to filter the effective inhibitors. Induced Fit Docking (IFD) studies were carried out for the screening of eight inhibitors using Glide software. Hydrogen bond, hydrophobic interactions and octahedral coordination geometry with Zn (II) were observed in the IFD complexes. Prime MM-GBSA calculation was carried out for the binding free energy, to observe the stability of docked complexes. The Lipinski's rule of five was analyzed for ADME/Tox drug likeliness using Qikprop simulation. These inhibitors have good inhibitory properties as they have favorable docking score, energy, emodel, hydrogen bond and hydrophobic interactions, binding free energy and ADME/Tox. However, one compound (Cmp22) successively satisfied all the studies among the eight compounds screened and seems to be a promising potent inhibitor against HDAC8.  相似文献   

16.
Protein kinase B/Akt (PKB) is an anti-apoptotic protein kinase that has strongly elevated activity in human malignancies. We therefore initiated a program to develop PKB inhibitors, "Aktstatins". We screened about 500 compounds for PKB inhibitors, using a radioactive assay and an ELISA assay that we established for this purpose. These compounds were produced as combinatorial libraries, designed using the structure of the selective PKA inhibitor H-89 as a starting point. We have identified a successful lead compound, which inhibits PKB activity in vitro and in cells overexpressing active PKB. The new compound shows reversed selectivity to H-89: In contrast to H-89, which inhibits PKA 70 times better than PKB, the new compound, NL-71-101, inhibits PKB 2.4-fold better than PKA. The new compound, but not H-89, induces apoptosis in tumor cells in which PKB is amplified. We have identified structural features in NL-71-101 that are significant for the specificity and that can be used for future development and optimization of PKB inhibitors.  相似文献   

17.
The 1.8 A crystal structure of 7-hydroxycoumarin (7-HC) bound to chymotrypsin reveals that this inhibitor forms a planar cinnamate acyl-enzyme complex. The phenyl ring of the bound inhibitor forms numerous van der Waals contacts in the S1 pocket of the enzyme, with the p-hydroxyl group donating a hydrogen bond to the main-chain oxygen atom of Ser217, and the o-hydroxyl group forming a water-mediated hydrogen bond with the carbonyl oxygen of Val227. The structure of the acyl-enzyme complex suggests that the mechanism of inhibition of 7-HC involves nucleophilic attack by the Ser195 O(gamma) atom on the carbonyl carbon atom of the inhibitor, accompanied by the breaking of the 2-pyrone ring of the inhibitor, and leading to the formation of a cinnamate acyl-enzyme derivative via a tetrahedral transition state. Comparisons with structures of photoreversible cinnamates bound to chymotrypsin reveal that although 7-HC interacts with the enzyme in a similar fashion, the binding of 7-HC to chymotrypsin takes place in a productive conformation in contrast to the photoreversible cinnamates. In summary, the 7-HC-chymotrypsin complex provides basic insight into the inhibition of chymotrypsin by natural coumarins and provides a structural basis for the design of more potent mechanism-based inhibitors against a wide range of biologically important chymotrypsin-like enzymes.  相似文献   

18.
Dengue viruses are members of the Flaviviridae and cause dengue fever and the more severe dengue hemorrhagic fever. Although nearly 40 % of the world's population is at risk of dengue infection, there is currently no effective vaccine or chemotherapy for the disease. Processing of the dengue polyprotein into structural and non-structural proteins in a host, which is essential for assembly of infective virions, is carried out by the combined action of host proteases and the trypsin-like, two-component viral NS2B/NS3 serine protease. Although NS2B strongly stimulates the catalytic NS3 protease domain, the latter is fully active against small substrates and possesses detectable activity against larger substrates, making both forms of the enzyme possible targets for drug design. In the crystal structure of a complex of the protease with a Bowman-Birk inhibitor reported here, an Arg residue at the P1 position of the inhibitor is bound in a manner distinctly different from that in other serine proteases of comparable specificity. However, because the regulatory component, NS2B, is not present in the complex, the physiological implications of this observations are currently unclear. The redundant nature of interaction of P1 Arg and Lys residues with Asp129, Tyr150 and Ser163 of the enzyme provides an explanation for the observed behavior of several site-specific mutants of Asp129 in the protease. The strong level of conservation of residues in the protease that interact with the P1 Arg, along with conservation of Arg at P1 of most cleavage sites in other flaviviruses, suggests that observations from this structure are likely to be applicable to many flaviviruses. The structure provides a starting point for design of site-specific mutations to probe the mechanism of catalysis by the catalytic domain, its activation by the regulatory domain and for design of specific inhibitors of enzymatic activity.  相似文献   

19.
20.
We review the impact of protein X-ray crystallography on the rational design of insecticides that act as agonists of the ligand-binding domain of the Ecdysone receptor (EcR). As the EcR is a target specific to insects, these compounds potentially constitute new chemical classes of safe insecticides. The increased insight relative to that from ligand-only based (Quantitative) Structure–Activity Relations (QSARs), classical 2D-Hansch type or 3D-CoMFA/CoMSIA (Comparative Molecular Field/Similarity Analysis), is discussed. The importance of protein X-ray structure determination in support of the discovery process is stressed as the simplistic lock-and-key picture fails due to the remarkable flexibility of the EcR ligand binding site. Several new non-steroidal chemical classes of ecdysone agonists, designed by guidance from protein X-ray studies, are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号