首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.  相似文献   

3.
Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient's tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage-dependent and -independent growth as well as sensitized melanoma cells to apoptosis-inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is currently one of the most intensely studied lipid mediators. Interest in S1P has been propelled by the development of fingolimod, an S1P receptor agonist prodrug, which revealed both a theretofore unsuspected role of S1P in lymphocyte trafficking and that such modulation of the immune system achieves therapeutic benefit in multiple sclerosis patients. S1P is synthesized from sphingosine by two SphKs (sphingosine kinases) (SphK1 and SphK2). Manipulation of SphK levels using molecular biology and mouse genetic tools has implicated these enzymes, particularly SphK1, in a variety of pathological processes such as fibrosis, inflammation and cancer progression. The results of such studies have spurred interest in SphK1 as a drug target. In this issue of the Biochemical Journal, Schnute et al. describe a small molecule inhibitor of SphK1 that is both potent and selective. Such chemical tools are essential to learn whether targeting S1P signalling at the level of synthesis is a viable therapeutic strategy.  相似文献   

5.
Functional characterization of human sphingosine kinase-1   总被引:5,自引:0,他引:5  
Sphingosine kinase catalyzes the phosphorylation of sphingosine to form sphingosine 1-phosphate (SPP), a novel lipid mediator with both intra- and extracellular functions. Based on sequence identity to murine sphingosine kinase (mSPHK1a), we cloned and characterized the first human sphingosine kinase (hSPHK1). The open reading frame of hSPHK1 encodes a 384 amino acid protein with 85% identity and 92% similarity to mSPHK1a at the amino acid level. Similar to mSPHK1a, when HEK293 cells were transfected with hSPHK1, there were marked increases in sphingosine kinase activity resulting in elevated SPP levels. hSPHK1 also specifically phosphorylated D-erythro-sphingosine and to a lesser extent sphinganine, but not other lipids, such as D,L-threo-dihydrosphingosine, N, N-dimethylsphingosine, diacylglycerol, ceramide, or phosphatidylinositol. Northern analysis revealed that hSPHK1 was widely expressed with highest levels in adult liver, kidney, heart and skeletal muscle. Thus, hSPHK1 belongs to a highly conserved unique lipid kinase family that regulates diverse biological functions.  相似文献   

6.
Sphingosine 1-phosphate (S1P) is a platelet-derived angiogenic lipid growth factor, modulating G-protein-coupled S1P1 receptors (S1P1-R) to activate endothelial nitric oxide synthase (eNOS), as well as MAPK pathways in endothelial cells. We explored whether and how hydrogen peroxide (H2O2), a representative reactive oxygen species, alters S1P1-R expression and influences S1P signaling in cultured bovine aortic endothelial cells (BAECs). When BAECs are treated with pathophysiologically relevant concentrations of H2O2 (150 µM for 30 min), S1P1-R protein expression levels are acutely augmented by 30-fold in a dose-dependent fashion. When BAECs have been pretreated with H2O2, subsequent S1P stimulation (100 nM) leads to a higher degree of eNOS enzyme activation (assessed as intracellular cGMP content, 1.7 ± 0.2-fold vs. no H2O2 pretreatment groups, P < 0.05), associated with a higher magnitude of phosphorylation responses of eNOS and MAPK ERK1/2. PP2, an inhibitor of Src-family tyrosine kinase, abolished the effects of H2O2 on both S1P1-R protein upregulation and enhanced BAEC responses to S1P. H2O2 does not augment S1P1 mRNA expression, whereas VEGF under identical cultures leads to increases in S1P1 mRNA signals. Whereas H2O2 attenuates proliferation of BAECs, addition of S1P restores growth responses of these cells. These results demonstrate that extracellularly administered H2O2 increases S1P1-R expression and promotes endothelial responses for subsequent S1P treatment. These results may identify potentially important points of cross-talk between reactive oxygen species and sphingolipid pathways in vascular responses. sphingolipids; G protein-coupled receptors; reactive oxygen species; signal transduction  相似文献   

7.
The transactivation of enhanced growth factor receptor (EGFR) by G protein-coupled receptor (GPCR) ligands is recognized as an important signaling mechanism in the regulation of complex biological processes, such as cancer development. Estrogen (E2), which is a steroid hormone that is intimately implicated in breast cancer, has also been suggested to function via EGFR transactivation. In this study, we demonstrate that E2-induced EGFR transactivation in human breast cancer cells is driven via a novel signaling system controlled by the lipid kinase sphingosine kinase-1 (SphK1). We show that E2 stimulates SphK1 activation and the release of sphingosine 1-phosphate (S1P), by which E2 is capable of activating the S1P receptor Edg-3, resulting in the EGFR transactivation in a matrix metalloprotease-dependent manner. Thus, these findings reveal a key role for SphK1 in the coupling of the signals between three membrane-spanning events induced by E2, S1P, and EGF. They also suggest a new signal transduction model across three individual ligand-receptor systems, i.e., "criss-cross" transactivation.  相似文献   

8.
Building on our initial work, we have identified additional novel inhibitors of sphingosine kinase-1 (SK1). These new analogs address the shortcomings found in our previously reported compounds. Inhibitors 51 and 54 demonstrated oral bioavailability in a rat PK study.  相似文献   

9.
Sphingosine kinase (SPHK) catalyzes sphingosine phosphorylation to form a bioactive lipid mediator, sphingosine-1-phosphate (S1P). In the current study, we report the presence of SPHK-1 in mouse spermatozoa. SPHK-1 was localized to the acrosomes of spermatozoa, and its expression was proven by RT-PCR and Western blot analysis. SPHK activity of mouse spermatozoa was 18.1 pmol/min/mg protein. Furthermore, we identified the presence of the S1P receptors S1P1, S1P2, S1P3, and S1P5, in mouse spermatozoa by RT-PCR. These results suggest that S1P produced by SPHK-1 would play a role in the acrosomal reaction through S1P receptors.  相似文献   

10.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

11.
Sphingosine kinase-1 (SK1) has emerged as a key component of cytokine responses, including roles in apoptosis, yet the specific mechanisms by which cytokines regulate SK1 in the apoptotic responses have not been studied. In this study, we show that prolonged treatment of MCF-7 cells with tumor necrosis factor (TNF) induces a dose- and time-dependent decrease in SK1 protein. Inhibition of the upstream caspase 8 by IETD significantly rescued TNF effects on SK1, yet the caspase 7 inhibitor DEVD failed to have any effect, suggesting that the decline in SK1 occurs downstream of the initiator caspase but upstream of the effector caspase. In addition to caspase activation, TNF caused disruption of lysosomes with relocation of the cysteine protease cathepsin B into the cytosol. Down-regulation of cathepsin B using small interfering RNA significantly restored SK1 levels following exposure to TNF, suggesting that SK1 loss was dependent on cathepsin B activity. The regulation of SK1 by the lysosomal protease was further supported by the colocalization of SK1 with the lysosome and cathepsin B in cells and the loss of the colocalization following exposure to TNF. The ability of cathepsin B to regulate SK1 was further corroborated by an in vitro approach where recombinant cathepsin B cleaved SK1 at multiple sites to produce several cleavage fragments. Therefore, these studies show that SK1 down-regulation by TNF is dependent on the "lysosomal pathway" of apoptosis and specifically on cathepsin B, which functions as an SK1 protease in cells.  相似文献   

12.
There is growing evidence that sphingosine 1-phosphate (S1P) plays an important role in regulating the development, morphology, and function of the cardiovascular system. There is little data, however, regarding the relative contribution of endogenous S1P and its cognate receptors (referred to as S1P(1-5)) to cardiovascular homeostasis. We used S1P(2) receptor knockout mice (S1P(2)(-/-)) to evaluate the role of S1P(2) in heart and vascular function. There were no significant differences in blood pressure between wild-type and S1P(2)(-/-) mice, measured in awake mice. Cardiac function, evaluated in situ by using a Millar catheter, was also not different in S1P(2)(-/-) mice under baseline or stimulated conditions. In vivo analysis of vascular function by flowmetry revealed decreases in mesenteric and renal resistance in S1P(2)(-/-) mice, especially during vasoconstriction with phenylephrine. In intact aortic rings, the concentration-force relations for both KCl and phenylephrine were right shifted in S1P(2)(-/-) mice, whereas the maximal isometric forces were not different. By contrast, in deendothelialized rings the concentration-force relations were not different but the maximal force was significantly greater in S1P(2)(-/-) aorta. Histologically, there were no apparent differences in vascular morphology. These data suggest that the S1P(2) receptor plays an important role in the function of the vasculature and is an important mediator of normal hemodynamics. This is mediated, at least in part, through an effect on the endothelium, but direct effects on vascular smooth muscle cannot be ruled out and require further investigation.  相似文献   

13.
Sphingosine kinase (SPHK) is a key enzyme catalyzing the formation of sphingosine 1 phosphate (SPP), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through intracellular as well as extracellular mechanisms. However, the molecular mechanism of the intracellular actions of SPP remains unclear. Here we have cloned a novel sphingosine kinase-1 (SPHK1)-binding protein, RPK118, by yeast two-hybrid screening. RPK118 contains several functional domains whose sequences are homologous to other known proteins including the phox homology domain and pseudokinase 1 and 2 domains and is shown to be a member of an evolutionarily highly conserved gene family. The pseudokinase 2 domain of RPK118 is responsible for SPHK1 binding as judged by yeast two-hybrid screening and immunoprecipitation studies. RPK118 is also shown to co-localize with SPHK1 on early endosomes in COS7 cells expressing both recombinant proteins. Furthermore, RPK118 specifically binds to phosphatidylinositol 3-phosphate. These results strongly suggest that RPK118 is a novel SPHK1-binding protein that may be involved in transmitting SPP-mediated signaling into the cell.  相似文献   

14.
Sphingosine 1-phosphate (S1P) in blood, lymph, and immune tissues stimulates and regulates T cell migration through their S1P(1) (endothelial differentiation gene encoded receptor-1) G protein-coupled receptors. We show now that S1P(1)Rs also mediate suppression of T cell proliferation and cytokine production. Uptake of [(3)H]thymidine by mouse CD4 T cells stimulated with anti-CD3 mAbs plus either anti-CD28 or IL-7 was inhibited up to 50% by 10(-9)-10(-6) M S1P. Suppression by S1P required Ca(2+) signaling and was reduced by intracellular cAMP. S1P decreased CD4 T cell generation of IFN-gamma and IL-4, without affecting IL-2. A Th1 line from D011.10 TCR transgenic mice without detectable S1P(1) was refractory to S1P until introduction of S1P(1) by retroviral transduction. S1P then evoked chemotaxis, inhibited chemotaxis to CCL-5 and CCL-21, and suppressed Ag-stimulated proliferation and IFN-gamma production. Thus, S1P(1) signals multiple immune functions of T cells as well as migration and tissue distribution.  相似文献   

15.
Sphingosine 1-phosphate (S1P) is an extra- and intracellular mediator that regulates cell growth, survival, migration, and adhesion in many cell types. S1P lyase is the enzyme that irreversibly cleaves S1P and thereby constitutes the ultimate step in sphingolipid catabolism. It has been reported previously that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs) are resistant to chemotherapy-induced apoptosis through upregulation of B cell lymphoma 2 (Bcl-2) and Bcl-2-like 1 (Bcl-xL). Here, we demonstrate that the transporter proteins Abcc1/MRP1, Abcb1/MDR1, Abca1, and spinster-2 are upregulated in Sgpl1−/−-MEFs. Furthermore, the cells efficiently sequestered the substrates of Abcc1 and Abcb1, fluo-4 and doxorubicin, in subcellular compartments. In line with this, Abcb1 was localized mainly at intracellular vesicular structures. After 16 h of incubation, wild-type MEFs had small apoptotic nuclei containing doxorubicin, whereas the nuclei of Sgpl1−/−-MEFs appeared unchanged and free of doxorubicin. A combined treatment with the inhibitors of Abcb1 and Abcc1, zosuquidar and MK571, respectively, reversed the compartmentalization of doxorubicin and rendered the cells sensitive to doxorubicin-induced apoptosis. It is concluded that upregulation of multidrug resistance transporters contributes to the chemoresistance of S1P lyase-deficient MEFs.  相似文献   

16.
P-glycoprotein (P-gp), an ABC-transporter highly expressed in brain capillaries, protects the brain by extruding xenobiotics. However, its overexpression has also been associated with the multidrug resistance phenotype in tumors. Here, we have investigated the regulation of P-gp transport activity by sphingosine kinase 1 (SphK-1) in brain endothelial cells. We first demonstrated that SphK-1 is overexpressed in endothelial cells (EC) isolated from rat brain tumors compared with EC from normal brain. We also provide evidence that the overexpression of SphK-1 in the cerebral EC line RBE4 leads to the up-regulation of P-gp, both at the gene and protein levels, and that this modulation depends on the catalytic activity of SphK-1. Moreover, we determined the effect of sphingosine-1-phosphate (S1P), the product of SphK-1, on P-gp function. S1P strongly stimulates P-gp transport activity, without modulating its expression. Finally, we found that the S1P-mediated stimulation of P-gp activity is mediated by S1P-1 and S1P-3 receptors at the RBE4 cell surface. Altogether, these results indicate that SphK-1 and its product S1P are involved in the control of P-gp activity in RBE4 cells. Since SphK-1 is overexpressed in EC from brain tumors, these data also suggest that this kinase and its product could contribute to the acquisition and the maintenance of the multidrug resistance phenotype in brain tumor-derived endothelial cells.  相似文献   

17.
S1P(1) is a widely distributed G protein-coupled receptor whose ligand, sphingosine 1-phosphate, is present in high concentrations in the blood. The sphingosine 1-phosphate receptor-signaling pathway is believed to have potent effects on cell trafficking in the immune system. To determine the precise role of the S1P(1) receptor on T-cells, we established a T-cell-specific S1P(1) knock-out mouse. The mutant mice showed a block in the egress of mature T-cells into the periphery. The expression of the S1P(1) receptor was up-regulated in mature thymocytes, and its deletion altered the chemotactic responses of thymocytes to sphingosine 1-phosphate. The results indicated that the expression of the S1P(1) receptor on T-cells controls their exit from the thymus and entry into the blood and, thus, has a central role in regulating the numbers of peripheral T-cells.  相似文献   

18.

Background

Earlier we have shown that extracellular sphingosine-1-phosphate (S1P) induces migration of human pulmonary artery endothelial cells (HPAECs) through the activation of S1P1 receptor, PKCε, and PLD2-PKCζ-Rac1 signaling cascade. As endothelial cells generate intracellular S1P, here we have investigated the role of sphingosine kinases (SphKs) and S1P lyase (S1PL), that regulate intracellular S1P accumulation, in HPAEC motility.

Methodology/Principal Findings

Inhibition of SphK activity with a SphK inhibitor 2-(p-Hydroxyanilino)-4-(p-Chlorophenyl) Thiazole or down-regulation of Sphk1, but not SphK2, with siRNA decreased S1Pint, and attenuated S1Pext or serum-induced motility of HPAECs. On the contrary, inhibition of S1PL with 4-deoxypyridoxine or knockdown of S1PL with siRNA increased S1Pint and potentiated motility of HPAECs to S1Pext or serum. S1Pext mediates cell motility through activation of Rac1 and IQGAP1 signal transduction in HPAECs. Silencing of SphK1 by siRNA attenuated Rac1 and IQGAP1 translocation to the cell periphery; however, knockdown of S1PL with siRNA or 4-deoxypyridoxine augmented activated Rac1 and stimulated Rac1 and IQGAP1 translocation to cell periphery. The increased cell motility mediated by down-regulation was S1PL was pertussis toxin sensitive suggesting “inside-out” signaling of intracellularly generated S1P. Although S1P did not accumulate significantly in media under basal or S1PL knockdown conditions, addition of sodium vanadate increased S1P levels in the medium and inside the cells most likely by blocking phosphatases including lipid phosphate phosphatases (LPPs). Furthermore, addition of anti-S1P mAb to the incubation medium blocked S1Pext or 4-deoxypyridoxine-dependent endothelial cell motility.

Conclusions/Significance

These results suggest S1Pext mediated endothelial cell motility is dependent on intracellular S1P production, which is regulated, in part, by SphK1 and S1PL.  相似文献   

19.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive lipid mediator released from activated platelets. To date, 5 seven-transmembrane-spanning receptors, Edg-1/S1P1, Edg-3/S1P3, Edg-5/S1P2, Edg-6/S1P4 and Edg-8/S1P5, have been identified as specific Sph-1-P receptors. Our recent novel studies established that Edg-1/S1P1 is glycosylated in its N-terminal extracellular portion and further identified the specific glycosylation site as asparagine 30. We also demonstrated that the structure of the N-terminal ectodomain of Edg-1/S1P1 affects both its transport to the cell surface and the N-glycosylation process. These studies revealed a possible regulatory role for the N-glycan on Edg-1/S1P1 in the dynamics of the receptor, such as its lateral and internal movements within the membrane, in ligand-stimulated mammalian cells. Published in 2004.  相似文献   

20.
Both sphingosine and sphingosine-1-phosphate (S1P) were able to protect the ex vivo rat heart from ischemia reperfusion injury when added to the perfusion medium at the time of reperfusion after a 40 min ischemia (postconditioning). Inhibitor studies revealed distinct mechanisms of protection, with S1P employing a G-protein coupled receptor pathway and sphingosine a cyclic nucleotide dependent protein kinase pathway. However, both restored ischemia-induced depletion of phospho-AKT. Extending the ischemia to 75 min reduced protection by both S1P and sphingosine, but protection could be enhanced by employing them in combination. Extending the time of ischemia further to 90 min almost eliminated cardioprotection by S1P or sphingosine; and their combination gave only modest protection. However, when S1P plus sphingosine was combined with a novel ramped ischemic postconditioning regimen, left ventricle developed pressure recovered by 66% and there was only a 6% infarct size. The data indicate that detrimental changes are accumulating during protracted ischemia but for up to 90 min this damage is not irreversible and hearts can still recover with proper treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号