首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preproenkephalin (PPNK) mRNA expression has been detected in many cells of the immune system, including monocytes and lymphocytes. In the present paper, the expression of PPNK mRNA in purified CD4+ Th1 and Th2 lymphocyte subpopulations is investigated and correlated with the presence of the opioid neuropeptides leu- and met-enkephalin. We found that PPNK mRNA and met-enkephalin were present at higher levels in the Th2 cultures compared with the Th1 cultures. Lymphocytes from PPNK-deficient mice were then used to look at the role of PPNK in Th2 lymphocyte differentiation. Lymphocytes from these mice could be driven into a Th2 phenotype, suggesting that cultures containing IL-4 do not require PPNK for Th2 differentiation.  相似文献   

2.
CD80 and CD86 interact with CD28 and deliver costimulatory signals required for T cell activation. We demonstrate that ex vivo allergen stimulation of bronchial biopsy tissue from mild atopic asthmatic, but not atopic nonasthmatic, subjects induced production of IL-5, IL-4, and IL-13. Explants from both study groups did not produce IFN-gamma, but secreted the chemokine RANTES without any overt stimulation. In addition to allergen, stimulation of asthmatic explants with mAbs to CD3 and TCR-alphabeta but not TCR-gammadelta induced IL-5 secretion. Allergen-induced IL-5 and IL-13 production by the asthmatic tissue was inhibited by anti-CD80 and, to a lesser extent, by anti-CD86 mAbs. In contrast, the production of these cytokines by PBMCs was not affected by mAbs to CD80, was inhibited by anti-CD86, and was strongly attenuated in the presence of both Abs. FACS analysis revealed that stimulated asthmatic bronchial tissue was comprised of CD4+ T cells that expressed surface CD28 (75. 3%) but little CTLA-4 (4.0%). Neutralizing mAbs to CD40 ligand had no effect on the cytokine levels produced by asthmatic tissue or PBMCs. Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production. In contrast, CD86 appears to be the principal costimulatory molecule required in PBMC responses. Attenuation of type 2 alphabeta T cell responses in the bronchial mucosa by blocking these costimulatory molecules may be of therapeutic potential in asthma.  相似文献   

3.
4.
Oral administration of Ag leads to systemic unresponsiveness (oral tolerance) to the fed Ag. Oral tolerance is mediated through active suppression by Th2 or TGF-beta-secreting cells or clonal anergy/deletion, depending on the Ag dose used, with low dose favoring active suppression and high dose favoring anergy/deletion. The nature of APC and inductive events leading to the generation of oral tolerance have not been well defined. To determine the role of costimulatory molecules in the induction of oral tolerance, we have tested the effect of anti-B7.1 or anti-B7.2 mAb on the induction of tolerance by both high and low dose Ag feeding regimens. Our results show that the B7.2 molecule is critical for the induction of low-dose oral tolerance. Injection of anti-B7.2 but not anti-B7.1 intact Ab or Fab fragments inhibited the oral tolerance induced by low-dose (0.5 mg) but not high-dose OVA (25 mg) feeding. In addition, anti-B7.2, but not anti-B7.1, inhibited secretion of TGF-beta, one of the primary cytokines that mediates low-dose oral tolerance. Finally, in the in vivo model of experimental allergic encephalomyelitis, anti-B7.2 mAb treatment abrogated protection offered against disease by low-dose myelin basic protein feeding, while anti-B7.1 had no effect. Anti B7.2 had no effect on disease suppression by high-dose oral Ag. These data demonstrate that B7.2 costimulatory molecules play an essential role in the induction of low-dose oral tolerance.  相似文献   

5.
The loss of function of the tumor suppressor gene TSC2 and its protein product tuberin promotes the development of benign lesions by stimulating cell growth, although the role of tuberin in regulating cell migration and metastasis has not been characterized. In addition, the role of phosphatidylinositol 3-kinase (PI 3-kinase), an important signaling event regulating cell migration, in modulating tuberin-deficient cell motility remains unknown. Using a tuberin-deficient rat smooth muscle cell line, ELT3, we demonstrate that platelet-derived growth factor (PDGF) stimulates cell migration by 3.2-fold, whereas vascular endothelial growth factor (VEGF), transforming growth factor (TGF)-alpha, and basic fibroblast growth factor (bFGF) increase migration by 2.1-, 2.1-, and 2.6-fold, respectively. Basal and PDGF-induced migration in tuberin-deficient ELT3, ELT4, and ERC15 cells was not significantly different from that of tuberin-positive transformed rat kidney epithelial 2, airway smooth muscle, and pulmonary arterial vascular smooth muscle cells. Expression of tuberin in tuberin-deficient ELT3 cells also had little effect on cell migration. In parallel experiments, the role of PI 3-kinase activation in ELT3 cell migration was investigated. LY-294002, a PI 3-kinase inhibitor, decreased PDGF-induced migration in a concentration-dependent manner with an IC(50) of approximately 5 microM. LY-294002 also abrogated ELT3 cell migration stimulated by bFGF and TGF-alpha but not by VEGF and phorbol 12-myristate 13-acetate. Furthermore, transient expression of constitutively active PI 3-kinase (p110*) was sufficient to induce ELT3 cell migration. However, the migration induced by p110* was less than that induced by growth factors, suggesting other signaling pathways are also critically important in modulating growth factor-induced cell migration. These data suggest that PI 3-kinase is required for growth factor-induced cell migration and loss of tuberin appears to have little effect on cell migration.  相似文献   

6.
Dendritic cells (DC) are critical actors in the initiation of primary immune responses and regulation of self-tolerance. The steroid sex hormone 17beta-estradiol (E(2)) has been shown to promote the differentiation of DCs from bone marrow (BM) precursors in vitro. However, the estrogen receptor (ER) involved in this effect has not yet been characterized. Using recently generated ERalpha- or ERbeta-deficient mice, we investigated the role of ER isotypes in DC differentiation and acquisition of effector functions. We report that estrogen-dependent activation of ERalpha, but not ERbeta, is required for normal DC development from BM precursors cultured with GM-CSF. We show that reduced numbers of DCs were generated in the absence of ERalpha activation and provide evidence for a cell-autonomous function of ERalpha signaling in DC differentiation. ERalpha-deficient DCs were phenotypically and functionally distinct from wild-type DCs generated in the presence of estrogens. In response to microbial components, ERalpha-deficient DCs failed to up-regulate MHC class II and CD86 molecules, which could account for their reduced capacity to prime naive CD4(+) T lymphocytes. Although they retained the ability to express CD40 and to produce proinflammatory cytokines (e.g., IL-12, IL-6) upon TLR engagement, ERalpha-deficient DCs were defective in their ability to secrete such cytokines in response to CD40-CD40L interactions. Taken together, these results provide the first genetic evidence that ERalpha is the main receptor regulating estrogen-dependent DC differentiation in vitro and acquisition of their effector functions.  相似文献   

7.
This study documents a striking dichotomy between CD4 and CD8 T cells in terms of their requirements for CD40-CD40 ligand (CD40L) costimulation. CD40L-deficient (-/-) mice made potent virus-specific CD8 T cell responses to dominant as well as subdominant epitopes following infection with lymphocytic choriomeningitis virus. In contrast, in the very same mice, virus-specific CD4 T cell responses were severely compromised. There were 10-fold fewer virus-specific CD4 T cells in CD40L-/- mice compared with those in CD40L+/+ mice, and this inhibition was seen for both Th1 (IFN-gamma, IL-2) and Th2 (IL-4) responses. An in vivo functional consequence of this Th cell defect was the inability of CD40L-/- mice to control a chronic lymphocytic choriomeningitis virus infection. This study highlights the importance of CD40-CD40L interactions in generating virus-specific CD4 T cell responses and in resolving chronic viral infection.  相似文献   

8.
Based primarily on in vitro data, IL-2 is believed to be the key cytokine for initiation of the cell cycle of activated T cells. However, the role of IL-2 remains unresolved for T cell responses in vivo. We examined whether the absence of IL-2-mediated signaling in CD8 T cells affected initiation of proliferation. Our results conclusively demonstrated that initial division of Ag-specific CD8 T cells following priming was IL-2 independent, regardless of the context in which Ag was presented. In contrast, the latter stage of the proliferative phase was IL-2-dependent, particularly in nonlymphoid tissues. Thus, activated CD8 T cells initially undergo IL-2-independent proliferation, but reach a critical juncture where the requirement for IL-2 as a growth factor gains prominence.  相似文献   

9.
Adaptive tolerance is the physiologic down-regulation of T cell responsiveness in the face of persistent antigenic stimulation. In this study, we examined the role of CTLA-4 in this process using CTLA-4-deficient and wild-type TCR transgenic, Rag2(-/-), CD4(+) T cells transferred into a T cell-deficient, Ag-expressing host. Surprisingly, we found that the tuning process of adoptively transferred T cells could be induced and the hyporesponsive state maintained in the absence of CTLA-4. Furthermore, movement to a deeper state of anergy following restimulation in vivo in a second Ag-bearing host was also unaffected. In contrast, CTLA-4 profoundly inhibited late T cell expansion in vivo following both primary and secondary transfers, and curtailed IL-2 and IFN-gamma production. Removal of this braking function in CTLA-4-deficient mice following Ag stimulation may explain their lymphoproliferative dysregulation.  相似文献   

10.
Allergic asthma, an inflammatory disease characterized by the infiltration and activation of various leukocytes, the production of Th2 cytokines and leukotrienes, and atopy, also affects the function of other cell types, causing goblet cell hyperplasia/hypertrophy, increased mucus production/secretion, and airway hyperreactivity. Eosinophilic inflammation is a characteristic feature of human asthma, and recent evidence suggests that eosinophils also play a critical role in T cell trafficking in animal models of asthma. Nicotine is an anti-inflammatory, but the association between smoking and asthma is highly contentious and some report that smoking cessation increases the risk of asthma in ex-smokers. To ascertain the effects of nicotine on allergy/asthma, Brown Norway rats were treated with nicotine and sensitized and challenged with allergens. The results unequivocally show that, even after multiple allergen sensitizations, nicotine dramatically suppresses inflammatory/allergic parameters in the lung including the following: eosinophilic/lymphocytic emigration; mRNA and/or protein expression of the Th2 cytokines/chemokines IL-4, IL-5, IL-13, IL-25, and eotaxin; leukotriene C(4); and total as well as allergen-specific IgE. Although nicotine did not significantly affect hexosaminidase release, IgG, or methacholine-induced airway resistance, it significantly decreased mucus content in bronchoalveolar lavage; interestingly, however, despite the strong suppression of IL-4/IL-13, nicotine significantly increased the intraepithelial-stored mucosubstances and Muc5ac mRNA expression. These results suggest that nicotine modulates allergy/asthma primarily by suppressing eosinophil trafficking and suppressing Th2 cytokine/chemokine responses without reducing goblet cell metaplasia or mucous production and may explain the lower risk of allergic diseases in smokers. To our knowledge this is the first direct evidence that nicotine modulates allergic responses.  相似文献   

11.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

12.
Blockade of TNF-related activation-induced cytokine (TRANCE)-receptor activator of NF-kappaB (RANK) interaction reverses healing in CD40L(-/-) mice infected with Leishmania major. Although previous studies demonstrated a requirement for CD40-CD40L interaction in production of IL-12 and the development of resistance to Leishmania infection, we recently showed that CD40L(-/-) mice control infection when inoculated with low numbers of parasites and that cells from these mice produce IL-12. Here, we show that in vivo treatment with a TRANCE receptor fusion protein results in a decrease in numbers of IL-12 producing cells as well as a shift from a dominant Th1 to Th2 type response in infected mice. These results demonstrate that CD40L(-/-) mice use the TRANCE-RANK costimulatory pathway to promote IL-12 production and the activation of a protective Th1 type response.  相似文献   

13.
Pactolus is a cell surface protein expressed by murine neutrophils. Pactolus is similar to the beta integrins, except it lacks a functional metal ion-dependent adhesion site domain and is expressed without an alpha-chain partner. The majority of the Pactolus protein is held within the cell in dense granules in a highly glycosylated form. This intracellular form of Pactolus can be released to the cell surface following inflammatory activation or ligation of Pactolus on the cell surface. In addition, intracellular Pactolus translocates to the neutrophil surface following induction of apoptosis. Neutrophil activation studies suggest that Pactolus does not serve as an activating or phagocytic receptor for the neutrophil. To further define the function of Pactolus, a Pactolus-null mouse was generated. Pactolus-deficient animals mature appropriately and possess normal numbers of neutrophils, display appropriate migration into sites of inflammation, and combat introduced infections efficiently. These data suggest that Pactolus does not function as a neutrophil phagocytic or adhesion receptor, but may instead serve as a sugar-bearing ligand for lectin recognition by other cells.  相似文献   

14.
Pancreatic carcinoma is a very aggressive disease with dismal prognosis. Although evidences for tumor-specific T cell immunity exist, factors related to tumor microenvironment and the presence of immunosuppressive cytokines in patients' sera have been related to its aggressive behavior. Carcinoembryonic Ag (CEA) is overexpressed in 80-90% of pancreatic carcinomas and contains epitopes recognized by CD4(+) T cells. The aim of this study was to evaluate the extent of cancer-immune surveillance and immune suppression in pancreatic carcinoma patients by comparing the anti-CEA and antiviral CD4(+) T cell immunity. CD4(+) T cells from 23 normal donors and 44 patients undergoing surgical resection were tested for recognition of peptides corresponding to CEA and viral naturally processed promiscuous epitopes by proliferation and cytokine release assays. Anti-CEA CD4(+) T cell immunity was present in a significantly higher number of normal donors than pancreatic cancer patients. Importantly, whereas CD4(+) T cells from normal donors produced mainly GM-CSF and IFN-gamma, CD4(+) T cells from the patients produced mainly IL-5, demonstrating a skew toward a Th2 type. On the contrary, the extent of antiviral CD4(+) T cell immunity was comparable between the two groups and showed a Th1 type. The immunohistochemical analysis of tumor-infiltrating lymphocytes showed a significantly higher number of GATA-3(+) compared with T-bet(+) lymphoid cells, supporting a Th2 skew also at the tumor site. Collectively, these results demonstrate that Th2-immune deviation in pancreatic cancer is not generalized but tumor related and suggests that the skew might be possibly due to factor(s) present at the tumor site.  相似文献   

15.
The CD28 costimulatory pathway is critical to T cell activation. Blockade of the interaction of CD28 with its ligands CD80 and CD86 using CTLA4-Ig has been proposed as a therapy for a number of immune-based disorders. We have used a murine model of influenza virus infection to study the role of CD28-dependent costimulation in the development of antiviral immune responses. In vivo treatment with CTLA4-Ig to block the interaction of CD28 with CD80 and CD86 reduced virus-specific cytotoxicity and IFN-gamma production by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro. It also resulted in decreased numbers of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid, lung, and spleen and lowered virus-specific Ab titers. Mice treated with CTLA4-Ig were able to control and clear the virus infection, but this was delayed compared with controls. Treatment with Y100F-Ig, a mutant form of CTLA4-Ig which selectively binds to CD80 and blocks the CD28-CD80 interaction leaving CD28-CD86 binding intact, did not affect Ab production, spleen cytotoxic precursors, or clearance of virus. However, Y100F-Ig treatment had a clear effect on lung effector cell function. Secretion of IFN-gamma by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro was decreased, and the number of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid and lungs of infected mice was reduced. These results indicate that CD28-dependent costimulation is important in the antiviral immune response to an influenza virus infection. The individual CD28 ligand, CD80, is important for some lung immune responses and cannot always be compensated for by CD86.  相似文献   

16.
Ly-6 proteins appear to serve cell adhesion and cell signaling function, but the precise role of Ly-6A.2 in CD4+ T lymphocytes is still unclear. Overexpression of Ly-6A.2 in T lymphocytes has allowed us to analyze the influence of elevated Ly-6A.2 expression on T cell function. In this study we report reduced proliferation of CD4+ T cells overexpressing Ly-6A.2 in response to a peptide Ag. Moreover, the Ly-6A.2-overexpressing CD4+ cells generated elevated levels of IL-4, a key factor that propels the differentiation of naive CD4+ T cells into Th2 subset. The hyporesponsiveness of Ly-6A.2 transgenic CD4+ T cells is dependent on the interaction of Ly-6A.2 T cells with the APCs and can be reversed by blocking the interaction between Ly-6A.2 and a recently reported candidate ligand. Overexpression of Ly-6A.2 in CD4+ T cells reduced their Ca(2+) responses to TCR stimulation, therefore suggesting effects of Ly-6A.2 signaling on membrane proximal activation events. In contrast to the observed Ag-specific hyporesponsiveness, the Ly-6A.2 transgenic CD4+ T cells produced IL-4 independent of the interactions between Ly-6A.2 and the candidate Ly-6A.2 ligand. Our results suggest that 1) interaction of Ly-6A.2 with a candidate ligand regulates clonal expansion of CD4+ Th cells in response to an Ag (these results also provide further functional evidence for presence of Ly-6A.2 ligand on APC); and 2) Ly-6A.2 expression on CD4+ T cells promotes production of IL-4, a Th2 differentiation factor.  相似文献   

17.
Th1 and Th2 cells can be phenotypically distinguished by very few cell surface markers. To identify cell surface molecules that are specifically expressed on Th1 cells, we have generated a panel of mAbs that specifically bind the surfaces of murine Th1 but not Th2 cells. One of these Abs identified the NK cell receptor CD94 as a molecule also specifically expressed on the surface of Th1 cells. As in NK cells, CD94 is expressed on Th1 cells together with members of the NKG2 family of molecules, including NKG2A, C, and E. Cross-linking these receptors on differentiated Th1 cells in vitro costimulates proliferation and cytokine production with a potency similar to that obtained by cross-linking CD28. We propose that CD94/NKG2 heterodimers may costimulate effector functions of differentiated Th1 cells.  相似文献   

18.
The transmembrane ligand ephrinB2 and its cognate Eph receptor tyrosine kinases are important regulators of vascular morphogenesis. EphrinB2 may have an active signaling role, resulting in bi-directional signal transduction downstream of both ephrinB2 and Eph receptors. To separate the ligand and receptor-like functions of ephrinB2 in mice, we replaced the endogenous gene by cDNAs encoding either carboxyterminally truncated (ephrinB2(DeltaC)) or, as a control, full-length ligand (ephrinB2(WT)). While homozygous ephrinB2(WT/WT) animals were viable and fertile, loss of the ephrinB2 cytoplasmic domain resulted in midgestation lethality similar to ephrinB2 null mutants (ephrinB2(KO)). The truncated ligand was sufficient to restore guidance of migrating cranial neural crest cells, but ephrinB2(DeltaC/DeltaC) embryos showed defects in vasculogenesis and angiogenesis very similar to those observed in ephrinB2(KO/KO) animals. Our results indicate distinct requirements of functions mediated by the ephrinB carboxyterminus for developmental processes in the vertebrate embryo.  相似文献   

19.
20.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号