首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CD28 costimulatory pathway is critical to T cell activation. Blockade of the interaction of CD28 with its ligands CD80 and CD86 using CTLA4-Ig has been proposed as a therapy for a number of immune-based disorders. We have used a murine model of influenza virus infection to study the role of CD28-dependent costimulation in the development of antiviral immune responses. In vivo treatment with CTLA4-Ig to block the interaction of CD28 with CD80 and CD86 reduced virus-specific cytotoxicity and IFN-gamma production by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro. It also resulted in decreased numbers of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid, lung, and spleen and lowered virus-specific Ab titers. Mice treated with CTLA4-Ig were able to control and clear the virus infection, but this was delayed compared with controls. Treatment with Y100F-Ig, a mutant form of CTLA4-Ig which selectively binds to CD80 and blocks the CD28-CD80 interaction leaving CD28-CD86 binding intact, did not affect Ab production, spleen cytotoxic precursors, or clearance of virus. However, Y100F-Ig treatment had a clear effect on lung effector cell function. Secretion of IFN-gamma by bronchoalveolar lavage fluid CD8+ T lymphocytes in vitro was decreased, and the number of virus-specific CD8+ T lymphocytes in the bronchoalveolar lavage fluid and lungs of infected mice was reduced. These results indicate that CD28-dependent costimulation is important in the antiviral immune response to an influenza virus infection. The individual CD28 ligand, CD80, is important for some lung immune responses and cannot always be compensated for by CD86.  相似文献   

2.
CD4(+) T cells play a key role in granulomatous inflammation in the lung of patients with chronic beryllium disease. The goal of this study was to characterize activation pathways of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells from chronic beryllium disease patients to identify possible therapeutic interventional strategies. Our results demonstrate that in the presence of APCs, beryllium induced strong proliferation responses of BAL CD4(+) T cells, production of superoptimal concentrations of secreted proinflammatory cytokines, IFN-gamma, TNF-alpha,and IL-2, and up-regulation of numerous T cell surface markers that would promote T-T Ag presentation. Ab blocking experiments revealed that anti-HLA-DP or anti-LFA-1 Ab strongly reduced proliferation responses and cytokine secretion by BAL CD4(+) T cells. In contrast, anti-HLA-DR or anti-OX40 ligand Ab mainly affected beryllium-induced proliferation responses with little impact on cytokines other than IL-2, thus implying that nonproliferating BAL CD4(+) T cells may still contribute to inflammation. Blockade with CTLA4-Ig had a minimal effect on proliferation and cytokine responses, confirming that activation was independent of B7/CD28 costimulation. These results indicate a prominent role for HLA-DP and LFA-1 in BAL CD4(+) T cell activation and further suggest that specific Abs to these molecules could serve as a possible therapy for chronic beryllium disease.  相似文献   

3.
The CTLA4 receptor (CD152) on activated T lymphocytes binds B7 molecules (CD80 and CD86) on APC and delivers a signal that inhibits T cell proliferation. Several regions involved in binding to B7 are known, but the relative importance of these is not clear. We have cloned porcine CTLA4 (pCTLA4). Although highly homologous to human CTLA4 (hCTLA4), the predicted protein sequence contains a leucine for methionine substitution at position 97 in the MYPPPY sequence. A fusion protein constructed from the extracellular regions of pCTLA4 and the constant regions of human IgG1 (pCTLA4-Ig) bound porcine CD86 with equivalent affinity to that of hCTLA4-Ig. However, pCTLA4-Ig bound poorly to human CD80 and CD86 expressed on transfectants and EBV-transformed human B cells. In functional assays with MHC class II-expressing porcine endothelial cells and human B cells, pCTLA4-Ig blocked human CD4+ T cell responses to pig but not human cells, whereas control hCTLA4-Ig inhibited responses to both. Comparison between mouse, human, and porcine CTLA4-Ig suggests that the selective binding of pCTLA4-Ig to porcine CD86 molecules is due to the L for M substitution at position 97. Our results indicate that pCTLA4-Ig may be a useful reagent to define the precise nature of the interaction between B7 and CTLA4. By failing to inhibit the delivery of costimulatory signals provided by human B7, it may also prove to be a relatively specific inhibitor of the direct human T cell response to immunogenic pig tissue.  相似文献   

4.
The CTLA4-Ig fusion proteins abatacept and belatacept are clinically proven immunosuppressants used for rheumatoid arthritis and renal transplant, respectively. Given that both biologics are typically administered chronically by infusion, a need exists for a next-generation CTLA4-Ig with more convenient dosing. We used structure-based protein engineering to optimize the affinity of existing CTLA4-Ig therapeutics for the ligands CD80 and CD86, and for the neonatal Fc receptor, FcRn. From a rationally designed library, we identified four substitutions that enhanced binding to human CD80 and CD86. Coupled with two IgG1 Fc substitutions that enhanced binding to human FcRn, these changes comprise the novel CTLA4-Ig fusion protein, XPro9523. Compared with abatacept, XPro9523 demonstrated 5.9-fold, 23-fold, and 12-fold increased binding to CD80, CD86, and FcRn, respectively; compared with belatacept, CD80, CD86, and FcRn binding increased 1.5-fold, 7.7-fold, and 11-fold, respectively. XPro9523 and belatacept suppressed human T cell proliferation and IL-2 production more potently than abatacept. XPro9523 also suppressed inflammation in the mouse collagen-induced arthritis model. In cynomolgus monkeys, XPro9523 saturated CD80 and CD86 more effectively than abatacept and belatacept, potently inhibited IgM and IgG immunization responses, and demonstrated longer half-life. Pharmacokinetic modeling of its increased potency and persistence suggests that, in humans, XPro9523 may demonstrate superior efficacy and dosing convenience compared with abatacept and belatacept.  相似文献   

5.
Although much is known about the initiation of immune responses, much less is known about what controls the effector phase. CD8(+) T cell responses are believed to be programmed in lymph nodes during priming without any further contribution by dendritic cells (DCs) and Ag. In this study, we report the requirement for DCs, Ag, and CD28 costimulation during the effector phase of the CD8(+) T cell response. Depleting DCs or blocking CD28 after day 6 of primary influenza A virus infection decreases the virus-specific CD8(+) T cell response by inducing apoptosis, and this results in decreased viral clearance. Furthermore, effector CD8(+) T cells adoptively transferred during the effector phase fail to expand without DC, CD28 costimulation, and cognate Ag. The absence of costimulation also leads to reduced survival of virus-specific effector cells as they undergo apoptosis mediated by the proapoptotic molecule Bim. Finally, IL-2 treatment restored the effector response in the absence of CD28 costimulation. Thus, in contrast to naive CD8(+) T cells, which undergo an initial Ag-independent proliferation, effector CD8(+) T cells expanding in the lungs during the effector phase require Ag, CD28 costimulation, and DCs for survival and expansion. These requirements would greatly impair effector responses against viruses and tumors that are known to inhibit DC maturation and in chronic infections and aging where CD28(-/-) CD8(+) T cells accumulate.  相似文献   

6.
Hypersensitivity pneumonitis (HP) is characterized by an influx of activated T cells in the lungs. The CD28/B7 system provides costimulatory signals essential for complete T cell activation and differentiation. We have previously demonstrated that alveolar macrophages from patients with HP have an up-regulated expression of B7 molecules. In the present study, we investigated the effect of i. p. administration of CTLA4-Ig, a CD28/B7 antagonist, on the lung inflammation of mice inoculated with Saccharoplyspora rectivirgula (SR), a major causative agent of HP. Five groups of C57BL/6 mice were intranasally instilled with SR or saline for 3 consecutive days per wk during 3 wk. CTLA4-Ig was administered starting either after 1 wk of SR challenge or 6 h before the first antigenic exposure and continued during the whole period of sensitization. A control-IgG was given similarly during the 3 wk of SR exposure. The groups included: 1, saline; 2, SR; 3, SR + control-Ig; 4, SR + CTLA4-Ig for the last 2 wk; and 5, SR + CTLA4-Ig for 3 wk. CTLA4-Ig treatment markedly decreased lung inflammation as shown by significantly fewer inflammatory cells in the bronchoalveolar lavage and in lung tissue and reduced SR-specific serum and bronchoalveolar lavage Ig levels. Production of IL-4, IL-10, and IFN-gamma by IL-2-stimulated pulmonary T cells was also decreased by CTLA4-Ig. Administration of CTLA4-Ig did not affect the SR-induced up-regulation of B7-2 expression. These results show that blockade of CD28/B7 interactions by CTLA4-Ig inhibits SR-induced lung inflammation and immune response to SR Ag in mice and may provide a novel approach in the treatment of HP.  相似文献   

7.
CD80 and CD86 both costimulate T cell activation. Their individual effects in vivo are difficult to study as they are coordinately up-regulated on APCs. We have studied mice expressing rat insulin promoter (RIP)-CD80 and RIP-CD86 on the NOD and NOD.scid genetic background to generate in vivo models, using diabetes as a readout for cytotoxic T cell activation. Accelerated spontaneous diabetes onset was observed in NOD-RIP-CD80 mice and the transfer of diabetes from 6-wk-old NOD mice to NOD.scid-RIP-CD80 mice was greater compared with NOD-RIP-CD86 and NOD.scid-RIP-CD86 mice, respectively. However, the secondary in vivo response was maintained if T cells were activated through CD86 costimulation compared with CD80. This was demonstrated by greater ability to cause recurrent diabetes in NOD-RIP-CD86 diabetic mice transplanted with 6-wk-old NOD islets and adoptively transferred diabetes from diabetic NOD-RIP-CD86 mice to NOD.scid mice. In vitro, CD80 costimulation enhanced cytotoxicity, proliferation, and cytokine secretion in activated CD8 T cells compared with CD86 costimulation. We demonstrated increased CTLA-4 and programmed death-1 inhibitory molecule expression following costimulation by both CD80 and CD86 (CD80 > CD86). Furthermore, T cells stimulated by CD80 were more susceptible to inhibition by CD4(+)CD25(+) T cells. Overall, while CD86 does not stimulate an initial response as strongly as CD80, there is greater sustained activity that is seen even in the absence of continued costimulation. These functions have implications for the engineered use of costimulatory molecules in altering immune responses in a therapeutic setting.  相似文献   

8.
Blocking the CD28/B7 and/or CD154/CD40 costimulatory pathways promotes long-term allograft survival in many transplant models where CD4(+) T cells are necessary for rejection. When CD8(+) T cells are sufficient to mediate rejection, these approaches fail, resulting in costimulation blockade-resistant rejection. To address this problem we examined the role of lymphotoxin-related molecules in CD8(+) T cell-mediated rejection of murine intestinal allografts. Targeting membrane lymphotoxin by means of a fusion protein, mAb, or genetic mutation inhibited rejection of intestinal allografts by CD8(+) T cells. This effect was associated with decreased monokine induced by IFN-gamma (Mig) and secondary lymphoid chemokine (SLC) gene expression within allografts and spleens respectively. Blocking membrane lymphotoxin did not inhibit rejection mediated by CD4(+) T cells. Combining disruption of membrane lymphotoxin and treatment with CTLA4-Ig inhibited rejection in wild-type mice. These data demonstrate that membrane lymphotoxin is an important regulatory molecule for CD8(+) T cells mediating rejection and suggest a strategy to avoid costimulation blockade-resistant rejection.  相似文献   

9.
Control of memory CD4 T cell recall by the CD28/B7 costimulatory pathway   总被引:2,自引:0,他引:2  
The CD28/B7 costimulatory pathway is generally considered dispensable for memory T cell responses, largely based on in vitro studies demonstrating memory T cell activation in the absence of CD28 engagement by B7 ligands. However, the susceptibility of memory CD4 T cells, including central (CD62L(high)) and effector memory (T(EM); CD62L(low)) subsets, to inhibition of CD28-derived costimulation has not been closely examined. In this study, we demonstrate that inhibition of CD28/B7 costimulation with the B7-binding fusion molecule CTLA4Ig has profound and specific effects on secondary responses mediated by memory CD4 T cells generated by priming with Ag or infection with influenza virus. In vitro, CTLA4Ig substantially inhibits IL-2, but not IFN-gamma production from heterogeneous memory CD4 T cells specific for influenza hemagglutinin or OVA in response to peptide challenge. Moreover, IL-2 production from polyclonal influenza-specific memory CD4 T cells in response to virus challenge was completely abrogated by CTLA4Ig with IFN-gamma production partially inhibited. When administered in vivo, CTLA4Ig significantly blocks Ag-driven memory CD4 T cell proliferation and expansion, without affecting early recall and activation. Importantly, CTLA4Ig treatment in vivo induced a striking shift in the phenotype of the responding population from predominantly T(EM) in control-treated mice to predominantly central memory T cells in CTLA4Ig-treated mice, suggesting biased effects of CTLA4Ig on T(EM) responses. Our results identify a novel role for CD28/B7 as a regulator of memory T cell responses, and have important clinical implications for using CTLA4Ig to abrogate the pathologic consequences of T(EM) cells in autoimmunity and chronic disease.  相似文献   

10.
The capacity of airway eosinophils, potentially pertinent to allergic diseases of the upper and lower airways, to function as professional APCs, those specifically able to elicit responses from unprimed, Ag-naive CD4(+) T cells has been uncertain. We investigated whether airway eosinophils are capable of initiating naive T cell responses in vivo. Eosinophils, isolated free of other APCs from the spleens of IL-5 transgenic mice, following culture with GM-CSF expressed MHC class II and the costimulatory proteins, CD40, CD80, and CD86. Eosinophils, incubated with OVA Ag in vitro, were instilled intratracheally into wild-type recipient mice that adoptively received i.v. infusions of OVA Ag-specific CD4(+) T cells from OVA TCR transgenic mice. OVA-exposed eosinophils elicited activation (CD69 expression), proliferation (BrdU incorporation), and IL-4, but not IFN-gamma, cytokine production by OVA-specific CD4(+) T cells in paratracheal lymph nodes (LN). Exposure of eosinophils to lysosomotropic NH(4)Cl, which inhibits Ag processing, blocked each of these eosinophil-mediated activation responses of CD4(+) T cells. By three-color fluorescence microscopy, OVA Ag-loaded eosinophil APCs were physically interacting with naive OVA-specific CD4(+) T cells in paratracheal LN after eosinophil airway instillation. Thus, recruited luminal airway eosinophils are distinct allergic "inflammatory" professional APCs able to activate primary CD4(+) T cell responses in regional LNs.  相似文献   

11.
CD80 and CD86 interact with CD28 and deliver costimulatory signals required for T cell activation. We demonstrate that ex vivo allergen stimulation of bronchial biopsy tissue from mild atopic asthmatic, but not atopic nonasthmatic, subjects induced production of IL-5, IL-4, and IL-13. Explants from both study groups did not produce IFN-gamma, but secreted the chemokine RANTES without any overt stimulation. In addition to allergen, stimulation of asthmatic explants with mAbs to CD3 and TCR-alphabeta but not TCR-gammadelta induced IL-5 secretion. Allergen-induced IL-5 and IL-13 production by the asthmatic tissue was inhibited by anti-CD80 and, to a lesser extent, by anti-CD86 mAbs. In contrast, the production of these cytokines by PBMCs was not affected by mAbs to CD80, was inhibited by anti-CD86, and was strongly attenuated in the presence of both Abs. FACS analysis revealed that stimulated asthmatic bronchial tissue was comprised of CD4+ T cells that expressed surface CD28 (75. 3%) but little CTLA-4 (4.0%). Neutralizing mAbs to CD40 ligand had no effect on the cytokine levels produced by asthmatic tissue or PBMCs. Collectively, these findings suggest that allergen-specific alphabeta T cells are resident in asthmatic bronchial tissue and demonstrate that costimulation by both CD80 and CD86 is essential for allergen-induced cytokine production. In contrast, CD86 appears to be the principal costimulatory molecule required in PBMC responses. Attenuation of type 2 alphabeta T cell responses in the bronchial mucosa by blocking these costimulatory molecules may be of therapeutic potential in asthma.  相似文献   

12.
The role of Th2/CD4 T cells, which secrete IL-4, IL-5, and IL-13, in allergic disease is well established; however, the role of CD8(+) T cells (allergen-induced airway hyperresponsiveness (AHR) and inflammation) is less clear. This study was conducted to define the role of Ag-primed CD8(+) T cells in the development of these allergen-induced responses. CD8-deficient (CD8(-/-)) mice and wild-type mice were sensitized to OVA by i.p. injection and then challenged with OVA via the airways. Compared with wild-type mice, CD8(-/-) mice developed significantly lower airway responsiveness to inhaled methacholine and lung eosinophilia, and exhibited decreased IL-13 production both in vivo, in the bronchoalveolar lavage (BAL) fluid, and in vitro, following Ag stimulation of peribronchial lymph node (PBLN) cells in culture. Reconstitution of sensitized and challenged CD8(-/-) mice with allergen-sensitized CD8(+) T cells fully restored the development of AHR, BAL eosinophilia, and IL-13 levels in BAL and in culture supernatants from PBLN cells. In contrast, transfer of naive CD8(+) T cells or allergen-sensitized CD8(+) T cells from IL-13-deficient donor mice failed to do so. Intracellular cytokine staining of lung as well as PBLN T cells revealed that CD8(+) T cells were a source of IL-13. These data suggest that Ag-primed CD8(+) T cells are required for the full development of AHR and airway inflammation, which appears to be associated with IL-13 production from these primed T cells.  相似文献   

13.
IL-15 is a powerful T cell growth factor (TCGF) with particular importance for the maintenance of CD8(+) T cells. Because costimulation blockade does not result in universal tolerance, we hypothesized that "escape" from costimulation blockade might represent a CD8(+) and IL-15/IL-15R(+)-dependent process. For this analysis, we have used an IL-15 mutant/Fcgamma2a protein, a potentially cytolytic protein that is also a high-affinity receptor site specific antagonist for the IL-15Ralpha receptor protein, as a therapeutic agent. The IL-15-related fusion protein was used as monotherapy or in combination with CTLA4/Fc in murine islet allograft models. As monotherapies, CTLA4/Fc and an IL-15 mutant/Fcgamma2a were comparably effective in a semiallogeneic model system, and combined treatment with IL-15 mutant/Fcgamma2a plus CTLA4/Fc produced universal permanent engraftment. In a fully MHC-mismatched strain combination known to be refractory to costimulation blockade treatment, combined treatment with both fusion proteins proved to be highly effective; >70% of recipients were tolerized. The analysis revealed that the IL-15 mutant/Fc treatment confers partial protection from both CD4(+) and CD8(+) T cell graft infiltration. In rejections occurring despite CTLA4/Fc treatment, concomitant treatment with the IL-15 mutant/Fcgamma2a protein blocked a CD8(+) T cell-dominated rejection processes. This protection was linked to a blunted proliferative response of alloreactive T cells as well silencing of CTL-related gene expression events. Hence, we have demonstrated that targeting the IL-15/IL-15R pathway represents a new and potent strategy to prevent costimulation blockade-resistant CD8(+) T cell-driven rejection.  相似文献   

14.

Introduction  

Co-stimulatory signal B7(CD80/CD86):CD28 is needed in order to activate T cells in immune response. Cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4-Ig) binding to the B7 molecules on antigen-presenting cells downregulates this activation and represents a recent biological treatment in rheumatoid arthritis (RA). Objectives of the study were to investigate the presence of the B7.2 (CD86) molecule and its masking by CTLA4-Ig on cultures of both RA synovial macrophages (RA SM), and of macrophages differentiated from THP-1 cells (M). In addition, the anti-inflammatory effects of CTLA4-Ig on co-cultures of RA SM and M with activated T cells were tested.  相似文献   

15.
Costimulatory ligands CD80 and CD86 have different binding preferences and affinities to their receptors, CD28 and CTLA-4. Earlier, we demonstrated that CD80 binds to CTLA-4 with higher affinity and has a role in suppressing T cell response. The current study demonstrates that not only did blockade of CD86 upon Ag presentation by bone marrow-derived dendritic cells (DC) to OVA-specific T cells result in induction of hyporesponsive T cells but also that these T cells could suppress the proliferative response of effector T cells. These T cells showed TGF-beta1 on their surface and secreted TGF-beta1 and IL-10 upon restimulation. Although blockade of CTLA-4 and neutralization of IL-10 profoundly inhibited the induction of these TGF-beta1(+) T cells, their ability to suppress the effector T cell proliferation was abrogated by neutralization of TGF-beta1 alone. Induction of TGF-beta1(+) and IL-10(+) T cells was found to be independent of natural CD4(+)CD25(+) regulatory T cells, demonstrating that preferential ligation of CTLA-4 by CD80 induced IL-10 production by effector T cells, which in turn promoted the secretion of TGF-beta1. Treatment of prediabetic NOD mice with islet beta cell Ag-pulsed CD86(-/-) DCs, but not CD80(-/-) DCs, resulted in the induction of TGF-beta1- and IL-10-producing cells, significant suppression of insulitis, and delay of the onset of hyperglycemia. These observations demonstrate not only that CD80 preferentially binds to CTLA-4 but also that interaction during Ag presentation can result in IL-10-dependent TGF-beta1(+) regulatory T cell induction, reinstating the potential of approaches to preferentially engage CTLA-4 through CD80 during self-Ag presentation in suppressing autoimmunity.  相似文献   

16.
Previously, we have shown that priming of therapeutic CD8(+) T cells in tumor vaccine-draining lymph nodes of mice vaccinated with GM-CSF secreting B16BL6 melanoma cells occurs independent of CD4 T cell help. In this study, we examined the contribution of the major costimulatory molecules, CD40 ligand (CD40L), CD80, and CD86, in the priming of CD8(+) T cells. Priming of therapeutic CD8(+) T cells by a GM-CSF-transduced tumor vaccine did not require CD40 and CD40L interactions, as therapeutic T cells could be generated from mice injected with anti-CD40L Ab and from CD40L knockout mice. However, costimulation via either CD80 or CD86 was required, as therapeutic T cells could be generated from mice injected with either anti-CD80 or anti-CD86 Ab alone, but administration of both Abs completely inhibited the priming of therapeutic T cells. Blocking experiments also identified that priming of therapeutic T cells in MHC class II-deficient mice required TNFR and IL-12 signaling, but signaling through CD40, lymphotoxin-betaR, or receptor activator of NF-kappaB was not essential. Thus, cross-priming of therapeutic CD8(+) T cells by a tumor vaccine transduced with GM-CSF requires TNFR, IL-12, and CD28 signaling.  相似文献   

17.
Infection of C57BL/6 mice with Toxoplasma gondii leads to chronic encephalitis characterized by infiltration into the brain of T cells that produce IFN-gamma and mediate resistance to the parasite. Our studies revealed that expression of B7.1 and B7.2 was up-regulated in brains of mice with toxoplasmic encephalitis (TE). Because CD28/B7-mediated costimulation is important for T cell activation, we assessed the contribution of this interaction to the production of IFN-gamma by T cells from brains and spleens of mice with TE. Stimulation of splenocytes with Toxoplasma Ag or anti-CD3 mAb resulted in production of IFN-gamma, which was inhibited by 90% in the presence of CTLA4-Ig, an antagonist of B7 stimulation. However, production of IFN-gamma by T cells from the brains of these mice was only slightly reduced (20%) by the addition of CTLA4-Ig. To address the role of the CD28/B7 interaction during TE, we compared the development of disease in C57BL/6 wild-type (wt) and CD28-/- mice. Although the parasite burden was similar in wt and CD28-/- mice, CD28-/- mice developed less severe encephalitis and survived longer than wt mice. Ex vivo recall responses revealed that mononuclear cells isolated from the brains of chronically infected CD28-/- mice produced less IFN-gamma than wt cells, and this correlated with reduced numbers of intracerebral CD4+ T cells in CD28-/- mice compared with wt mice. Taken together, our data show that resistance to T. gondii in the brain is independent of CD28 and suggest a role for CD28 in development of immune-mediated pathology during TE.  相似文献   

18.
Ag-specific T cell activation requires the engagement of T cell receptor (TCR) with antigen in the context of MHC, and the engagement of appropriate costimulatory molecules. It is well established that B7/CD28-CTLA4 costimulatory pathway plays an important role in the induction of T helper (Th) cells in T-cell dependent immune reactions. In this study, we evaluated the effects of blocking the costimulatory pathway by systemic administration of CTLA4-Ig during repeated nasal antigen challenges in systemically presensitized mouse. The antigen-induced early phase nasal symptoms, nasal hyperresponsiveness to histamine and nasal eosinophilia were significantly suppressed by CTLA4-Ig treatment. Elevation of serum level of antigen-specific IgE, but not IgG1 or IgG2a was inhibited by the treatment. In relation to cytokine levels in the tissue extracts of the nasal mucosa, an up-regulation of IL-4 was significantly inhibited, however, the levels of IL-5 and IFN-gamma were not affected by the treatment. These results suggest that B7/CD28-CTLA4 costimulatory pathway plays an important role in on-going Th2-related allergic reactions in the nose.  相似文献   

19.
CD40 is thought to play a central role in T cell-dependent humoral responses through two distinct mechanisms. CD4+ T helper cells are activated via CD40-dependent Ag presentation in which CD80/CD86 provides costimulation through CD28. In addition, engagement of CD40 on B cells provides a direct pathway for activation of humoral responses. We used a model of adenovirus-mediated gene transfer of beta-galactosidase (lacZ) into murine lung to evaluate the specific CD40-dependent pathways required for humoral immunity at mucosal surfaces of the lung. Animals deficient in CD40L failed to develop T and B cell responses to vector. Activation of Th2 cells, which normally requires CD40-dependent stimulation of APCs, was selectively reconstituted in CD40 ligand-deficient mice by systemic administration of an Ab that is agonistic to CD28. Surprisingly, this resulted in the development of a functional humoral response to vector as evidenced by formation of germinal centers and production of antiadenovirus IgG1 and IgA that neutralized and prevented effective readministration of vector. The CD28-dependent B cell response required CD4+ T cells and was mediated via IL-4. These studies indicate that CD40 signals to the B cells are not necessary for CD4+ Th2 cell-dependent humoral responses to be generated.  相似文献   

20.
Challenge with peptide Ag in the absence of adjuvant results in tolerance of CD8 T cells specific for the Ag. In contrast, administration of IL-12 along with peptide results in massive clonal expansion, development of effector function, and establishment of a long-lived memory population. Using adoptive transfer of TCR-transgenic CD8 T cells, this effect of IL-12 is shown to be independent of CD4 T cells and to require costimulation provided by CD28 and possibly LFA-1. IL-12 supports responses when IL-12Rbeta1-deficient mice are used as recipients for the adoptively transferred CD8 T cells, demonstrating that the IL-12 is acting directly on the T cells rather than on host APC. These results provide strong support for a three-signal model for in vivo activation of naive CD8 T cells by peptide Ag, in which the presence or absence of the third signal determines whether tolerance or activation occurs. In contrast, memory CD8 T cells are effectively activated by peptide Ag in the absence of IL-12 or adjuvant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号