首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudoachondroplasia (PSACH) is an autosomal dominant disease characterized by dwarfism, morphological irregularities of long bones and hips, and early-onset osteoarthritis. This disease has been attributed to mutations in a structural protein of the cartilage extracellular matrix (ECM), cartilage oligomeric matrix protein (COMP), which result in its selective retention in the chondrocyte rough endoplasmic reticulum (ER). Accumulation of excessive amounts of mutated COMP might reflect a defect in protein trafficking by PSACH chondrocytes. Here we identify the matricellular protein SPARC as a component of this trafficking deficit. SPARC was localized to the hypertrophic chondrocytes in the normal human tibial growth plate and in cultured control cartilage nodules. In contrast, concentrated intracellular depots of SPARC were identified in nodules cultured from three PSACH patients with mutations in COMP. The accumulated SPARC was coincident with COMP and with protein disulfide isomerase, a resident chaperone of the rough ER, whereas SPARC and COMP were not coincident in the ECM of control or PSACH nodules. SPARC-null mice develop severe osteopenia and degenerative intervertebral disc disease, and exhibit attenuation of collagenous ECM. The retention of SPARC in the ER of chondrocytes producing mutant COMP indicates a new intracellular function for SPARC in the trafficking/secretion of cartilage ECM.  相似文献   

2.
Mutations in cartilage oligomeric matrix protein (COMP) produce clinical phenotypes ranging from the severe end of the spectrum, pseudoachondroplasia (PSACH), which is a dwarfing condition, to a mild condition, multiple epiphyseal dysplasia (MED). Patient chondrocytes have a unique morphology characterized by distended rER cisternae containing lamellar deposits of COMP and other extracellular matrix proteins. It has been difficult to determine why different mutations give rise to variable clinical phenotypes. Using our in vitro cell system, we previously demonstrated that the most common PSACH mutation, D469del, severely impedes trafficking of COMP and type IX collagen in chondrocytic cells, consistent with observations from patient cells. Here, we hypothesize that PSACH and MED mutations variably affect the cellular trafficking behavior of COMP and that the extent of defective trafficking correlates with clinical phenotype. Twelve different recombinant COMP mutations were expressed in rat chondrosarcoma cells and the percent cells with ER-retained COMP was assessed. For mutations in type 3 (T3) repeats, trafficking defects correlated with clinical phenotype; PSACH mutations had more cells retaining mutant COMP, while MED mutations had fewer. In contrast, the cellular trafficking pattern observed for mutations in the C-terminal globular domain (CTD) was not predictive of clinical phenotype. The results demonstrate that different COMP mutations in the T3 repeat domain have variable effects on intracellular transport, which correlate with clinical severity, while CTD mutations do not show such a correlation. These findings suggest that other unidentified factors contribute to the effect of the CTD mutations. J. Cell. Biochem. 103: 778-787, 2008. (c) 2007 Wiley-Liss, Inc.  相似文献   

3.
OBJECTIVE: Pseudoachondroplasia (PSACH) is a dominantly inherited chondrodysplasia associated with mutations of cartilage oligomeric matrix protein (COMP), characterized clinically by disproportionate dwarfism and laxity of joints and ligaments. Studies in chondrocytes and cartilage biopsies suggest that the cartilage disease is caused by retention of mutant COMP in the endoplasmic reticulum of chondrocytes and by disruption of the collagen network of the extracellular matrix. The pathogenesis of the tendon disease remains unclear in the absence of a cell culture model, with available tendon biopsies leading to conflicting results with respect to the intracellular retention of mutant COMP. METHODS: We established a cell culture model using adenoviral gene transfer in tendon fibroblast cultures. We compared the effect of expression of three PSACH-associated COMP mutants and the wildtype protein on COMP secretion, matrix composition and cellular viability. RESULTS: Our results show that mutants D475N and D469Delta are retained within the endoplasmic reticulum of tendon cells similar to what is known from chondrocytes, whereas mutant H587R is secreted like wildtype COMP. In spite of this difference, the collagen I matrix formed in culture appears disturbed for all three mutants. All COMP-mutants induce apoptotic cell death irrespective of their differing secretion patterns. CONCLUSION: Pathogenic pathways leading to tendon disease in humans appear to be heterogeneous between different COMP mutants.  相似文献   

4.
Mutations in type 3 repeats of cartilage oligomeric matrix protein (COMP) cause two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We expressed recombinant wild-type COMP that showed structural and functional properties identical to COMP isolated from cartilage. A fragment encompassing the eight type 3 repeats binds 14 calcium ions with moderate affinity and high cooperativity and presumably forms one large disulfide-bonded folding unit. A recombinant PSACH mutant COMP in which Asp-469 was deleted (D469 Delta) and a MED mutant COMP in which Asp-361 was substituted by Tyr (D361Y) were both secreted into the cell culture medium of human cells. Circular dichroism spectroscopy revealed only small changes in the secondary structures of D469 Delta and D361Y, demonstrating that the mutations do not dramatically affect the folding and stability of COMP. However, the local conformations of the type 3 repeats were disturbed, and the number of bound calcium ions was reduced to 10 and 8, respectively. In addition to collagen I and II, collagen IX also binds to COMP with high affinity. The PSACH and MED mutations reduce the binding to collagens I, II, and IX and result in an altered zinc dependence. These interactions may contribute to the development of the patient phenotypes and may explain why MED can also be caused by mutations in collagen IX genes.  相似文献   

5.
Mutations in the cartilage oligomeric matrix protein (COMP) gene result in pseudoachondroplasia (PSACH), which is a chondrodysplasia characterized by early-onset osteoarthritis and short stature. COMP is a secreted pentameric glycoprotein that belongs to the thrombospondin family of proteins. We have identified a novel missense mutation which substitutes a glycine for an aspartic acid residue in the thrombospondin (TSP) type 3 calcium-binding domain of COMP in a patient diagnosed with PSACH. Immunohistochemistry and immunoelectron microscopy both show abnormal retention of COMP within characteristically enlarged rER inclusions of PSACH chondrocytes, as well as retention of fibromodulin, decorin and types IX, XI and XII collagen. Aggrecan and types II and VI collagen were not retained intracellularly within the same cells. In addition to selective extracellular matrix components, the chaperones HSP47, protein disulfide isomerase (PDI) and calnexin were localized at elevated levels within the rER vesicles of PSACH chondrocytes, suggesting that they may play a role in the cellular retention of mutant COMP molecules. Whether the aberrant rER inclusions in PSACH chondrocytes are a direct consequence of chaperone-mediated retention of mutant COMP or are otherwise due to selective intracellular protein interactions, which may in turn lead to aggregation within the rER, is unclear. However, our data demonstrate that retention of mutant COMP molecules results in the selective retention of ECM molecules and molecular chaperones, indicating the existence of distinct secretory pathways or ER-sorting mechanisms for matrix molecules, a process mediated by their association with various molecular chaperones.  相似文献   

6.
Cartilage oligomeric matrix protein (COMP) is a large extracellular pentameric glycoprotein found in the territorial matrix surrounding chondrocytes. More than 60 unique COMP mutations have been identified as causing two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED/EDM1). Recent studies demonstrate that calcium-binding and calcium induced protein folding differ between wild type and mutant COMP proteins and abnormal processing of the mutant COMP protein causes the characteristic large lamellar appearing rough endoplasimic reticulum (rER) cisternae phenotype observed in PSACH and EDMI growth plate chondrocytes. To understand the cellular events leading to this intracellular phenotype, PSACH chondrocytes with a G427E, D469del and D511Y mutations were grown in 3-D culture to produce cartilage nodules. Each nodule was assessed for the appearance and accumulation of cartilage-specific proteins within the rER and for matrix protein synthesis. All three COMP mutations were associated with accumulation of COMP in the rER cisternae by 4 weeks in culture, and by 8 weeks the majority of chondrocytes had the characteristic cellular phenotype. Mutations in COMP also affect the secretion of type IX collagen and matrilin-3 (MATN3) but not the secretion of aggrecan and type II collagen. COMP, type IX collagen and MATN3 were dramatically reduced in the PSACH matrices, and the distribution of these proteins in the matrix was diffuse. Ultrastructural analysis shows that the type II collagen present in the PSACH matrix does not form organized fibril bundles and, overall, the matrix is disorganized. The combined absence of COMP, type IX collagen and MATN3 causes dramatic changes in the matrix and suggests that these proteins play important roles in matrix assembly.  相似文献   

7.
Pseudoachondroplasia (PSACH) is a well-characterized dwarfing condition associated with disproportionate short stature, abnormal joints and osteoarthritis requiring joint replacement. PSACH is caused by mutations in cartilage oligomeric matrix protein (COMP). COMP, the fifth member of the thrombospondin (TSP) gene family, is a pentameric protein found primarily in the extracellular matrix of musculoskeletal tissues. Functional studies have shown that COMP binds types II and IX collagens but the role of COMP in the extracellular matrix remains to be defined. Mutations in COMP interfere with calcium-binding and protein conformation. PSACH growth plate and growth plate chondrocytes studies indicate that COMP mutations have a dominant negative effect with both COMP and type IX collagen being retained in large rER cisternae. This massive retention causes impaired chondrocyte function with little COMP secreted into the matrix and premature loss of chondrocytes. Deficiency of linear growth results from loss of chondrocytes from the growth plate. Secondarily, the matrix contains minimal COMP, which may be normal and/or mutant, and little type IX collagen. This deficiency results in abnormal joints that are easily eroded and cause painful osteoarthritis. Unlike other misfolded proteins that are targeted for degradation, much of the retained COMP escapes degradation, compromises cell function, and causes cell death. Gene therapy will need to target the reduction of COMP in order to restore normal chondrocyte function and longevity.  相似文献   

8.
Cartilage oligomeric matrix protein (COMP), a large pentameric glycoprotein and member of the thrombospondin (TSP) group of extracellular proteins, is found in the territorial matrix surrounding chondrocytes. More than 50 unique COMP mutations have been identified as causing two skeletal dysplasias: pseudoachondroplasia (PSACH); and multiple epiphyseal dysplasia (EDM1). Recent studies suggest that calcium-binding and calcium-induced protein folding differ between wild type and mutant proteins, and abnormal processing of the mutant COMP protein contributes to the characteristic enlarged lamellar appearing rER cisternae in PSACH and EDMI chondrocytes in vivo and in vitro. Towards the goal of delineating the pathogenesis of PSACH and EDM1, in-vivo PSACH growth plate and in-vitro PSACH chondrocytes cultured in alginate beads were examined to identify and localize the chaperone proteins participating in the processing of the retained extracellular matrix proteins in the PSACH rER. Aggrecan was localized to both the rER cisternae and matrix while COMP and type IX collagen were only found in the rER. Type II collagen was solely found in the ECM suggesting that it is processed and transported differently from other retained ECM proteins. Five chaperone proteins: BiP (Grp78); calreticulin (CRT); protein disulfide (PDI); ERp72; and Grp94, demonstrated immunoreactivity in the enlarged PSACH cisternae and the short rER channels of chondrocytes from both in-vivo and in-vitro samples. The chaperone proteins cluster around the electron dense material within the enlarged rER cisternae. CRT, PDI and GRP94 AB-gold particles appear to be closely associated with COMP. Immunoprecipitation and Western blot, and Fluorescence Resonance Energy Transfer (FRET) analyses indicate that CRT, PDI and GRP94 are in close proximity to normal and mutant COMP and BiP to mutant COMP. These results suggest that these proteins play a role in the processing and transport of wild type COMP in normal chondrocytes and in the retention of mutant COMP in PSACH chondrocytes.  相似文献   

9.
Apoptosis staining in cultured pseudoachondroplasia chondrocytes   总被引:1,自引:0,他引:1  
Pseudoachondroplasia (PSACH) is a skeletal dysplasia caused by a mutation in cartilage oligomeric matrix protein (COMP), a glycoprotein of normal cartilage matrix. PSACH chondrocytes have a distinctive phenotype with enlarged rER cisternae containing COMP, aggrecan, type IX collagen, and chaperone proteins. Ultrastructural studies suggested that this accumulation compromises cell function, hastening cell death, and consequently reducing the number of cells in the growth plate contributing to linear bone growth. Using the alginate bead system, we cultured control and PSACH chondrocytes for twenty weeks and one year to determine the effect of the mutation on size and number of cartilage nodules; and the presence of apoptotic cell death (TUNEL assay). At 20 weeks, beads containing PSACH or control chondrocytes did not differ in size and number of cartilage nodules or number of TUNEL-positive cells. After one year, nodule number, size and percent cartilage per bead were significantly less in PSACH nodules, and the number of cells staining positive for apoptosis was significantly greater than in controls (71.8% vs. 44.6%). The increase in apoptosis in PSACH nodules correlates with a decrease in growth of cartilage, supporting our hypothesis that death of damaged cells contributes to the growth plate defects in PSACH.  相似文献   

10.
Mutations in cartilage oligomeric matrix protein (COMP) cause pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED). We studied the effects of over‐expression of wild type and mutant COMP on early stages of chondrogenesis in chicken limb bud micromass cultures. Cells were transduced with RCAS virus harboring wild type or mutant (C328R, PSACH; T585R, MED) COMP cDNAs and cultured for 3, 4, and 5 days. The effect of COMP constructs on chondrogenesis was assessed by analyzing mRNA and protein expression of several COMP binding partners. Cell viability was assayed, and evaluation of apoptosis was performed by monitoring caspase 3 processing. Over‐expression of COMP, and especially expression of COMP mutants, had a profound affect on the expression of syndecan 3 and tenascin C, early markers of chondrogenesis. Over‐expression of COMP did not affect levels of type II collagen or matrilin‐3; however, there were increases in type IX collagen expression and sulfated proteoglycan synthesis, particularly at day 5 of harvest. In contrast to cells over‐expressing COMP, cells with mutant COMP showed reduction in type IX collagen expression and increased matrilin 3 expression. Finally, reduction in cell viability, and increased activity of caspase 3, at days 4 and 5, were observed in cultures expressing either wild type or mutant COMP. MED, and PSACH mutations, despite displaying phenotypic differences, demonstrated only subtle differences in their cellular viability and mRNA and protein expression of components of the extracellular matrix, including those that interact with COMP. These results suggest that COMP mutations, by disrupting normal interactions between COMP and its binding partners, significantly affect chondrogenesis. J. Cell. Physiol. 224: 817–826, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED) are skeletal disorders resulting from mutations in COMP, matrilin-3 or collagen IX and are characterised by short-limbed dwarfism and premature osteoarthritis. Interestingly, recent reports suggest patients can also manifest with muscle weakness. Here we present a detailed analysis of two mouse models of the PSACH/MED disease spectrum; ΔD469 T3-COMP (PSACH) and V194D matrilin-3 (MED). In grip test experiments T3-COMP mice were weaker than wild-type littermates, whereas V194D mice behaved as controls, confirming that short-limbed dwarfism alone does not contribute to PSACH/MED-related muscle weakness. Muscles from T3-COMP mice showed an increase in centronuclear fibers at the myotendinous junction. T3-COMP tendons became more lax in cyclic testing and showed thicker collagen fibers when compared with wild-type tissue; matrilin-3 mutant tissues were indistinguishable from controls. This comprehensive study of the myopathy associated with PSACH/MED mutations enables a better understanding of the disease progression, confirms that it is genotype specific and that the limb weakness originates from muscle and tendon pathology rather than short-limbed dwarfism itself. Since some patients are primarily diagnosed with neuromuscular symptoms, this study will facilitate better awareness of the differential diagnoses that might be associated with the PSACH/MED spectrum and subsequent care of PSACH/MED patients.  相似文献   

12.
13.
The matrilins are a family of four noncollagenous oligomeric extracellular matrix proteins with a modular structure. Matrilins can act as adapters which bridge different macromolecular networks. We therefore investigated the effect of collagen IX deficiency on matrilin-3 integration into cartilage tissues. Mice harboring a deleted Col9a1 gene lack synthesis of a functional protein and produce cartilage fibrils completely devoid of collagen IX. Newborn collagen IX knockout mice exhibited significantly decreased matrilin-3 and cartilage oligomeric matrix protein (COMP) signals, particularly in the cartilage primordium of vertebral bodies and ribs. In the absence of collagen IX, a substantial amount of matrilin-3 is released into the medium of cultured chondrocytes instead of being integrated into the cell layer as in wild-type and COMP-deficient cells. Gene expression of matrilin-3 is not affected in the absence of collagen IX, but protein extraction from cartilage is greatly facilitated. Matrilin-3 interacts with collagen IX-containing cartilage fibrils, while fibrils from collagen IX knockout mice lack matrilin-3, and COMP-deficient fibrils exhibit an intermediate integration. In summary, the integration of matrilin-3 into cartilage fibrils occurs both by a direct interaction with collagen IX and indirectly with COMP serving as an adapter. Matrilin-3 can be considered as an interface component, capable of interconnecting macromolecular networks and mediating interactions between cartilage fibrils and the extrafibrillar matrix.  相似文献   

14.
We characterized a medaka mutant, vertebra imperfecta (vbi), that displays skeletal defects such as craniofacial malformation and delay of vertebra formation. Positional cloning analysis revealed a nonsense mutation in sec24d encoding a component of the COPII coat that plays a role in anterograde protein trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus. Immunofluorescence analysis revealed the accumulation of type II collagen in the cytoplasm of craniofacial chondrocytes, notochord cells, and the cells on the myoseptal boundary in vbi mutants. Electron microscopy analysis revealed dilation of the ER and defective secretion of ECM components from cells in both the craniofacial cartilage and notochord in vbi. The higher vertebrates have at least 4 sec24 paralogs; however, the function of each paralog in development remains unknown. sec24d is highly expressed in the tissues that are rich in extracellular matrix and is essential for the secretion of ECM component molecules leading to the formation of craniofacial cartilage and vertebra.  相似文献   

15.
The cartilage tissue has a limited self-regenerative capacity. Tissue-engineering represents a promising trend for cartilage repair. The present study was aimed to develop a biomaterial formulation by combining fragments of chitosan hydrogel with isolated rabbit or human chondrocytes. We first reported the properties of the constructs elaborated with rabbit chondrocytes and pure chitosan physical hydrogels with defined molecular weight, acetylation degree and polymer concentration. Morphological data showed that chondrocytes were not penetrating the hydrogels but tightly bound to the surface of the fragments and spontaneously formed aggregates of combined cell/chitosan. A significant amount of neo-formed cartilage-like extracellular matrix (ECM) was first accumulated in-between cells and hydrogel fragments and furthermore was widely distributed within the neo-construct. The optimal biological response was obtained with hydrogel fragments concentrated at 1.5% (w/w) of polymer made from a chitosan with a degree of acetylation between 30 and 40%. Such hydrogels were then mixed with human chondrocytes. The phenotype of the cells was analyzed by using chondrocytic (mRNA expression of mature type II collagen and aggrecan as well as secretion of proteoglycans of high molecular weight) and non chondrocytic (mRNA expression of immature type II collagen and type I collagen) molecular markers. As compared with human chondrocytes cultured without chitosan hydrogel which rapidly dedifferentiated in primary culture, cells mixed with chitosan rapidly loose the expression of type I and immature type II collagen while they expressed mature type II collagen and aggrecan. In these conditions, chondrocytes maintained their phenotype for as long as 45 days, thus forming cartilage-like nodules. Taken together, these data suggest that a chitosan hydrogel does not work as a scaffold, but could be considered as a decoy of cartilage ECM components, thus favoring the binding of chondrocytes to chitosan. Such a biological response could be described by the concept of reverse encapsulation.  相似文献   

16.
Chondrodysplasias are a genetically heterogeneous group of skeletal disorders. Mutations in genes coding for cartilage oligomeric matrix protein (COMP), collagen IX and matrilin-3 have been described to cause the autosomal dominantly inherited form of multiple epiphyseal dysplasia (MED). Even though there is clear evidence that these cartilage matrix proteins interact with each other, their exact functions in matrix organisation and bone development still need to be elucidated. We generated a mouse model lacking both collagen IX and COMP to study the potential complementary role of these proteins in skeletal development. Mice deficient in both proteins exhibit shortened and widened long bones as well as an altered bone structure. They display severe growth plate abnormalities with large hypocellular areas in the central parts of the tibia. In addition, chondrocytes in the proliferative and hypertrophic zones do not show their typical columnar arrangement. These phenotypical traits were not observed in mice deficient only in COMP, while mice lacking only collagen IX showed similar growth plate disturbances and shorter and wider tibiae. The contribution of COMP to the phenotype of mice deficient in both collagen IX and COMP appears minor, even though clear differences in the deposition of matrilin-3 were detected.  相似文献   

17.
Chen WC  Yao CL  Wei YH  Chu IM 《Cytotechnology》2011,63(1):13-23
The feasibility of using genipin cross-linked type II collagen scaffold with rabbit bone marrow mesenchymal stem cells (RBMSCs) to repair cartilage defect was herein studied. Induction of RBMSCs into chondrocytic phenotype on type II collagen scaffold in vitro was conducted using TGF-β 3 containing medium. After 3-weeks of induction, chondrocytic behavior, including marker genes expression and specific extracellular matrix (ECM) secretion, was observed. In the in vivo evaluation experiment, the scaffolds containing RBMSCs without prior induction were autologous implanted into the articular cartilage defects made by subchondral drilling. The repairing ability was evaluated. After 2 months, chondrocyte-like cells with lacuna structure and corresponding ECM were found in the repaired sites without apparent inflammation. After 24 weeks, we could easily find cartilage structure the same with normal cartilage in the repair site. In conclusion, it was shown that the scaffolds in combination of in vivo conditions can induce RBMSCs into chondrocytes in repaired area and would be a possible method for articular cartilage repair in clinic and cartilage tissue engineering.  相似文献   

18.
Rat chondrosarcoma (RCS) cells are unusual in that they display a stable chondrocyte phenotype in monolayer culture. This phenotype is reflected by a rounded cellular morphology with few actin-containing stress fibers and production of an extracellular matrix rich in sulfated proteoglycans, with high-level expression of aggrecan, COMP, Sox9, and collagens type II, IX, and XI. Additionally, these cells do not express collagen type I. Here it is shown that in the absence of any mechanical stimulation, treatment of RCS cells with gadolinium chloride (Gd3+), a stretch-activated cation channel blocker, caused the cells to undergo de-differentiation, adopting a flattened fibroblast phenotype with the marked appearance of actin stress fibers and vinculin-containing focal contacts. This change was accompanied by a dramatic reduction in the expression of aggrecan, Sox9, collagen types II, IX, and XI, with a corresponding increase in the expression of collagen type I and fibronectin. These effects were found to be reversible by simple removal of Gd3+ from the medium. Gd3+ also had a similar effect on expression of chondrocyte marker genes in freshly isolated human chondrocytes. These data suggest that mechanoreceptor signaling plays a key role in maintenance of the chondrocyte phenotype, even in the absence of mechanical stimulation. Further, treatment of RCS cells with Gd3+ provides a tractable system for assessing the molecular events underlying the reversible differentiation of chondrocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号