首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Q M Yi  J Lutkenhaus 《Gene》1985,36(3):241-247
  相似文献   

2.
3.
Isolation of the Escherichia coli nucleoid   总被引:4,自引:0,他引:4  
Numerous protocols for the isolation of bacterial nucleoids have been described based on treatment of cells with sucrose-lysozyme-EDTA and subsequent lysis with detergents in the presence of counterions (e.g., NaCl, spermidine). Depending on the lysis conditions both envelope-free and envelope-bound nucleoids could be obtained, often in the same lysate. To investigate the mechanism(s) involved in compacting bacterial DNA in the living cell, we wished to isolate intact nucleoids in the absence of detergents and high concentrations of counterions. Here, we compare the general lysis method using detergents with a procedure involving osmotic shock of Escherichia coli spheroplasts that resulted in nucleoids free of envelope fragments. After staining the DNA with DAPI (4',6-diamidino-2-phenylindole) and cell lysis by either isolation procedure, free-floating nucleoids could be readily visualized in fluorescence microscope preparations. The detergent-salt and the osmotic-shock nucleoids appeared as relatively compact structures under the applied ionic conditions of 1 M and 10 mM, respectively. RNase treatment caused no dramatic changes in the size of either nucleoid.  相似文献   

4.
The heterodimeric HU protein, one of the most abundant DNA binding proteins, plays a pleiotropic role in bacteria. Among others, HU was shown to contribute to the maintenance of DNA superhelical density in Escherichia coli. By its properties HU shares some traits with histones and HMG proteins. More recently, its specific binding to DNA recombination and repair intermediates suggests that HU should be considered as a DNA damage sensor. For all these reasons, it will be of interest to follow the localization of HU within the living bacterial cells. To this end, we constructed HU-GFP fusion proteins and compared by microscopy the GFP green fluorescence with images of the nucleoid after DAPI staining. We show that DAPI and HU-GFP colocalize on the E. coli nucleoid. HU, therefore, can be considered as a natural tracer of DNA in the living bacterial cell.  相似文献   

5.
6.
7.
Early stages in development of the Escherichia coli cell-division site   总被引:2,自引:0,他引:2  
Development of the Escherichia coli cell division site was studied in wild-type cells and in non-septate filaments of ftsZ null and ftsZTs mutant cells. Localized regions of plasmolysis were used as markers for the positions of annular structures that are thought to be related to the periseptal annuli that flank the ingrowing septum during cytokinesis. The results show that these structures are localized at potential division sites in non-septate filaments of FtsZ- cells, contrary to previous reports. The positions of the structures along the long axis of the cells in both wild-type cells and FtsZ- filaments were unaffected by the presence of plasmolysis bays at the cell poles. These results do not agree with a previous suggestion that the apparent association of plasmolysis bays with future division sites was artefactual. They support the view that division sites begin to differentiate before the initiation of septal ingrowth and that plasmolysis bays and the annular attachments that define them, mark the locations of these early events in the division process.  相似文献   

8.
9.
Summary Of the molecular species of proteins associated with the nucleoids of Escherichia coli cells, those with relatively high affinity to bind to DNA were isolated and characterized. Seven classes of nucleoid proteins with molecular weights of 9,000, 17,000 (two molecular species), 22,000, 24,000, 27,000 and 28,000 were isolated at more than 90% purity or were partially purified. On the basis of its amino acid composition and other chemical properties, the 9,000 dalton protein was identified as HLP II (or HU protein or BH2) (Pettijohn 1982: Rouvière-Yaniv and Gros 1975; Varshavsky et al. 1978). The 17 K protein consisted of two molecular species and one of these, 17 K (a) protein, seemed to be identical with HLPI (or protein 1 or BH1) reported previously (Pettijohn 1982; Varshavsky et al. 1977; Varshavsky et al. 1978). The 26 K protein was identical to the 22 K protein (Kishi et al. 1982). The 27 K protein showed immunological cross-reactivity with the antibody for histone H2A and was thus identified as the H protein reported previously (Hübscher et al. 1980). Two basic proteins, 9 K and 17 K(a), showed relatively high binding affinities to DNA, while the 28 K protein showed moderate binding affinity. The biological significance of these nucleoid proteins, which constitute a family of proteins participating in formation of the nucleoid structure, is discussed.  相似文献   

10.
Abstract Fourteen species of ciliates, seven of which are new, were found living in a sample of anoxic water collected from a small lake in Spain. The species belong to all six orders in which anaerobic ciliates have been described and they include the first anaerobic representatives of the order Prostomatida. This surprising diversity is probably sustained because it embraces all ciliate feeding types, and because protozoa are the only important consumers of the diversity of microbes in anoxic habitats. Six of the anaerobic ciliate species have aerobic congeners; this strengthens the contention that anaerobic ciliates evolved independently from aerobes belonging to several taxonomic groups.  相似文献   

11.
Nucleoids obtained from E. coli cells by extraction with 1 M NaCl and detergents containing solution were further extracted with 2 M NaCl. From these samples, that contain only tightly bound proteins, fractions of protein core and peripheral nucleoprotein were obtained. It is shown that DNA synthesis proceeds mainly in the core structures. We have found that DNA polymerase I, which is bound with DNA nucleoid loops and with the above mentioned core structures, is not dissociating in 2M NaCl solution.  相似文献   

12.
13.
Mitomycin-C-induced changes in the nucleoid of Escherichia coli K12   总被引:1,自引:0,他引:1  
The influence of low concentrations of mitomycin-C on the structure of the envelope-free nucleoid was studied in several strains of Escherichia coli K12. The wild-type strain AB1157 uvr+ rec+ and 3 mitomycin-C-sensitive derivatives carrying mutations in the uvrA, uvrB and recA genes, were used. Treatment of the control strain with mitomycin-C, 0.5 microgram/ml, followed by incubation in drug-free medium resulted in the formation of a transient fast-sedimenting nucleoid with a sedimentation coefficient of 2200 S. A fraction of 25% of the nucleoids had attained the normal sedimentation coefficient of 1570 S 3 h after removal of mitomycin-C. With the uvr- strains, mitomycin-C induced a slow, almost linear increase in the S value of the envelope-free nucleoid. In these cases the S value continued to increase during post-incubation and was 2050 S 3 h after removal of the drug. Post-incubation of recA- cells resulted in loss of supercoiling, decrease in S value of the nucleoid and degradation of DNA. Results obtained with phase-contrast and electron microscopy were in good agreement with the hydrodynamic data.  相似文献   

14.
Repair of thermal damage to the Escherichia coli nucleoid.   总被引:4,自引:0,他引:4       下载免费PDF全文
The folded chromosome or nucleoid of Escherichia coli was analyzed by low-speed sedimentation in neutral sucrose gradients after heat treatment (30 min at 50 degrees C) and subsequent incubation of cells at 37 degrees C for various times. Heat treatment resulted in in vivo association of the nucleoids with cellular protein and in an increase in sedimentation coefficient. During incubation at 37 degrees C, a fraction of the nucleoids, from heated cells, because dissociated from cellular protein and regained their characteristic sedimentation coefficients. The percentage of nucleoids which returned to their control sedimentation position in the sucrose gradients corresponded to the percentage of cells able to repair thermal damage as assayed by enumeration on agar plates.  相似文献   

15.
We have followed the fate of 14 different loci around the Escherichia coli chromosome in living cells at slow growth rate using a highly efficient labelling system and automated measurements. Loci are segregated as they are replicated, but with a marked delay. Most markers segregate in a smooth temporal progression from origin to terminus. Thus, the overall pattern is one of continuous segregation during replication and is not consistent with recently published models invoking extensive sister chromosome cohesion followed by simultaneous segregation of the bulk of the chromosome. The terminus, and a region immediately clockwise from the origin, are exceptions to the overall pattern and are subjected to a more extensive delay prior to segregation. The origin region and nearby loci are replicated and segregated from the cell centre, later markers from the various positions where they lie in the nucleoid, and the terminus region from the cell centre. Segregation appears to leave one copy of each locus in place, and rapidly transport the other to the other side of the cell centre.  相似文献   

16.
DNA binding proteins, supercoiling, macromolecular crowders, and transient DNA attachments to the cell membrane have all been implicated in the organization of the bacterial chromosome. However, it is unclear what role these factors play in compacting the bacterial DNA into a distinct organelle-like entity, the nucleoid. By analyzing the effects of osmotic shock and mechanical squeezing on Escherichia coli, we show that macromolecular crowders play a dominant role in the compaction of the DNA into the nucleoid. We find that a 30% increase in the crowder concentration from physiological levels leads to a three-fold decrease in the nucleoid's volume. The compaction is anisotropic, being higher along the long axes of the cell at low crowding levels. At higher crowding levels, the nucleoid becomes spherical, and its compressibility decreases significantly. Furthermore, we find that the compressibility of the nucleoid is not significantly affected by cell growth rates and by prior treatment with rifampicin. The latter results point out that in addition to poly ribosomes, soluble cytoplasmic proteins have a significant contribution in determining the size of the nucleoid. The contribution of poly ribosomes dominates at faster and soluble proteins at slower growth rates.  相似文献   

17.
Replacement of the CRP-binding site of the gal control region by curved sequences can lead to the restoration of promoter strength in vivo. One curved sequence called 5A6A, however, failed to do so. The gene hns exerts a strong negative control on the resulting 5A6A gal promoter as well as on the distant bla promoter, specifically in a 5A6A gal context. The product of this gene, H-NS, displays a better affinity for this particular insert compared to other curved sequences. Mechanisms by which H-NS may repress promoters both at short and long distances from a favoured binding site are discussed.  相似文献   

18.
Overexpression of the Tn5 transposase (Tnp) was found to be lethal to Escherichia coli. This killing was not caused by transposition or dependent on the transpositional or DNA binding competence of Tnp. Instead, it was strictly correlated with the presence of a wild-type N terminus. Deletions removing just two N-terminal amino acids of Tnp resulted in partial suppression of this effect, and deletions of Tnp removing 3 or 11 N-terminal amino acids abolished the killing effect. This cytotoxic effect of Tnp overexpression is accompanied by extensive filament formation (i.e., a defect in cell division) and aberrant nucleoid segregation. Four E. coli mutants were isolated which allow survival upon Tnp overexpression, and the mutations are located at four discrete loci. These suppressor mutations map near essential genes involved in cell division and DNA segregation. One of these mutations maps to a 4.5-kb HindIII region containing the ftsYEX (cell division) locus at 76 min. A simple proposition which accounts for all of these observations is that Tnp interacts with an essential E. coli factor affecting cell division and/or chromosome segregation and that overexpression of Tnp titrates this factor below a level required for viability of the cell. Furthermore, the N terminus of Tnp is necessary for this interaction. The possible significance of this phenomenon for the transposition process is discussed.  相似文献   

19.
We previously presented evidence that replicating but unsegregated nucleoids, along with the Min system, act as topological inhibitors to restrict assembly of the FtsZ ring (Z ring) to discrete sites in the cell. To test if nonreplicating nucleoids have similar exclusion effects, we examined Z rings in dnaA (temperature sensitive) mutants. Z rings were excluded from centrally localized nucleoids and were often observed at nucleoid edges. Cells with nonreplicating nucleoids formed filaments, some of which contained large nucleoid-free areas in which Z rings were positioned at regular intervals. Because MinE may protect FtsZ from the action of the MinC inhibitor in these nucleoid-free zones, we examined the localization of a MinE-green fluorescent protein (GFP) fusion with respect to Z rings and nucleoids. Like Z rings, MinE-GFP appeared to localize independently of nucleoid position, forming rings at regular intervals in nucleoid-free regions. Unlike FtsZ, however, MinE-GFP often localized on top of nucleoids, replicating or not, suggesting that MinE is relatively insensitive to the nucleoid inhibition effect. These data suggest that both replicating and nonreplicating nucleoids are capable of topologically excluding Z rings but not MinE.  相似文献   

20.
To study the dynamics and organization of the DNA within isolated Escherichia coli nucleoids, we track the movement of a specific DNA region. Labeling of such a region is achieved using the Lac-O/Lac-I system. The Lac repressor-GFP fusion protein binds to the DNA section where tandem repeats of the Lac operator are inserted, which allows us to monitor the motion of the DNA. The movement of such a GFP spot is followed at 48 ms temporal resolution during 12s. The spots are found to diffuse within a confined space, so that the nucleoid appears to behave like a viscoelastic network. The distribution of the "particle" position in time can be fitted to a Gaussian function indicating that the motion of the particle is Brownian. An average self-diffusion constant Ds=0.12 microm(2) s-1 is derived via the time auto-correlation functions of the displacement and is compatible with the collective diffusion coefficient measured previously by dynamic light scattering. Restriction of a DNA sequence to a small region of the nucleoid is tentatively related to the existence of so-called supercoiling domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号