首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deoxyhypusine synthase catalyzes the first step in hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine) synthesis in a single cellular protein, eIF5A precursor. The synthesis of deoxyhypusine catalyzed by this enzyme involves transfer of the 4-aminobutyl moiety of spermidine to a specific lysine residue in the eIF5A precursor protein to form a deoxyhypusine-containing eIF5A intermediate, eIF5A(Dhp). We recently discovered the efficient reversal of deoxyhypusine synthesis. When eIF5A([3H]Dhp), radiolabeled in the 4-aminobutyl portion of its deoxyhypusine residue, was incubated with human deoxyhypusine synthase, NAD, and 1,3-diaminopropane, [3H]spermidine was formed by a rapid transfer of the radiolabeled 4-aminobutyl side chain of the [3H]deoxyhypusine residue to 1,3-diaminopropane. No reversal was observed with [3H]hypusine protein, suggesting that hydroxylation at the 4-aminobutyl side chain of the deoxyhypusine residue prevents deoxyhypusine synthase-mediated reversal of the modification. Purified human deoxyhypusine synthase also exhibited homospermidine synthesis activity when incubated with spermidine, NAD, and putrescine. Thus it was found that [14C]putrescine can replace eIF5A precursor protein as an acceptor of the 4-aminobutyl moiety of spermidine to form radiolabeled homospermidine. The Km value for putrescine (1.12 mM) as a 4-aminobutyl acceptor, however, is much higher than that for eIF5A precursor (1.5 microM). Using [14C]putrescine as an acceptor, various spermidine analogs were evaluated as donor substrates for human deoxyhypusine synthase. Comparison of spermidine analogs as inhibitors of deoxyhypusine synthesis, as donor substrates for synthesis of deoxyhypusine (or its analog), and for synthesis of homospermidine (or its analog) provides new insights into the intricate specificity of this enzyme and versatility of the deoxyhypusine synthase reaction.  相似文献   

2.
Deoxyhypusine synthase catalyzes the formation of a deoxyhypusine residue in the translation eukaryotic initiation factor 5A (eIF5A) precursor protein by transferring an aminobutyl moiety from spermidine onto a conserved lysine residue within the eIF5A polypeptide chain. This reaction commences the activation of the initiation factor in fungi and vertebrates. A mechanistically identical reaction is known in the biosynthetic pathway leading to pyrrolizidine alkaloids in plants. Deoxyhypusine synthase from tobacco was cloned and expressed in active form in Escherichia coli. It catalyzes the formation of a deoxyhypusine residue in the tobacco eIF5A substrate as shown by gas chromatography coupled with a mass spectrometer. The enzyme also accepts free putrescine as the aminobutyl acceptor, instead of lysine bound in the eIF5A polypeptide chain, yielding homospermidine. Conversely, it accepts homospermidine instead of spermidine as the aminobutyl donor, whereby the reactions with putrescine and homospermidine proceed at the same rate as those involving the authentic substrates. The conversion of deoxyhypusine synthase-catalyzed eIF5A deoxyhypusinylation pinpoints a function for spermidine in plant metabolism. Furthermore, and quite unexpectedly, the substrate spectrum of deoxyhypusine synthase hints at a biochemical basis behind the sparse and skew occurrence of both homospermidine and its pyrrolizidine derivatives across distantly related plant taxa.  相似文献   

3.
Deoxyhypusine synthase (DHS) is involved in the post-translational activation of the eukaryotic initiation factor 5A (eIF5A) and, as a side-reaction, catalyzes the formation of homospermidine if its substrate, the eIF5A precursor protein, is replaced by putrescine. Plant homospermidine synthase is assumed to be phylogenetically derived from DHS; it represents a DHS having lost its intrinsic activity. The enzyme is expressed in plants producing pyrrolizidine alkaloids where it catalyzes the formation of homospermidine the unique precursor of pyrrolizidine alkaloids. Here we show that 29 species randomly selected from 18 angiosperm families as well as a few other terrestrial plant species, all were able to produce small amounts of homospermidine. Basing on these results and in the context of literature on the occurrence of homospermidine in the organismic kingdoms, a universal occurrence of homospermidine is assumed and ubiquitous DHS is suggested to be responsible for its formation. The synthesis of homospermidine as an enzymatic by-product of an essential enzyme is discussed in respect to the evolutionary origin of homospermidine synthase and the biosynthetic pathway of pyrrolizidine alkaloids.  相似文献   

4.
Deoxyhypusine synthase is the first of the two enzymes that catalyzes the maturation of eukaryotic initiation factor 5A (eIF5A). The mature eIF5A is the only known protein in eukaryotic cells that contains the unusual amino acid hypusine (N(epsilon)-(4-amino-2(R)-hydroxybutyl)-lysine). Synthesis of hypusine is essential for the function of eIF5A in eukaryotic cell proliferation and survival. Here we describe the cloning and characterization of bovine eIF5A and bovine deoxyhypusine synthase. The deduced bovine eIF5A protein is 100% identical to human eIF5A-1, and the deduced bovine deoxyhypusine synthase protein showed a 93% identity to the human protein.  相似文献   

5.
Nishimura K  Lee SB  Park JH  Park MH 《Amino acids》2012,42(2-3):703-710
The eukaryotic initiation factor 5A (eIF5A) contains a polyamine-derived amino acid, hypusine [N(ε)-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed post-translationally by the addition of the 4-aminobutyl moiety from the polyamine spermidine to a specific lysine residue, catalyzed by deoxyhypusine synthase (DHPS), and subsequent hydroxylation by deoxyhypusine hydroxylase (DOHH). The eIF5A precursor protein and both of its modifying enzymes are highly conserved, suggesting a vital cellular function for eIF5A and its hypusine modification. To address the functions of eIF5A and the first modification enzyme, DHPS, in mammalian development, we knocked out the Eif5a or the Dhps gene in mice. Eif5a heterozygous knockout mice and Dhps heterozygous knockout mice were viable and fertile. However, homozygous Eif5a1 (gt/gt) embryos and Dhps (gt/gt) embryos died early in embryonic development, between E3.5 and E7.5. Upon transfer to in vitro culture, homozygous Eif5a (gt/gt) or Dhps (gt/gt) blastocysts at E3.5 showed growth defects when compared to heterozygous or wild type blastocysts. Thus, the knockout of either the eIF5A-1 gene (Eif5a) or of the deoxyhypusine synthase gene (Dhps) caused early embryonic lethality in mice, indicating the essential nature of both eIF5A-1 and deoxyhypusine synthase in mammalian development.  相似文献   

6.
The enzyme homospermidine synthase catalyzes the NAD+-dependent conversion of 2 mol putrescine into homospermidine. Instead of putrescine, spermidine can substitute for the first putrescine moiety in plants, in which case diaminopropane instead of ammonia is released. The enzyme facilitates the formation of the ‘uncommon’ polyamine homospermidine which is an important precursor in the biosynthesis of pyrrolizidine alkaloids. The first plant homospermidine synthase was purified to apparent chemical homogenity from the root tissue culture Senecio vernalis (Asteraceae) ( Böttcher et al. 1994 , Can. J. Chem. 72, 80–85; Ober 1997 , Dissertation). Four endopeptidase LysC fragments were sequenced from the purified protein. With the aid of degenerate primers against these peptides, a cDNA encoding homospermidine synthase was now cloned and characterized from Senecio vulgaris. The nucleotide sequence of the cloned cDNA revealed an open reading frame of 1155-base pairs containing 385 amino acids with a predicted Mr of 44500. GenBank research revealed that the deduced amino acid sequence shows 59% identity to human deoxyhypusine synthase. The homospermidine synthase encoding cDNA was subcloned into the expression vector pet15b and overexpressed in E. coli. The recombinant enzyme formed upon expression catalyzed homospermidine synthesis.  相似文献   

7.
Wolff EC  Kang KR  Kim YS  Park MH 《Amino acids》2007,33(2):341-350
Summary. A naturally occurring unusual amino acid, hypusine [N ɛ-(4-amino-2-hydroxybutyl)-lysine] is a component of a single cellular protein, eukaryotic translation initiation factor 5A (eIF5A). It is a modified lysine with structural contribution from the polyamine spermidine. Hypusine is formed in a novel posttranslational modification that involves two enzymes, deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). eIF5A and deoxyhypusine/hypusine modification are essential for growth of eukaryotic cells. The hypusine synthetic pathway has evolved in eukaryotes and eIF5A, DHS and DOHH are highly conserved, suggesting maintenance of a fundamental cellular function of eIF5A through evolution. The unique feature of the hypusine modification is the strict specificity of the enzymes toward its substrate protein, eIF5A. Moreover, DHS exhibits a narrow specificity toward spermidine. In view of the extraordinary specificity and the requirement for hypusine-containing eIF5A for mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes present new potential targets for intervention in aberrant cell proliferation.  相似文献   

8.
Ober D  Harms R  Hartmann T 《Phytochemistry》2000,55(4):305-309
Homospermidine synthase. which catalyses the first pathway-specific reaction in pyrrolizidine alkaloid biosynthesis, was cloned from root cultures of Senecio vulgaris and expressed in E. coli. The open reading frame encodes a protein of 370 amino acids with a molecular mass of 40,740 Da. The enzyme is strictly dependent on spermidine as aminobutyl donor since it cannot be substituted by putrescine. The homospermidine synthase from S. vulgaris showed 97.9 and 99.3% nucleic acid identity with two HSS sequences from the closely related species Senecio vernalis. This report also revises data from a previous publication (Kaiser, A., 1999. Cloning and expression of a cDNA encoding homospermidine synthase from Senecio vulgaris (Asteraceae) in Escherichia coli. Plant J. 19. 195 201.) that is incorrect.  相似文献   

9.
The 1st step in the posttranslational hypusine [N(epsilon)-(4-amino-2-hydroxybutyl)lysine] modification of eukaryotic translation initiation factor 5A (eIF5A) is catalyzed by deoxyhypusine synthase (DHS). The eIF5A intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DHH), thereby converting the eIF5A precursor into a biologically active protein. Depletion of eIF5A causes inhibition of cell growth, and the identification of eIF5A as a cofactor of the HIV Rev protein turns this host protein and therefore DHS into an interesting target for drugs against abnormal cell growth and/or HIV replication. The authors developed a 96-well format DHS assay applicable for the screening of DHS inhibitors. Using this assay, they demonstrate DHS inhibition by AXD455 (Semapimod, CNI-1493). This assay represents a powerful tool for the identification of new DHS inhibitors with potency against cancer and HIV.  相似文献   

10.
The eukaryotic translation initiation factor 5A (eIF5A) is the only cellular protein that contains the unique polyamine-derived amino acid, hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine]. Hypusine is formed in eIF5A by a novel post-translational modification reaction that involves two enzymatic steps. In the first step, deoxyhypusine synthase catalyzes the cleavage of the polyamine spermidine and transfer of its 4-aminobutyl moiety to the epsilon-amino group of one specific lysine residue of the eIF5A precursor to form a deoxyhypusine intermediate. In the second step, deoxyhypusine hydroxylase converts the deoxyhypusine-containing intermediate to the hypusine-containing mature eIF5A. The structure and mechanism of deoxyhypusine synthase have been extensively characterized. Deoxyhypusine hydroxylase is a HEAT-repeat protein with a symmetrical superhelical structure consisting of 8 helical hairpins (HEAT motifs). It is a novel metalloenzyme containing tightly bound iron at the active sites. Four strictly conserved His-Glu pairs were identified as iron coordination sites. The structural fold of deoxyhypusine hydroxylase is entirely different from those of the other known protein hydroxylases such as prolyl 4-hydroxylase and lysyl hydroxylases. The eIF5A protein and deoxyhypusine/hypusine modification are essential for eukaryotic cell proliferation. Thus, hypusine synthesis represents the most specific protein modification known to date, and presents a novel target for intervention in mammalian cell proliferation.  相似文献   

11.
Recent studies have revealed high sequence similarity between homospermidine synthase (HSS), the first pathway-specific enzyme in the biosynthesis of pyrrolizidine alkaloids, a class of sporadically occurring plant defence compounds, and deoxyhypusine synthase (DHS), a ubiquitous enzyme involved in the post-translational activation of the eukaryotic initiation factor 5A (eIF5A). The recruitment of DHS during the evolution of the alkaloid pathway is discussed and interpreted as evolution by change of function.  相似文献   

12.
The unusual basic amino acid, hypusine [Nε-(4-amino-2-hydroxybutyl)-lysine], is a modified lysine with the addition of the 4-aminobutyl moiety from the polyamine spermidine. This naturally occurring amino acid is a product of a unique posttranslational modification that occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF5A, eIF-5A). Hypusine is synthesized exclusively in this protein by two sequential enzymatic steps involving deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The deoxyhypusine/hypusine synthetic pathway has evolved in archaea and eukaryotes, and eIF5A, DHS and DOHH are highly conserved suggesting a vital cellular function of eIF5A. Gene disruption and mutation studies in yeast and higher eukaryotes have provided valuable information on the essential nature of eIF5A and the deoxyhypusine/hypusine modification in cell growth and in protein synthesis. In view of the extraordinary specificity and functional significance of hypusine-containing eIF5A in mammalian cell proliferation, eIF5A and the hypusine biosynthetic enzymes are novel potential targets for intervention in aberrant cell proliferation.  相似文献   

13.
14.
Deoxyhypusine hydroxylase (DOHH) is a novel metalloenzyme that catalyzes the final step of the post-translational synthesis of hypusine (Nepsilon-(4-amino-2-hydroxybutyl)lysine) in the eukaryotic translation initiation factor 5A (eIF5A). Hypusine synthesis is unique in that it occurs in only one protein, denoting the strict specificity of the modification enzymes toward the substrate protein. The specificity of the interaction between eIF5A and DOHH was investigated using human eIF5A (eIF5A-1 isoform) and human recombinant DOHH. DOHH displayed a strong preference for binding the deoxyhypusine-containing form of eIF5A, over the eIF5A precursor or the hypusine-containing eIF5A, indicating a role for the deoxyhypusine residue in binding. In addition to the deoxyhypusine residue, a large portion of the eIF5A polypeptide (>20-90 amino acids) is required for effective modification by DOHH. We have identified the amino acid residues of DOHH that are critical for substrate binding by alanine substitution of 36 conserved amino acid residues. Of these, alanine substitution at Glu57, Glu90, Glu208, Glu241, Gly63, or Gly214 caused a severe impairment in eIF5A(Dhp) binding, with a complete loss of binding and activity in the E57A and E208A mutant enzymes. Only aspartate substitution mutants, E57D or E208D, retained partial activity and substrate binding, whereas alanine, glutamine, or asparagine mutants did not. These findings support a proposed model of DOHH-eIF5A binding in which the amino group(s) of the deoxyhypusine side chain of the substrate is primarily anchored by gamma-carboxyl groups of Glu57 and Glu208 at the DOHH active site.  相似文献   

15.
The eukaryotic translation initiation factor 5A (eIF5A) is the only protein that contains hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine], which is required for its activity. Hypusine is formed by post-translational modification of one specific lysine (Lys50 for human eIF5A) by deoxyhypusine synthase and deoxyhypusine hydroxylase. To investigate the features of eIF5A required for its activity, we generated 49 mutations in human eIF5A-1, with a single amino acid substitution at the highly conserved residues or with N-terminal or C-terminal truncations, and tested mutant proteins in complementing the growth of a Saccharomyces cerevisiae eIF5A null strain. Growth-supporting activity was abolished in only a few mutant eIF5As (K47D, G49A, K50A, K50D, K50I, K50R, G52A and K55A), with substitutions at or near the hypusine modification site or with truncation of 21 amino acids from either the N-terminus or C-terminus. The inactivity of the Lys50 substitution proteins is obviously due to lack of deoxyhypusine modification. In contrast, K47D and G49A were effective substrates for deoxyhypusine synthase, yet failed to support growth, suggesting critical roles of Lys47 and Gly49 in eIF5A activity, possibly in its interaction with effector(s). By use of a UBHY-R strain harboring genetically engineered unstable eIF5A, we present evidence for the primary function of eIF5A in protein synthesis. When selected eIF5A mutant proteins were tested for their activity in protein synthesis, a close correlation was observed between their ability to enhance protein synthesis and growth, lending further support for a central role of eIF5A in translation.  相似文献   

16.
Deoxyhypusine is a modified lysine residue. It is formed posttranslationally in the precursor of eukaryotic initiation factor 5A (eIF5A) by deoxyhypusine synthase, employing spermidine as a butylamine donor. In the initial step of this reaction, deoxyhypusine synthase catalyzes the production of NADH through dehydrogenation of spermidine. Fluorescence measurements of this reaction revealed a -22-nm blue shift in the emission peak of NADH and a approximately 15-fold increase in peak intensity, characteristics of tightly bound NADH that were not seen by simply mixing NADH and enzyme. The fluorescent properties of the bound NADH can be ascribed to a hydrophobic environment and a rigidly held, open conformation of NADH, features in accord with the known crystal structure of the enzyme. Considerable fluorescence resonance energy transfer from tryptophan 327 in the active site to the dihydronicotinamide ring of NADH was seen. Upon addition of the eIF5A precursor, utilization of the enzyme-bound NADH for reduction of the eIF5A-imine intermediate to deoxyhypusine was reflected by a rapid decrease in the NADH fluorescence, indicating a transient hydride transfer mechanism as an integral part of the reaction. The number of NADH molecules bound approached four/enzyme tetramer; not all of the bound NADH was available for reduction of the eIF5A-imine intermediate.  相似文献   

17.
The polyamines, putrescine, spermidine, and spermine, are ubiquitous multifunctional cations essential for cellular proliferation. One specific function of spermidine in cell growth is its role as a butylamine donor for hypusine synthesis in the eukaryotic initiation factor 5A (eIF5A). Here, we report the ability of novel mono-methylated spermidine analogs (α-MeSpd, β-MeSpd, γ-MeSpd, and ω-MeSpd) to function in the hypusination of eIF5A and in supporting the growth of DFMO-treated DU145 cells. We also tested them as substrates and inhibitors for deoxyhypusine synthase (DHS) in vitro. Of these compounds, α-MeSpd, β-MeSpd, and γ-MeSpd (but not ω-MeSpd) were substrates for DHS in vitro, while they all inhibited the enzyme reaction. As racemic mixtures, only α-MeSpd and β-MeSpd supported long-term growth (9-18 days) of spermidine-depleted DU145 cells, whereas γ-MeSpd and ω-MeSpd did not. The S-enantiomer of α-MeSpd, which supported long-term growth, was a good substrate for DHS in vitro, whereas the R-isomer was not. The long-term growth of DFMO-treated cells correlated with the hypusine modification of eIF5A by intracellular methylated spermidine analogs. These results underscore the critical requirement for hypusine modification in mammalian cell proliferation and provide new insights into the specificity of the deoxyhypusine synthase reaction.  相似文献   

18.
In order to study the evolution of pathways of plant secondary metabolism, we use the biosynthesis of pyrrolizidine alkaloids (PAs) as a model system. PAs are regarded as part of the plant’s constitutive defense against herbivores. Homospermidine synthase (HSS) is the first specific enzyme of PA biosynthesis. The gene encoding HSS has been recruited from the gene encoding deoxyhypusine synthase (DHS) from primary metabolism at least four times independently during angiosperm evolution. One of these recruitments occurred within the monocot lineage. We have used the PA-producing orchid Phalaenopsis to identify the cDNAs encoding HSS, DHS and the substrate protein for DHS, i.e., the precursor of the eukaryotic initiation factor 5A. A cDNA identified from maize was unequivocally characterized as DHS. From our study of Phalaenopsis, several pseudogenes emerged, of which one was shown to be a “processed pseudogene”, and others to be transcribed. Sequence comparison of the HSS- and DHS-encoding sequences from this investigation with those of monocot species taken from the databases suggest that HSS and probably the ability to produce PAs is an old feature within the monocot lineage. This result is discussed with respect to the recent discovery of structural related PAs within grasses.  相似文献   

19.
Park  Myung Hee  Kar  Rajesh Kumar  Banka  Siddharth  Ziegler  Alban  Chung  Wendy K. 《Amino acids》2022,54(4):485-499

Hypusine [Nε-(4-amino-2-hydroxybutyl)lysine] is a derivative of lysine that is formed post-translationally in the eukaryotic initiation factor 5A (eIF5A). Its occurrence at a single site in one cellular protein defines hypusine synthesis as one of the most specific post-translational modifications. Synthesis of hypusine involves two enzymatic steps: first, deoxyhypusine synthase (DHPS) cleaves the 4-aminobutyl moiety of spermidine and transfers it to the ε-amino group of a specific lysine residue of the eIF5A precursor protein to form an intermediate, deoxyhypusine [Nε-(4-aminobutyl)lysine]. This intermediate is subsequently hydroxylated by deoxyhypusine hydroxylase (DOHH) to form hypusine in eIF5A. eIF5A, DHPS, and DOHH are highly conserved in all eukaryotes, and both enzymes exhibit a strict specificity toward eIF5A substrates. eIF5A promotes translation elongation globally by alleviating ribosome stalling and it also facilitates translation termination. Hypusine is required for the activity of eIF5A, mammalian cell proliferation, and animal development. Homozygous knockout of any of the three genes, Eif5a, Dhps, or Dohh, leads to embryonic lethality in mice. eIF5A has been implicated in various human pathological conditions. A recent genetic study reveals that heterozygous germline EIF5A variants cause Faundes–Banka syndrome, a craniofacial–neurodevelopmental malformations in humans. Biallelic variants of DHPS were identified as the genetic basis underlying a rare inherited neurodevelopmental disorder. Furthermore, biallelic DOHH variants also appear to be associated with neurodevelopmental disorder. The clinical phenotypes of these patients include intellectual disability, developmental delay, seizures, microcephaly, growth impairment, and/or facial dysmorphisms. Taken together, these findings underscore the importance of eIF5A and the hypusine modification pathway in neurodevelopment in humans.

  相似文献   

20.
Eukaryotic initiation factor 5A (eIF5A) is the only protein in nature that contains hypusine, an unusual amino acid formed post-translationally in two steps by deoxyhypusine synthase and deoxyhypusine hydroxylase. Genes encoding eIF5A or deoxyhypusine synthase are essential for cell survival and proliferation. To determine the physiological function of eIF5A, we have employed the tandem affinity purification (TAP) method and mass spectrometry to search for and identify the potential eIF5A-interacting proteins. The TAP-tag was fused in-frame to chromosomal TIF51A gene and eIF5A-TAP fusion protein expressed at its natural level was used as the bait to fish out its interacting partners. At salt concentrations of 150 mM, deoxyhypusine synthase was the only protein bound to eIF5A. As salt concentrations were lowered to 125 mM or less, eIF5A interacted with a set of proteins, which were identified as the components of the 80S ribosome complex. The eIF5A-ribosome interaction was sensitive to RNase and EDTA treatments, indicating the requirement of RNA and the joining of 40S and 60S ribosomal subunits for the interaction. Importantly, a single mutation of hypusine to arginine completely abolished the eIF5A-ribosome interaction. Sucrose gradient sedimentation analysis of log versus stationary phase cells and eIF3 mutant strain showed that the endogenous eIF5A co-sedimented with the actively translating 80S ribosomes and polyribosomes in an RNase- and EDTA-sensitive manner. Our study demonstrates for the first time that eIF5A interacts in a hypusine-dependent manner with a molecular complex rather than a single protein, suggesting that the essential function of eIF5A is mostly likely mediated through its interaction with the actively translating ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号