首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have developed a retroviral-vector system for the transfer and expression of a cloned blood clotting factor VIII cDNA. Since inclusion of the complete cDNA into existing vectors is precluded by its large size, we deleted most codons for the B-domain, which is also excised during in vivo maturation of factor VIII. When inserted into the retroviral vector M5-neoR (Laker, C., Stocking, C., Bergholtz, V., Hess, N., DeLamarter, J. F., and Ostertag, W. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 8458-8462), the sequence was shown to be efficiently expressed in murine fibroblast cell lines, as well as in primary human skin fibroblasts. Upon infection of murine fibroblast cell lines, clones containing only a single copy of the integrated vector-provirus secreted up to 125 milliunits of factor VIII antigen/10(6) cells/day. Equivalent amounts were found in a factor VIII activity assay, which signifies that the factor VIII protein secreted by the infected fibroblasts is fully functional. Primary human skin fibroblasts infected with the vector virus secreted up to 30 milliunits/10(6) cells/day.  相似文献   

2.
To support and meet the demand for recombinant proteins early in the drug discovery process, much work has been directed toward improving the methods used for transient gene transfection and expression. A factor which could potentially affect the outcome of experiments is the choice of the expression vector. Conventional vectors such as pCIneo and pcDNA3 have been used frequently. Each of these places the gene of interest under the control of the CMV promoter. An interesting alternative is provided by episomal vectors. For example, the pCEP4 vector contains the gene coding for the Epstein Barr nuclear antigen as well as the EBNA ori P sequence. This combination allows for the episomal replication of the plasmid. In preliminary experiments, we compared transient secreted placental alkaline phosphatase production in 8 cell lines from 3 different species using the pCIneo vs. pCEP4 vectors and found the utility of the pCEP4 vector to be limited to the human 293 EBNA cell line. In this paper, we have compared the two vectors in six cell lines of simian and human origin, measuring the transient production of secreted placental alkaline phosphatase and human hepatocyte growth factor. In general, the pCEP4 vector produced higher amounts of both proteins in transient transfections. Results were particularly pronounced in the HEK 293 and 293 EBNA cell lines. Stable pools of cells (uncloned) expressing human hepatocyte growth factor were isolated using pCIneo and pCEP4 and protein production levels were compared to those seen in transient transfections. Stable expression with pCEP4 was found to produce the highest levels of human hepatocyte growth factor in 3 of 4 cell lines. Finally, electroporation and FuGENETM6(Roche, Indianapolis IN) as transfection methods were compared measuring transient production of secreted placental alkaline phosphatase, human hepatocyte growth factor, and green fluorescent protein. FuGENE produced higher protein concentrations in less time than electroporation for all 3 proteins. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Selection markers are common genetic elements used in recombinant cell line development. While several selection systems exist for use in mammalian cell lines, no previous study has comprehensively evaluated their performance in the isolation of recombinant populations and cell lines. Here we examine four antibiotics, hygromycin B, neomycin, puromycin, and Zeocin™, and their corresponding selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell lines, HT1080 and HEK293. We identify Zeocin™ as the best selection agent for cell line development in human cells. In comparison to the other selection systems, Zeocin™ is able to identify populations with higher fluorescence levels, which in turn leads to the isolation of better clonal populations and less false positives. Furthermore, Zeocin™-resistant populations exhibit better transgene stability in the absence of selection pressure compared to other selection agents. All isolated Zeocin™-resistant clones, regardless of cell type, exhibited GFP expression. By comparison, only 79% of hygromycin B-resistant, 47% of neomycin-resistant, and 14% of puromycin-resistant clones expressed GFP. Based on these results, we rank Zeocin™ > hygromycin B ∼ puromycin > neomycin for cell line development in human cells. Furthermore, this study demonstrates that selection marker choice does indeed impact cell line development.  相似文献   

4.
Human protein C (HPC) is an antithrombotic serine protease that circulates in the plasma as several glycoforms. To examine the role of glycosylation in the function of this protein, we singly eliminated each of the four potential N-linked glycosylation sites by site-directed mutagenesis of Asn to Gln at amino acid positions 97, 248, and 313 (HPC derivatives Q097, Q248, and Q313) or at the unusual consensus sequence Asn-X-Cys at 329 (HPC derivative Q329). The cDNAs for wild type and each derivative were inserted into expression vectors and expressed both transiently and stably in human 293 and hamster AV12-664 cells. We demonstrate that N-linked glycosylation at position 97 in the light chain of HPC is critical for efficient secretion and affects the degree of core glycosylation at Asn-329. Glycosylation at position 248 affects the intracellular processing of the internal Lys-Arg (KR) KR cleavage site, and partial glycosylation at the sequence Asn-329-X-Cys is responsible for the natural alpha-glycoform. Altering the glycosylation pattern of the protein had no significant effect on the level of fully gamma-carboxylated HPC secreted from the 293 cell line. However, elimination of glycosylation sites in the heavy chain resulted in a 2- to 3-fold increase in anticoagulant activity. Utilizing synthetic substrate, both the Km and kcat were affected, depending on the specific glycosylation site eliminated. However, there were no significant differences in the inhibition kinetics by alpha-1-antitrypsin (association rate constants of 10-11 M-1s-1 and t1/2 of 27-29 min at 40 microM alpha-1-antitrypsin) or t1/2 in human plasma (17-18 min). A comparison of the rate of activation of each derivative by thrombin alone or in complex with thrombomodulin revealed that Q313 was activated approximately 2.5-fold faster than wt HPC, independent of calcium concentration. This increase in rate was due to an enhanced affinity of thrombin-thrombomodulin for Q313, as indicated by a 3-fold reduction in Km. Overall, our studies demonstrate that glycosylation at different sites in HPC affects distinct properties of this complex protein. Furthermore, we demonstrate the ability to improve the catalytic efficiency of this enzyme through carbohydrate modifications.  相似文献   

5.
Summary This study reports the isolation and characterization of a rat nontumorigenic parotid acinar cell clone (2RSG), a human nontumorigenic parotid acinar cell clone (2HPC8), and a human tumorigenic acinar clone (2HP1G). The levels ofα-amylase mRNAs detected when usingα-amylase cDNA of 1176 and 702 bp for hybridization were higher in 2RSG and 2HPC8 cells than their respective whole parotid glands. The level of these mRNAs decreased in 2HP1G cells. In contrast toα-amylase mRNAs levels, theα-amylase activity in cultured acinar cells was extremely low in comparison to whole glands, irrespective of species or cell status. The levels of proline-rich protein (PRP) mRNA and parotid secretory protein (PSP) mRNA detected when using PRP cDNA of 600 bp and PSP cDNA of 805 bp for hybridization were higher in 2RSG cells than those in rat parotid glands; the reverse was observed in 2HPC8 cells and human parotid glands. The levels of PRP mRNA and PSP mRNA in 2HPC8 and 2HP1G acinar cells were similar. The level of mRNA was not detectable in murine neuroblastoma cells (NBP2) using the sameα-amylase cDNA, PRP cDNA and PSP cDNA for hybridization. The PSP level in rat parotid gland was lower than that found in 2RSG cells; the reverse was observed in 2HPC8 cells and human parotid glands. The level of PSP in 2HP1G cells was higher than that found in 2HPC8 cells. Isoproterenol increased the cAMP level in 2RSG, 2HPC8, and 2HP1G clones, being most effective in 2RSG cells, and least effective in 2HPG cells. Prostaglandin E1 (PGE1) also increased cAMP level, being most effective in 2HPC8 cells and ineffective in 2HP1G cells, suggesting that the PGE1 receptor-linked adenylate cyclase becomes inactive upon transformation. These results suggest that the three clonal acinar cells from rat and human parotid glands reported here can be useful in comparative studies on regulation of growth, differentiation, and transformation.  相似文献   

6.
Previously, we cloned a full-length cDNA of human Aup1 and showed that AUP1 may represent a new cellular target for the two adenovirus oncoproteins, E1A Ad5 and E4ORF3. In this study, we generated a polyclonal anti-AUP1 antibody and examined the subcellular localization of AUP1 in MCF7 cells, HeLa cells, H1299 cells, 293 cells, BRK1 cells and transfectants expressing adenoviruse E1 genes. Double staining of AUP1 and various markers for cytoplasmic structures showed that the pattern of AUP1 distribution in the cytoplasm was puctuate and diffuse and without any colocalization with Golgi apparatus or endoplasmic reticulum. Additional studies with ectopically expressed AUP1, fused with red fluorescent protein (RFP) in H1299 and McG7 human cell lines and BRK1 rat cell line, showed cytoplasmic localization of RFP-AUP1. Western blot analysis revealed that AUP1 was expressed at similar levels in all tested cell lines and had the same molecular weight as the rat protein (45 kDa). Taken together, these results suggest that AUP1 is a cytoplasmic protein that is expressed in all cell lines we examined.  相似文献   

7.
8.
The cystatins are physiological cysteine proteinase inhibitors. Here we report the cloning of a novel human cystatin-like molecule (CLM) from human bone marrow stromal cell (BMSC) cDNA library. The putative CLM protein contained 159 residues with a 29-residue signal peptide. CLM protein was highly homologous to family 2 cystatins, especially mouse and human testatin. The CLM gene spanned two exons and was mapped on chromosome 20p11.2, among cystatin superfamily gene clusters. CLM mRNA was barely detected in most tumor cell lines except for breast adenocarcinoma MCF-7 cells and glioblastoma U251 cells, but after LPS or PMA stimulation, CLM expression was increased in myelogenous leukemia cell lines HL-60 and U-937. Northern blot analysis revealed CLM was ubiquitously expressed in normal tissues, which was clearly different from the testis-specific expression pattern of most family 2 cystatins. When overexpressed in 293 cells, GFP-fused CLM targeted extracellularly through secretory pathway by Golgi apparatus. The results indicated that the secreted CLM protein might play roles in hematopoietic differentiation or inflammation.  相似文献   

9.
The level of cis-prenyl transferase activity has been implicated in controlling the level of biosynthesis of dolichol and dolichol intermediates. In this study, we isolated a cDNA encoding a human CPT (GenBank Accession No. ), which had substantial homology to other CPT isolated from human brain, bacteria, Arabidopsis, and Saccharomyces cerevisiae. Expression of this cDNA in two different insect cell lines confirmed the functionality of the protein in an in vitro assay. Western blot analysis revealed an expressed protein of approximately 38 kDa in HEK293 cells. Overexpression of the protein in HEK293 cells resulted in an increase in the level of total prenol in vivo. Furthermore, product characterization by thin layer chromatography (TLC) confirmed that the major product was a long-chain prenol with a chain length of 95 carbons. These results suggest a regulatory relationship between CPT activity and dolichol biosynthesis, and may implicate CPT in the levels of dolichol-oligosaccharide intermediate biosynthesis.  相似文献   

10.
Hemophilia A is the most common X-linked bleeding disorder; it is caused by deficiency of coagulation factor VIII (FVIII). Replacement therapy with rFVIII produced from human cell line is a major goal for treating hemophilia patients. We prepared a full-length recombinant FVIII (FVIII-FL), using the pMFG-P140K retroviral vector. The IRES DNA fragment was cloned upstream to the P140K gene, providing a 9.34-kb bicistronic vector. FVIII-FL cDNA was then cloned upstream to IRES, resulting in a 16.6-kb construct. In parallel, an eGFP control vector was generated, resulting in a 10.1- kb construct. The 293T cells were transfected with these constructs, generating the 293T-FVIII-FL/P140K and 293T-eGFP/P140K cell lines. In 293T-FVIII-FL/P140K cells, FVIII and P140K mRNAs levels were 4,410 (±931.7)- and 295,400 (±75,769)-fold higher than in virgin cells. In 293T-eGFP/P140K cells, the eGFP and P140K mRNAs levels were 1,501,000 (±493,700)- and 308,000 (±139,300)-fold higher than in virgin cells. The amount of FVIII-FL was 0.2 IU/mL and 45 ng/mL FVIII cells or 4.4 IU/μg protein. These data demonstrate the efficacy of the bicistronic retroviral vector expressing FVIII-FL and MGMT(P140K), showing that it could be used for producing the FVIII-FL protein in a human cell line.  相似文献   

11.
Cellular prion protein (PrP(c)) undergoes a proteolytic attack at the 110/111 downward arrow112 peptide bond, whereas the PrP isoform (PrP(res)) that accumulates in the brain tissue in Creutzfeldt-Jakob disease reveals an alternate cleavage site at about residue 90. Interestingly, the normal processing of PrP occurs inside the 106-126 amino acid region thought to be responsible for the neurotoxicity of the pathogenic prions, whereas PrP(res) cleavage preserves this potentially toxic domain. Therefore, any molecular mechanisms leading to enhanced cleavage at the 110/111 downward arrow112 peptide bond could be of potential interest. We set up TSM1 neurons and HEK293 stable transfectants overexpressing the wild-type or 3F4-tagged murine PrP(c), respectively. Both mock-transfected and PrP(c)-expressing cell lines produced an 11-12-kDa PrP fragment (referred to as N1), the immunological characterization of which strongly suggests that it corresponds to the N-terminal PrP(c) fragment derived from normal processing. We have established that the recovery of secreted N1 is increased by the protein kinase C agonists PDBu and PMA in a time- and dose-dependent manner in both cell lines. In contrast, secretion of N1 remains unaffected by the inactive PDBu analog alphaPDD and by the protein kinase A effectors dibutyryl cAMP and forskolin. Overall, our data indicate that the normal processing of PrP(c) is up-regulated by protein kinase C but not protein kinase A in human cells and murine neurons.  相似文献   

12.
13.
Lim SP  Garzino-Demo A 《BioTechniques》2000,28(1):124-6, 128-30
Novel secreted and/or type I transmembrane proteins containing N-terminal signal sequences have been successfully cloned using the signal sequence trapping (SST) method. Often this involves random cloning of short 5' cDNA terminal ends into an epitope-tagged expression vector and the detection of expressed recombinant proteins on the cell surfaces of transfected cells with an antibody to the tagged epitope. Here, we report a novel cloning system for the detection of secreted proteins also using SST. In this method, we used the human immunodeficiency virus (HIV-1) p24 as the epitope for tagging. To test the system, two constructs were created. The 5' terminal end of a human beta-chemokine (which was regulated upon activation, expressed by normal T cells and presumably secreted [RANTES]) and the 5' end of a human CD4 receptor were cloned upstream of and in-frame with the p24 cDNA. Secreted p24 was detectable in the culture media two days after transfection of either DNA construct into the human cell lines, HeLa and 293T. When the chimeric p24 expression constructs were transfected at a ratio of 1:100 to the vector pcDNA3.1(+), p24 could still be detected in cell supernatants. The use of a secreted viral antigen like HIV-1 p24 (or of any noncellular protein) as a marker in SST cloning approaches is likely to be advantageous because it reduces the background noise in detection and also renders this system suitable for high-throughput screening.  相似文献   

14.
Cell encapsulation has been used to treat diabetes, amyotrophic lateral sclerosis, and other chronic ailments by the secretion of therapeutic proteins in vivo. Detection of these proteins typically requires invasive procedures such as blood sampling or device extraction, however. In this article, a non-invasive means of measuring secreted protein concentration using a co-expressed red fluorescent protein marker is developed. A bicistronic expression vector was constructed for the intracellular production of a red fluorescent protein marker and the secreted production of human interleukin-2 (hIL2). The destabilized red fluorescent protein, DsExDR, was selected for its rapid turnover, as well as its ability to emit red light, which is readily transmitted through mammalian tissue. Transfections of this bicistronic vector into three cell lines C2C12, HEK293, and Jurkat showed linear correlations between the expressed proteins, DsExDR (intracellular) and hIL2 (secreted), with transfection DNA concentration. Correspondingly, there was a linear correlation between secreted product (hIL2) and intracellular marker (DsExDR). As transfection DNA was increased, Jurkat cells were found to increase secreted hIL2 in direct proportion to the accumulated DsExDR. HEK293 and C2C12 cells expressed and secreted significantly more hIL2 than the Jurkat cells, while still maintaining a linear relationship. Thus, all three cell lines were suitable hosts for the bicistronic expression of DsExDR and expression and secretion of therapeutic hIL2. This reporting strategy may find the greatest use in cell encapsulation therapy.  相似文献   

15.
16.
A scalable transfection procedure using polyethylenimine (PEI) is described for the human embryonic kidney 293 cell line grown in suspension. Green fluorescent protein (GFP) and human placental secreted alkaline phosphatase (SEAP) were used as reporter genes to monitor transfection efficiency and productivity. Up to 75% of GFP-positive cells were obtained using linear or branched 25 kDa PEI. The 293 cell line and two genetic variants, either expressing the SV40 large T-antigen (293T) or the Epstein–Barr virus (EBV) EBNA1 protein (293E), were tested for protein expression. The highest expression level was obtained with 293E cells using the EBV oriP-containing plasmid pCEP4. We designed the pTT vector, an oriP-based vector having an improved cytomegalovirus expression cassette. Using this vector, 10- and 3-fold increases in SEAP expression was obtained in 293E cells compared with pcDNA3.1 and pCEP4 vectors, respectively. The presence of serum had a positive effect on gene transfer and expression. Transfection of suspension-growing cells was more efficient with linear PEI and was not affected by the presence of medium conditioned for 24 h. Using the pTT vector, >20 mg/l of purified His-tagged SEAP was recovered from a 3.5 l bioreactor. Intracellular proteins were also produced at levels as high as 50 mg/l, representing up to 20% of total cell proteins.  相似文献   

17.
Cotransformation with a plasmid containing a thymidine kinase gene (pTK2) and a plasmid encoding human IFN-gamma (pTG11) has been used to establish murine L cell lines expressing human IFN-gamma. The HuIFN-gamma gene was present in 30% of the tk+ cell lines and some of these secreted low levels of IFN into the culture medium. Two of the clones obtained after transformation were selected for detailed analysis. Clone 1-12 constitutively secreted very low levels of HuIFN-gamma in the culture medium. This antiviral activity was characterized by its species specificity and antigenicity as authentic human IFN-gamma In contrast, clone 3-47 produced a HuIFN-gamma activity which could only be detected intracellularly. This clone was resistant to infection both by Vesicular stomatitis (VSV) and Mengo viruses and contained increased levels of enzymes known to be induced by interferon. Our results suggest that clone 3-47 produces a non-secreted HuIFN-gamma like molecule which is able to trigger an antiviral state in the murine cell independent of the interaction with a specific IFN-gamma surface receptor.  相似文献   

18.
甲型流感病毒M2蛋白是一种具有离子通道功能的跨膜蛋白,其氨基酸序列非常保守,可用于流感通用疫苗的研究。为了构建可调控的稳定表达甲型流感病毒M2蛋白的哺乳动物细胞系,首先应用PCR方法从含有流感病毒PR8株第七节段全长基因的质粒中扩增得到M2基因。将该片段亚克隆到真核表达载体pcDNA5/FRT/TO上,用BamHⅠ和NotⅠ双酶切鉴定正确后将重组质粒与表达Flp重组酶的pOG44质粒共转染Flp-In T-REx-293细胞,使目的基因整合到宿主细胞染色体。筛选具有Hygromycin B抗性的细胞株。在该细胞的培养基中加入四环素以诱导目的基因表达,48 h后通过间接免疫荧光方法检测到M2蛋白的表达。共得到16株高表达M2蛋白的重组细胞株,这些细胞株在传10代后仍能稳定表达目的蛋白。未加四环素诱导的细胞没有检测到M2蛋白,说明四环素调控系统严格控制着目的基因的表达。今后,该细胞系可用于流感病毒M2蛋白的功能研究、流感候选疫苗的免疫学评价以及流感病毒减毒活疫苗的研制。  相似文献   

19.
20.
Human tissue-type plasminogen activator (t-PA) cDNA inserted into an Epstein-Barr virus (EBV) derived expression vector was transfected into human HeLa, 293, K-562 and hamster CHO-K1 cells and the expression of t-PA was studied. The best t-PA producing cell clones were found among CHO-K1 cells (up to 11 micrograms d-1 per 10(6) cells). However, HeLa and 293 cells were most efficiently transfected, e.g. about 70% of the selected cell clones were t-PA positive. The vector DNA copy numbers correlated with the mRNA levels and the protein levels for all cell lines analysed, with the exception for the K-562 cell line, where the production of t-PA was very low. The results obtained indicated that the highest expression levels were achieved in low density cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号