首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contents of several chemical elements were assessed in the haloalkaliphilic acetogenic bacterium Natroniella acetigena and the alkaliphilic sulfate-reducing bacterium Desulfonatronum lacustre using X-ray microanalysis, stereoscanning microscopy, and mass spectrometry. The organisms were found to differ significantly in their relative contents of S, K, P, and Cl. The P/S ratio in cells of the alkaliphilic bacteria studied grown on mineral media at different pH was pH-dependent. With a pH increase from 9 to 10, potassium extrusion from cells was observed, suggesting that secondary K+/H+ antiport activity accounts for the homeostasis of cytosolic pH. Deenergization of bacterial cells in the presence of inhibitors and ionophores results in specific changes in the P/S ratio, which may be considered an indicator of the cell energetic state. In Natroniella acetigena, the content of intracellular Cl was directly proportional to the NaCl concentration in the medium. Some metals were shown to be necessary for the N. acetigena viability; the requirement for Ni and Co was absolute. Although little demand for Mg was characteristic of the bacteria studied, their growth was stimulated by an increase in Mg concentration, and the cell resistance to lysis was enhanced.  相似文献   

2.
Ionic specificity of oxidative phosphorylation was studied in Natroniella acetigenaand Desulfonatronum lacustre, which are new alkaliphilic anaerobes that were isolated from soda lakes and have a pH growth optimum of 9.5–9.7. The ability of their cells to synthesize ATP in response to the imposition of artificial pH+and pNa+gradients was studied. As distinct from other marine and freshwater sulfate reducers and extremely alkaliphilic anaerobes, D. lacustreuses a Na+-translocating ATPase for ATP synthesis. The alkaliphilic acetogen N. acetigena, which develops at a much higher Na+concentration in the medium, generated primary pH+for ATP synthesis. Thus, the high Na+concentrations and alkaline pH values typical of soda lakes do not predetermine the type of bioenergetics of their inhabitants.  相似文献   

3.
The activity and cellular localization of carbonic anhydrase (CA) in two alkaliphilic anaerobes growing in soda lakes at pH 9–10 were studied. CA activity in the cell extracts of the acetogenic bacterium Natroniella acetigena was comparable to that of neutrophilic acetogens. Hydrogenotrophically grown cells of Desulfonatronum lacustre exhibited higher CA activity compared to the cells grown on medium with formate. High CA activity in the cytoplasmic fraction and the absence of high activity in the extracellular fraction were demonstrated. We propose that the cytoplasmic CA in alkaliphilic sulfate-reducers participates in conversion of bicarbonate to CO2, which is reduced in the cell to acetate via the acetyl-CoA pathway.  相似文献   

4.
The adaptation of microorganisms to life in brines allows two strategies: the accumulation of organic osmoregulators in the cell (as in many moderate halophiles, halomonads in particular) or the accumulation of inorganic ions at extremely high intracellular concentrations (as, for example, in haloanaerobes). To reveal the regularities of osmoregulation in haloalkaliphiles developing in soda lakes, Halomonas campisalis Z-7398-2 and Halomonas sp. AIR-2 were chosen as representatives of halomonads, and Natroniella acetigena, as a representative of haloanaerobes. It was established that, in alkaliphilic halomonads, the intracellular concentrations of inorganic ions are insufficient for counterbalancing the environmental osmotic pressure and balance is attained due to the accumulation of organic osmoregulators, such as ectoine and betaine. On the contrary, the alkaliphilic haloanaerobe N. acetigena employs K+, Na+, and Cl? ions for osmoregulation. High intracellular salt concentrations increasing with the content of Na+ in the medium were revealed in this organism. At a concentration of 1.91 M Na+ in the medium, N. acetigena accumulated 0.83 M K+, 0.91 M Na+, and 0.29 M Cl? in cells, and, with an increase in the Na+ content in the medium to 2.59 M, it accumulated 0.94 M K+, 1.98 M Na+, and 0.89 M Cl?, which counterbalanced the external osmotic pressure and provided for cell turgor. Thus, it was shown that alkaliphilic microorganisms use osmoregulation strategies similar to those of halophiles and these mechanisms are independent of the mechanism of pH homeostasis.  相似文献   

5.
A new extremely haloalkaliphilic, chemoorganotrophic, homoacetogenic bacterium strain Z-7937T(T-type strain) was isolated from the bottom mud of the soda-depositing Lake Magadi, Kenya. It is an obligately anaerobic, motile, Gram-negative, spore-forming rod growing in the pH range pH 8.1 to 10.7 and optimally in the range pH 9.7 to 10.0 under conditions of high alkalinity caused by saturation with trona. It has an obligate requirement for sodium carbonate and chloride ions. The optimum salt concentration for growth is in the range 12–15% wt/vol, and growth occurs within the range from 10% to 26%. Strain Z-7937T is a mesophile with an optimal temperature for growth of 37°C, and a maximum of 42°C. The G + C content of strain Z-7937T is 31.9 mol%. A limited number of compounds are utilized, including lactate, ethanol, pyruvate, glutamate, and propanol. Acetate is the main end product. 16S rDNA sequence analysis shows strain Z-7937T to be a member of the order Haloanaerobiales and to represent a new branch within the family Halobacteroidaceae. On the basis of its novel physiology and phylogenetic position, we propose strain Z-7937 as a new species of a new genus, Natroniella acetigena gen. nov. sp. nov. The type strain is Z-7937T (= DSM 9952).  相似文献   

6.
Proton transport in the terminal part of the respiratory chain in the extremely alkaliphilic halotolerant bacterial strain Thioalkalivibrio versutus was studied under near-optimum growth conditions (pH 9.0-9.5). Under these conditions, bacterial cells generated electric potential with the negative charge being inside the cells. When only the terminal part of the respiratory chain functioned, it was found that: 1) unlike other bacteria known, this bacterium did not acidify the medium in the presence of K+ and valinomycin; 2) in the presence of an uncoupler, CCCP, but in the absence of valinomycin, reversible alkalinization of the medium occurred as a result of proton influx into the cells. Cyanide prevented this alkalinization. The difference spectra indicate that cell membranes contained cytochromes c and (b + o), some of which reacted with CO. The respiratory activity of membranes in the terminal part of the respiratory chain was optimal at pH 9.5 and specifically depended on sodium ions (C 1/2 = 10 mM). The data suggest the presence of a Na+-pump in the terminal part of the respiratory chain of the studied strain which can pump Na+ out of the cells.  相似文献   

7.
A novel facultatively alkaliphilic bacterium that grows on a chemically defined medium containing n-alkanes as the sole carbon source was isolated from soil. The isolate was obligately aerobic, non-motile, gram-positive, and formed metachromatic granules. It was not acidfast and did not form endospores. The cell wall contained meso-diaminopimelic acid, arabinose, and galactose; the glycan moiety of the cell wall contained acetyl residues. The bacterium was catalase-positive, oxidasenegative, and the G+C content of DNA was 70.8 mol%. According to these tests, the isolate was assigned to the genus Corynebacterium. The bacterium grew well between pH 6.2 to 10.2 and the doubling time in this pH range was 4–6 h. For the growth of the isolate, added Na+ in the culture medium stimulated growth, but was not indispensable at both pH 7.2 and pH 10.2. In addition to hydrocarbons, the isolate was able to grow on a chemically defined medium containing acetate, glucose, or fructose as the sole carbon source. Analysis of reduced minus oxidized difference spectra of whole cells showed that the bacterium only possessed less than one tenth the amount of total cytochromes as compared with Bacillus alcalophilus. The above results sugest that the bacterium has characteristics different than those of the alkaliphilic Bacillus previously described.  相似文献   

8.
The electrical potential on the membrane was measured in cells of strains AL2 and ALJ15 of the extremely alkaliphilic bacterium Thioalkalivibrio versutus using the penetrating cation tetraphenylphosphonium (TPP+) and a TPP+-selective electrode. The potentials were -228 ± 5 and -224 ± 5 mV, respectively, i.e. higher than in most alkaliphilic bacteria. Membrane potential in the cells was estimated by measuring the inner cell volume by two independent methods: (1) estimation of total cell volume by light microscopy and (2) estimation of the inner aqueous volume of the cells with allowance for the distribution difference of tritium labeled water penetrating through the membranes and a nonpenetrating colored protein. The inner cell volume was 2.4 ± 0.2 and 2.2 ± 0.1 μl/mg of cell protein by the two methods, respectively. Computer computation was used as an alternative to manual calculation to count the number of cells for estimation of total cell volume.  相似文献   

9.
The activity and cellular localization of carboanhydrase (CA) in two alkaliphilic anaerobes growing in soda lakes at pH 9-10 was studied. CA activity in the cell extracts of the acetogenic bacterium Natroniella acetigena was comparable to that of the neutrophilic acetogens. Hydrogenotrophically grown cells of Desulfonatronum lacustre exhibited higher CA activity compared to the cells grown on media with formate. High CA activity in the cytoplasmic fraction and the absence of high activity in the extracellular fraction were demonstrated. We propose that the cytoplasmic CA in alkaliphilic sulfate-reducers participates in conversion of bicarbonate to CO2, which is reduced in the cell to acetate via the acetyl-CoA pathway.  相似文献   

10.
Zhai  Lei  Xie  Jiuyan  Lin  Yafang  Cheng  Kun  Wang  Lijiang  Yue  Feng  Guo  Jingyan  Liu  Jiquan  Yao  Su 《Extremophiles : life under extreme conditions》2018,22(2):221-231

Halomonas alkalicola CICC 11012s is an alkaliphilic and halotolerant bacterium isolated from a soap-making tank (pH > 10) from a household-product plant. This strain can propagate at pH 12.5, which is fatal to most bacteria. Genomic analysis revealed that the genome size was 3,511,738 bp and contained 3295 protein-coding genes, including a complete cell wall and plasma membrane lipid biosynthesis pathway. Furthermore, four putative Na+/H+ and K+/H+ antiporter genes, or gene clusters, designated as HaNhaD, HaNhaP, HaMrp and HaPha, were identified within the genome. Heterologous expression of these genes in antiporter-deficient Escherichia coli indicated that HaNhaD, an Na+/H+ antiporter, played a dominant role in Na+ tolerance and pH homeostasis in acidic, neutral and alkaline environments. In addition, HaMrp exhibited Na+ tolerance; however, it functioned mainly in alkaline conditions. Both HaNhaP and HaPha were identified as K+/H+ antiporters that played an important role in high alkalinity and salinity. In summary, genome analysis and heterologous expression experiments demonstrated that a complete set of adaptive strategies have been developed by the double extremophilic strain CICC 11012s in response to alkalinity and salinity. Specifically, four antiporters exhibiting different physiological roles for different situations worked together to support the strain in harsh surroundings.

  相似文献   

11.
Haloalkaliphilic microorganisms isolated from soda lakes were compared in terms of the amino acid composition of bulk protein and the reaction of a number of key enzymes to salts and pH of the medium. In the extremely haloalkaliphilic bacterium Natroniella acetigena (selt-in osmoadaptation strategy), acidic amino acids (glutamic and aspartic) made up 30.91 mol % of the total of bulk protein amino acids. In the moderate haloalkaliphiles Tindallia magadiensis, Halomonas campisalis, and Halomonas sp. AIR-2 (compatible-solutes osmoadaptation strategy), the proportion of acidic amino acids (24.36, 23.15, and 23.58 mol %, respectively) was lower than in N. acetigena but higher than in the freshwater Acetobacterium paludosum (20.77 mol %). The excess of acidic amino acids over basic amino acids (lysine and arginine) increased with the degree of halophily. The enzymes of haloalkaliphiles proved to be tolerant to salts and high pH values, although the degree of tolerance varied. The activity of N. acetigena CO dehydrogenase was maximum in the presence of 0.7 M NaCl, but it was virtually independent of the NaHCO3 concentration. The hydrogenase and CO dehydrogenase of T. magadiensis exhibited maximum activity in the absence of NaCl; the Co dehydrogenase was most active at 0.25 M NaHCO3, and hydrogenase activity was only weakly dependent on NaHCO3 in the concentration range of 0–1.2 M. The nitrate reductases of H. campisalis and Halomonas sp. AIR-2 were active in broad ranges of NaCl and KCl concentrations; the activity maxima were recorded at moderate concentrations of these salts. The pH optima of most of the studied enzymes of haloalkaliphiles were in the alkaline zone. Thus, it was shown that the amino acid composition of bulk protein is determined by the osmoadaptation strategy employed by the bacterium. A correlation was found between the salt tolerance of enzymes and the proportion of acidic amino acids in the bulk protein. The ability of enzymes to function at high pH values is one of the mechanisms of adaptation of microorganisms to high pH values.  相似文献   

12.
Pitryuk  A. V.  Detkova  E. N.  Pusheva  M. A. 《Microbiology》2004,73(3):243-248
We investigated the influence of inhibitors of energy metabolism and ionophores on the growth and formation of metabolic products in alkaliphilic anaerobes characterized by various catabolism types. It was shown that blockage of oxidative phosphorylation by the addition of N,N-dicyclohexylcarbodiimide (DCCD), an inhibitor of F1F0 ATP synthase, resulted in a complete arrest of the growth of the acetogenic bacterium Tindallia magadiensis with arginine as an electron acceptor. In the presence of pyruvate, substrate-level phosphorylation occurred. The methylotrophic methanogenic archaebacterium Methanosalsus zhilinae did not grow with DCCD and vanadate, an inhibitor of 12 ATPase, suggesting the presence of two ATPase types in this species. In the saccharolytic alkaliphiles Halonatronum saccharophilum, Amphibacillus tropicus, and Spirochaeta alkalica (which are characterized by different pH optima), the contribution of the H+ gradient to the energy metabolism and, presumably, to the maintenance of the intracellular pH level decreased with an increase in the degree of alkaliphily. Based on the data of an inhibitor assay using protonophores, monensin, and amiloride, we suggest that all of the bacteria tested depend on H+and Na+ gradients. The Na+/H+ antiport appears to be a universal mechanism of regulating the intracellular pH level and the interaction between the Na+ and H+ cycles in bacterial cells cultivated under alkaline conditions.  相似文献   

13.
Three strains of new obligately anaerobic alkaliphilic bacteria have been isolated as a saccharolytic component from the cellulolytic community of alkaline Lake Nizhnee Beloe (Transbaikal region, Russia), a lake with low salt concentration. DNA analysis of these strains showed an interspecies level of DNA similarity of 96–100%. Strain Z-79820 was selected for further investigations. Cells were Gram-positive, asporogenous, nonmotile short rods with pointed ends. The strain was a true alkaliphile: growth occurred from pH 7.2 to 10.2 with the optimum at pH 9.0. Strain Z-79820 was halotolerant and could grow in medium with up to 10% (w/v) NaCl, with the optimum between 0 and 4% NaCl. The new isolate obligately depended on Na+ ions in the form of carbonates or chlorides. Total Na+ content needed for optimal growth was 0.46 M Na+, with a wide range from 0.023–0.9 M Na+ at which growth also occurred. The isolate was a mesophile and grew at temperatures from 6 to 50°C (slow growth at 6 and 15°C) with an optimum at 35°C. The organotrophic organism fermented ribose, xylose, glucose, mannose, fructose, sucrose, mannitol, and peptone. The products of glucose fermentation were acetate, ethanol, formate, H2, and CO2. Yeast extract was required for some anabolic needs. The DNA G+C content of the type strain Z-79820 was 42.1 mol%. The new bacterium fell into the 16S rRNA gene cluster XV of the Gram-positive bacteria with low G+C content, where it formed an individual branch. Based on its growth characteristics and genotype traits, we propose the new genus and species named Alkalibacter saccharofermentans with the type strain Z-79820 (=DSM14828), Uniqem-218 (Institute Microbiology, RAS; ).  相似文献   

14.
Although the identification of events that occur during apoptosis is a fundamental goal of apoptotic cell death research, little is know about the precise sequence of changes in total elemental composition during apoptosis. We evaluated total elemental composition (Na, Mg, P, Cl, S, and K) in relation to molecular and morphological features in human U937 cells induced to undergo apoptosis with staurosporine, an intrinsic pathway activator. To evaluate total elemental content we used electron probe X-ray microanalysis to measure simultaneously all elements from single, individual cells. We observed two phases in the changes in elemental composition (mainly Na, Cl and K). The early phase was characterized by a decrease in intracellular K (P < 0.001) and Cl (P < 0.001) content concomitant with cell shrinkage, and preceded the increase in proteolytic activity associated with the activation of caspase-3. The later phase started with caspase-3 activation, and was characterized by a decrease in the K/Na ratio (P < 0.001) as a consequence of a significant decrease in K and increase in Na content. The inversion of intracellular K and Na content was related with the inhibition of Na+/K+ ATPase. This later phase was also characterized by a significant increase (P < 0.001) in intracellular Cl with respect to the early phase. In addition, we found a decrease in S content and an increase in the P/S ratio. These distinctive changes coincided with chromatin condensation and DNA fragmentation. Together, these findings support the concept that changes in total elemental composition take place in two phases related with molecular and morphological features during staurosporine-induced apoptosis.  相似文献   

15.
Summary The lepidopteran midgut is a model for the oxygendependent, electrogenic K+ transport found in both alimentary and sensory tissues of many economically important insects. Structural and biochemical evidence places the K+ pump on the portasome-studded apical plasma membrane which borders the extracellular goblet cavity. However, electrochemical evidence implies that the goblet cell K+ concentration is less than 50mm. We used electron probe X-ray microanalysis of frozenhydrated cryosections to measure the concentration of Na, Mg, P, S, Cl, K, Ca and H2O in several subcellular sites in the larval midgut ofManduca sexta under several experimental regimes. Na is undetectable at any site. K is at least 100mm in the cytoplasm of all cells. Typicalin vivo values (mm) for K were: blood, 25; goblet and columnar cytoplasm, 120; goblet cavity, 190; and gut lumen, 180. The high K concentration in the apically located goblet cavity declined by 100mm under anoxia. Both cavity and gut fluid are Cl deficient, but fixed negative charges may be present in the cavity. We conclude that the K+ pump is sited on the goblet cell apical membrane and that K+ follows a nonmixing pathway via only part of the goblet cell cytoplasm. The cavity appears to be electrically isolated in alimentary tissues, as it is in sensory sensilla, thereby allowing a PD exceeding 180 mV (lumen positive) to develop across the apical plasma membrane. This PD appears to couple K+ pump energy to nutrient absorption and pH regulation.  相似文献   

16.
Summary The strain SES28 was isolated from an indoor contaminated agar plate during a screening program for alkaliphilic CM-cellulose-degrading bacteria. It showed a prominent clear hydrolysis of the substrate at pH 10. The 16S rDNA analysis related it to the genus Nocardiopsis . Nocardiopsis sp. SES28 was able to grow at pH values up to 10.5, the major biomass being produced at pH 10, and pH 8 was the optimum for β-1,4-glucanase production. The optimum pH for β-1,4-glucanase activity was 9.0, and it was higher than 60% throughout the pH range 6.5–10.0; showing 94% of its a relative activity at pH 10. The feature of this bacterium to produce β-1,4-glucanase active in a broad pH-range might be useful for detergent- and textile-processing technologies.  相似文献   

17.
Strain Z-7934, an alkaliphilic, obligately anaerobic, fermentative, asporogenous bacterium with Gram-positive cell wall structure, was isolated from soda deposits in Lake Magadi, Kenya. The organism ferments only a few amino acids, preferentially arginine and ornithine, with production of acetate, propionate, and ammonia. It is a true alkaliphile, with pH range for growth ranging from 7.5 to 10.5 (optimum pH 8.5), and growth is dependent on the presence of sodium ions. The G+C content of the genomic DNA is 37.6 mol%. 16S rDNA sequence analysis of strain Z-7934 shows that it belongs phylogenetically to cluster XI of the low G+C Gram-positive bacteria. On the basis of its distinct phylogenetic position and unique physiological properties, we propose a new genus and new species, Tindallia magadii, for this strain. The type strain is Z-7934T (=DSM 10318). Received: 5 January 1998 / Accepted: 5 February 1998  相似文献   

18.
David B. Hicks 《BBA》2010,1797(8):1362-1377
This review focuses on the ATP synthases of alkaliphilic bacteria and, in particular, those that successfully overcome the bioenergetic challenges of achieving robust H+-coupled ATP synthesis at external pH values > 10. At such pH values the protonmotive force, which is posited to provide the energetic driving force for ATP synthesis, is too low to account for the ATP synthesis observed. The protonmotive force is lowered at a very high pH by the need to maintain a cytoplasmic pH well below the pH outside, which results in an energetically adverse pH gradient. Several anticipated solutions to this bioenergetic conundrum have been ruled out. Although the transmembrane sodium motive force is high under alkaline conditions, respiratory alkaliphilic bacteria do not use Na+- instead of H+-coupled ATP synthases. Nor do they offset the adverse pH gradient with a compensatory increase in the transmembrane electrical potential component of the protonmotive force. Moreover, studies of ATP synthase rotors indicate that alkaliphiles cannot fully resolve the energetic problem by using an ATP synthase with a large number of c-subunits in the synthase rotor ring. Increased attention now focuses on delocalized gradients near the membrane surface and H+ transfers to ATP synthases via membrane-associated microcircuits between the H+ pumping complexes and synthases. Microcircuits likely depend upon proximity of pumps and synthases, specific membrane properties and specific adaptations of the participating enzyme complexes. ATP synthesis in alkaliphiles depends upon alkaliphile-specific adaptations of the ATP synthase and there is also evidence for alkaliphile-specific adaptations of respiratory chain components.  相似文献   

19.
From the silty sediments of the Khadyn soda lake (Tuva), a binary sulfidogenic bacterial association capable of syntrophic acetate oxidation at pH 10.0 was isolated. An obligately syntrophic, gram-positive, spore-forming alkaliphilic rod-shaped bacterium performs acetate oxidation in a syntrophic association with a hydrogenotrophic, alkaliphilic sulfate-reducing bacterium; the latter organism was previously isolated and characterized as the new species Desulfonatronum cooperativum. Other sulfate-reducing bacteria of the genera Desulfonatronum and Desulfonatronovibrio can also act as the hydrogenotrophic partner. Apart from acetate, the syntrophic culture can oxidize ethanol, propanol, isopropanol, serine, fructose, and isobutyric acid. Selective amplification of 16S rRNA gene fragments of the acetate-utilizing syntrophic component of the binary culture was performed; it was found to cluster with clones of uncultured gram-positive bacteria within the family Syntrophomonadaceae. The acetate-oxidizing bacterium is thus the first representative of this cluster obtained in a laboratory culture. Based on its phylogenetic position, the new acetate-oxidizing syntrophic bacterium is proposed in the Candidatus status for a new genus and species: “Candidatus Contubernalis alkalaceticum.”  相似文献   

20.
Nitrile-hydrolyzing bacteria have the potential to perform useful biotransformations such as the production of industrially useful acids and amides. In this study, we report a nitrile-degrading bacterium with significant nitrile metabolism. Molecular characterization of 16S rDNA gene characterized this strain as Bacillus cereus. Medium optimization of B. cereus FA12 showed that biomass and nitrilase production was strongly supported by glucose (10 gL? 1) and yeast extract (10 gL? 1). Enzymatic production improved slightly in the pH range from 6.0 to 7.0. The addition of Mg+2, Fe+2, and Na+ supported biomass and nitrilase production; however, other metal ions, Co+2 and Cu+2, inhibited production. The apparent molecular mass of the puri?ed FA12 nitrilase as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was about 45 kDa. Nitrilase FA12 shows relatively high activity and stability at pH 7.0 and 40°C. Nitrilase FA12 was marginally inhibited with Ca+ 2 and Co+2, whereas inhibition in the presence of dithiothreitol or DTT was 80%. The pseudo Km (mM) values of resting cells (i.e., treating whole cells as if they were an enzyme) for acetonitrile and acetamide were determined to be 2.36 and 1.81, respectively. Under optimum situations, B. cereus FA12 resting cells produced 83 and 58 (U/mg) acetonitrile/acetamide degrading activity, respectively. Ammonia production from acetamide and acetonitrile by the B. cereus FA12 was maximum after 5 and 7 h of incubation, respectively. These results indicate that B. cereus FA12 resting cells may be used in nitrile biotransformations to produce commercially useful compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号